
1

Chapter 6

Binary Search Trees
1st semester

2007/2008

Instructor: Mamoun Nawahdah

Heaps

2

Full Binary Tree
Every non-leaf node has two children

All the leaves are on the same level

Complete Binary Tree
A binary tree that is either full or full through the
next-to-last level

The last level is full from left to right (i.e., leaves are
as far to the left as possible)

3

Array-based representation of complete binary trees

Preserve parent-child relationships by storing the tree
elements in the array

0

1 2

43
5 6

7 8
9

Array-based representation of complete binary trees

Parent-child relationships:
left child of tree.nodes[index] = tree.nodes[2*index+1]

right child of tree.nodes[index] = tree.nodes[2*index+2]

parent node of tree.nodes[index] = tree.nodes[(index-1)/2]
(int division-truncate)

Leaf nodes:
tree.nodes[numElements/2] to tree.nodes[numElements - 1]

4

Array-based representation of complete binary trees

Full or complete trees can be implemented easily using
an array-based representation (elements occupy
contiguous array slots)

"Dummy nodes" are required for trees which are not
full or complete

What is a heap?
It is a binary tree with the following
properties:

Property 1: it is a complete binary tree

Property 2: the value stored at a node is
greater or equal to the values stored at
the children

5

What is a heap? (cont.)

Largest heap element
From Property 2, the largest value of the heap is
always stored at the root

6

Heap implementation using array
representation

A heap is a complete binary tree, so it is easy to
be implemented using an array representation

The ReheapDown function
(used by deleteItem)

Assumption: heap property is violated at the root of the tree

7

The ReheapUp function
(used by insertItem)

Assumption: heap property is violated at the rightmost node
at the last level of the tree

ReheapDown function
template<class ItemType>
void HeapType<ItemType>::ReheapDown(int root, int bottom) {
int maxChild, rightChild, leftChild;

leftChild = 2*root+1;
rightChild = 2*root+2;

if(leftChild <= bottom) { // left child is part of the heap
if(leftChild == bottom) // only one child
maxChild = leftChild;

else {
if(elements[leftChild] <= elements[rightChild])

maxChild = rightChild;
else

maxChild = leftChild;
}
if(elements[root] < elements[maxChild]) {
Swap(elements, root, maxChild);
ReheapDown(maxChild, bottom);
}

}
}

rightmost node
in the last level

8

ReheapUp function

template<class ItemType>
void HeapType<ItemType>::ReheapUp(int

root, int bottom){
int parent;

if(bottom > root) { // tree is not empty
parent = (bottom-1)/2;
if(elements[parent] < elements[bottom]) {
Swap(elements, parent, bottom);
ReheapUp(root, parent);

}
}
}

Assumption:
heap property

is violated at bottom

Removing the largest element from the heap

1) Copy the bottom rightmost element to
the root

2) Delete the bottom rightmost node

3) Fix the heap property by calling
ReheapDown

9

Removing the largest element from the
heap (cont.)

Inserting a new element into the heap

1) Insert the new element in the next
bottom leftmost place

2) Fix the heap property by calling
ReheapUp

10

Inserting a new element into
the heap (cont.)

Priority Queues

What is a priority queue?
It is a queue with each element being
associated with a "priority"

From the elements in the queue, the one
with the highest priority is dequeued first

