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Digraphs (§ 12.4)

# A digraph is a graph
whose edges are all
directed

= Short for “directed graph”
# Applications

= Oone way streets

= flights

= task scheduling

Directed Graphs

'Digraph Properties

# A graph G=(V,E) such that

= Each edge goes in one direction:
+ Edge (a,b) goes from a to b, but not b to a.

@ If G is simple, m < n*(n-1).

# If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to
their size.
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Digraph Application

@ Scheduling: edge (a,b) means task a must be
completed before b can be started

The good life
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Directed DFS Reachability

@ We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction

# In the directed DFS
algorithm, we have four
types of edges

= discovery edges
= back edges
= forward edges

#®DFS tree rooted at v: vertices reachable
from v via directed paths
= Cross edges

@@ ©
Q
N ORI
@ A directed DFS starting a a Q @

vertex s determines the ©
vertices reachable from s
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Strong Connectivity
Algorithm

@ Pick a vertex v in G.
@® Perform a DFS from v in G.

a ‘” = If there’s a w not visited, print “*no”.
\ @ Let G’ be G with edges reversed.
@/ @ Perform a DFS from v in G'.

= If there’s a w not visited, print “no”.
= Else, print “yes”.

~~
J 4%@ @ Running time: O(n+m).
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Strongly Connected
Components

# Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

# Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

@

{a.c.g}
@\

(Ad i
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Transitive Closure

# Given a digraph G, the
transitive closure of G is the
digraph G* such that

= G* has the same vertices
as G

» if G has a directed path
from u to v (u #v), G*
has a directed edge from
utov

# The transitive closure
provides reachability
information about a digraph

Vi

& @
b
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Computing the
Transitive Closure

@ We can perform
DFS starting at
each vertex

= O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a

way to get from A to C.

#Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm
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Floyd-Warshall
Transitive Closure

@ Idea #1: Number the vertices 1, 2, ..., n.

# Idea #2: Consider paths that use only
vertices numbered 1, 2, ..., k, as
intermediate vertices:

Uses only vertices numbered 1,...,k
(add this edge if it's not already in)

.,
.
o

Uses only vertices

numbered 1,...k_1 Uses only vertices

numbered 1,....k 1
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Floyd-Warshall’s Algorithm

# Floyd-Warshall’s algorithm Algorithm FloydWarshall(G)
numbers the vertices of G as | Inputdigraph G
n v, and computes a Output transitive closure G* of G
» e ¥n .
series of digraphs G, ..., G, i<l
. G=G for all v € G.vertices()
o ) denote v as v;
= G, has a directed edge (v, v)) ety
if G has a directed path from G <G
. - )«
v, to v, with intermediate
L for & < 1 to n do
vertices in the set {v,, ..., v}
ma=n G, < G, _,
#® We have that G,= G fori < | ton (i =k) do
# In phase k, digraph G, is forj <« 1 ton (j #i, k) do
computed from G, _ if G, _.areAdjacent(v, v,) A
k=1 k-1 < Pk
# Running time: O(n3), G, _.areAdjacent(v;, v))
assuming areAdjacent is O(1) if ~Gj.areAdjacent(y, v)
(e_g_, adjacency matrix) G.insertDirectedEdge(v, Vis k)
return G,
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Floyd-Warshall, Iteration 1 Floyd-Warshall, Iteration 2

(B0s ) (B0s )
V4 v4
SN SN
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DAGs and Topological Ordering

# A directed acyclic graph (DAG) is a Q G
digraph that has no directed cycles
# A topological ordering of a digraph 9

is a numbering G
vl, .

oV,
of the vertices such that for every e DAG G
edge (v;, v;), we have i <j
# Example: in a task scheduling Vy Vs

digraph, a topological ordering a

task sequence that satisfies the v,

precedence constraints
Theorem

A digraph admits a topological v

ordering if and only if it is a DAG !

Topological
ordering of G
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Topological Sorting

# Number vertices, so that (u,v) in E impliesu < v
A typical student day

2 3
study computer sci.
4 5
Cnap

make cookies
for professors
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dream about graphs

Algorithm for Topological Sorting

@ Note: This algorithm is different than the
one in Goodrich-Tamassia

Method TopologicalSort(G)

He G // Temporary copy of G

n < G.numVertices()

while H is not empty do
Let v be a vertex with no outgoing edges
Label v <~ n
n<n-1
Remove v from H

# Running time: O(n + m). How...?
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Topological Sorting
Algorithm using DFS

@ Simulate the algorithm by using
depth-first search

Algorithm ropological DFS(G)
Input dag G
Output topological ordering of G
n < G.numVertices()

for all u € G.vertices()
setLabel(u, UNEXPLORED)
for all ¢ € G.edges()
setLabel(e, UNEXPLORED)
for all v € G.vertices()
if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

@® O(n+m) time.

Algorithm topological DFS(G, v)
Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)
for all e € G.incidentEdges(v)
if getLabel(e) = UNEXPLORED
w < opposite(v,e)
if getLabel(w) = UNEXPLORED
setLabel(e, DISCOVERY)
topologicalDFS(G, w)
else
{e is a forward or cross edge}
Label v with topological number n
n<n-1

Topological Sorting Example
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. Topological Sorting Example . Topological Sorting Example




. Topological Sorting Example

Topological Sorting Example
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Topological Sorting Example _Topological Sorting Example
© 2004 Goodrich, Tamassia Directed Graphs 31 © 2004 Goodrich, Tamassia Directed Graphs 32




. Topological Sorting Example

Topological Sorting Example
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Topological Sorting Example
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