Graphs

© 2004 Goodrich, Tamassia Graphs

Graphs (§ 12.1)

@ A graph is a pair (V, E), where
= Vs a set of nodes, called vertices
= Eis a collection of pairs of vertices, called edges
= Vertices and edges are positions and store elements
@ Example:
= A vertex represents an airport and stores the three-letter airport code

= An edge represents a flight route between two airports and stores the
mileage of the route

© 2004 Goodrich, Tamassia Graphs 2

Edge Types

@ Directed edge
= ordered pair of vertices (u,v)
n first vertex u is the origin
= second vertex v is the destination
= e.g., aflight
Undirected edge
= unordered pair of vertices (u,v)
= e.g., a flight route
@ Directed graph
= all the edges are directed
= e.g., route network
Undirected graph
= all the edges are undirected
= e.g., flight network

© 2004 Goodrich, Tamassia Graphs

Applications

Electronic circuits
= Printed circuit board
= Integrated circuit
Transportation networks
= Highway network brown.edu
= Flight network @Eemml 00000 e
Computer networks
= Local area network
= Internet "=
= Web
Databases Paul David
= Entity-relationship diagram

© 2004 Goodrich, Tamassia Graphs 4

Terminology

@ End vertices (or endpoints) of
an edge

= U and V are the endpoints of a
Edges incident on a vertex

= a,d, and b are incident on V
Adjacent vertices

= UandV are adjacent
® Degree of a vertex

= X has degree 5
@ Parallel edges

= hand i are parallel edges
@ Self-loop

= jis a self-loop

© 2004 Goodrich, Tamassia Graphs

Terminology (cont.)

@ Path

= sequence of alternating
vertices and edges

= begins with a vertex
= ends with a vertex
= each edge is preceded and
followed by its endpoints
Simple path
= path such that all its vertices
and edges are distinct
@ Examples
= P,=(V,b,X;h,Z) is a simple path
= P,=(U,c,W,eXg,Y,fW,dV)isa
path that is not simple

© 2004 Goodrich, Tamassia Graphs 6

Terminology (cont.)

& Cycle
= circular sequence of alternating
vertices and edges
= each edge is preceded and
followed by its endpoints
Simple cycle
» cycle such that all its vertices
and edges are distinct
& Examples
= C=(V,b,X,g,Y,fW,cUa,J)isa
simple cycle
= C,=(U,c,W,eXgq,Y,f,W,dV,a,Jl)
is a cycle that is not simple

© 2004 Goodrich, Tamassia Graphs

Properties

Property 1 Notation
X, deg(v) =2m n number of vertices
Proof: each edge is m number of edges
counted twice deg(v) degree of vertex v
Property 2
In an undirected graph Example
with no self-loops and
no multiple edges »n=4
m<n(n-1)_2 s m=6
Proof: each vertex has = deg(v)=3

degree at most (n - 1)

What is the bound for a
directed graph?

© 2004 Goodrich, Tamassia Graphs 8

Vertices and edges
= are positions
= store elements
@ Accessor methods
= endVertices(e): an array of
the two endvertices of e
= opposite(v, e): the vertex
opposite of von e
= areAdjacent(v, w): true iff v
and w are adjacent
= replace(v, x): replace
element at vertex v with x
= replace(e, x): replace
element at edge e with x

© 2004 Goodrich, Tamassia Graphs

Main Methods of the Graph ADT

Update methods
= insertVertex(o): insert a
vertex storing element o
= insertEdge(v, w, 0): insert
an edge (v,w) storing
element o
= removeVertex(v): remove
vertex v (and its incident
edges)
= removeEdge(e): remove
edge e
@ Iterator methods
= incidentEdges(v): edges
incident to v
= vertices(): all vertices in the
graph
= edges(): all edges in the
graph

Edge List Structure
(§12.2.1)

@ Vertex object
= element

= reference to position in
vertex sequence

Edge object

W
= element ~\ ~
= origin vertex object
= destination vertex object ’_I_‘_‘
= reference to position in u w z

edge sequence
@ Vertex sequence
= sequence of vertex

objects
@ Edge sequence

= sequence of edge objects g g N \Qé

© 2004 Goodrich, Tamassia Graphs 10

Adjacency List Structure

(§ 12.2.2)

@ Edge list structure

Incidence sequence
for each vertex

= sequence of
references to edge
objects of incident

edges

Augmented edge
objects
= references to
associated
positions in
incidence
sequences of end
vertices

© 2004 Goodrich, Tamassia Graphs

11

Adjacency Matrix Structure
(§ 12.2.3)

Edge list structure

Augmented vertex
objects

= Integer key (index)
associated with vertex
& 2D-array adjacency i
array [o[4]u]
= Reference to edge t
object for adjacent
vertices
= Null for non
nonadjacent vertices
The “old fashioned” |
version just has 0 for 1
no edge and 1 for edge

© 2004 Goodrich, Tamassia Graphs 12

Asymptotic Performance

n vertices, m edges

no parallel edges Edge Adjacency Adjacency
no self-loops List List Matrix
Bounds are “big-Oh”

Space n+m n+m n?
incidentEdges(v) m deg(v) n
areAdjacent (v, w) | m | min(deg(v), deg(w)) 1
insertVertex(o) 1 | n?
insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n?
removeEdge(e) 1 1 1

© 2004 Goodrich, Tamassia

Graphs

13

