Recall the Map ADT (§ 8.1)

Map ADT methods:
HaSh Tables s get(k): if the map M has an entry with key k,

return its assoiciated value; else, return null

s put(k, v): insert entry (k, v) into the map M; if key
k is not already in M, then return null; else, return
old value associated with k

= remove(k): if the map M has an entry with key k,
remove it from M and return its associated value;
else, return null

n size(), isEmpty()
= keys(): return an iterator of the keys in M
= values(): return an iterator of the values in M

025-612-0001

981-101-0002

451-229-0004

© 2004 Goodrich, Tamassia Hash Tables 1 © 2004 Goodrich, Tamassia Hash Tables 2

Hash Functions and .
_Hash Tables (§8.2) f Example

@ A hash function 2 maps keys of a given type to # We design a hash table for 0[]
integers in a fixed interval [0, N — 1] a map storing entries as 1]~
@ Example: (SSN, Name), where SSN % %_’
h(x) = x mod N (social security number) is a 4 [+}—{(as1-229-0004)

is a hash function for integer keys nine @it positive integer i

@ The integer h(x) is called the hash value of key x @ Our hash table uses an 9997 [2]
array of size N= 10,000 and 0998 —._

A hash table for a given key type consists of the hash function 9999 7]

= Hash function & h(x) = last four digits of x i

= Array (called table) of size N

When implementing a map with a hash table, the goal
is to store item (k, o) at index i = h(k)
© 2004 Goodrich, Tamassia Hash Tables 3 © 2004 Goodrich, Tamassia Hash Tables 4

A hash function is
usually specified as the
composition of two
functions:

Hash code:
h,: keys — integers
Compression function:
h,: integers — [0, N — 1]

© 2004 Goodrich, Tamassia Hash Tables

Hash Functions (§ 8.2.2) 0

@ The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,

h(x) = hy(h,(x))

@ The goal of the hash
function is to
“disperse” the keys in
an apparently random
way

Memory address:

= We reinterpret the memory
address of the key object as
an integer (default hash code
of all Java objects)

= Good in general, except for
numeric and string keys

Integer cast:

= We reinterpret the bits of the
key as an integer

= Suitable for keys of length
less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float in Java)

© 2004 Goodrich, Tamassia Hash Tables

Hash Codes (§ 8.2.3)

@ Component sum:

= We partition the bits of
the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components
(ignoring overflows)

= Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type (e.g., long
and double in Java)

Polynomial accumulation:
= We partition the bits of the
key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)
aa, ... a,,
= We evaluate the polynomial
pR)=a,+az+a, 2+ ...
cota, 7!
at a fixed value z, ignoring
overflows
= Especially suitable for strings
(e.g., the choice z =33 gives
at most 6 collisions on a set
of 50,000 English words)

© 2004 Goodrich, Tamassia Hash Tables

Hash Codes (cont.)

@ Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:

= The following
polynomials are
successively computed,
each from the previous
one in O(1) time

P =a,,

pi@)=a,;+p; ()
(i=1,2,...n-1)

@ We have p(z)=p, (z)

Compression Functions

(§ 8.2.4)

@ Division:
s 1i,(y)=ymod N
= The size N of the

hash table is usually
chosen to be a prime

= The reason has to do
with number theory
and is beyond the
scope of this course

© 2004 Goodrich, Tamassia Hash Tables

@ Multiply, Add and
Divide (MAD):
= 1, (y)=(ay+b) mod N
= g and b are

nonnegative integers
such that
amod N#0

= Otherwise, every

integer would map to
the same value b

Collision Handling
(§ 8.2.5)

Collisions occur when

different elements are
mapped to the same
cell

Separate Chaining:

© 2004 Goodrich, Tamassia

let each cell in the
table point to a linked

list of entries that map

there

w" <
® a %

@ Separate chaining is

simple, but requires
additional memory
outside the table

Hash Tables 9

Map Methods with Separate
Chaining used for Collisions

7 # Delegate operations to a list based map at each cell:

Algorithm get(4):

Output: The value associated with the key kin the map, or null if there is no
entry with key equal to kin the map

return A A(K)].get(K) {delegate the get to the list-based map at ALA(K)]}

Algorithm put(41):
Output: If there is an existing entry in our map with key equal to &, then we
return its value (replacing it with); otherwise, we return null
t= ALKK)].put(kv) {delegate the put to the list-based map at AL K)]}
if £= null then {kis a new key}
n=n+1
return ¢

Algorithm remove(4):

Output: The (removed) value associated with key kin the map, or null if there
is no entry with key equal to «in the map

t = ALK K)].remove(k) {delegate the remove to the list-based map at AL/A(K)]}

if £+ null then {kwas found}
n=n-1
© 2004 EEYMER FTamassia Hash Tables 10

®

&

© 2004 Goodrich, Tamassia

Linear Probing

Open addressing: the
colliding item is placed in a
different cell of the table
Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available table cell
Each table cell inspected is
referred to as a “probe”
Colliding items lump together,
causing future collisions to
cause a longer sequence of
probes

@ Example:
= hi(x)=xmod 13

= Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

0123456 7289101112

4

[T s T T1844]59]32[22[31]73]

0123456728 9101112

Hash Tables 11

Search with Linear Probing

Consider a hash table 4 Algorithm get(k)
that uses linear probing i< hik)
p<0
get(k) repeat
= We start at cell h(k) ¢« Ali]
= We probe consecutive ife=0
return null

locations until one of the
following occurs
+ An item with key & is

elseif c.key () =k
return c.element()

found, or els‘f ot alv
. «— @i+
+ An empty cell is found, i (i+1)ymo
or p<p+1
until p=N

+ N cells have been

unsuccessfully probed return zull

© 2004 Goodrich, Tamassia Hash Tables 12

Updates with Linear Probing

To handle insertions and 4 put(k, o)

deletions, we introduce ;
a special object, called - *Vtehtewgt\;\lleaig ?G(ﬁept'on

AVAILABLE, which

replaces deleted = We start at cell 2(k)
elements = We probe consecutive
@ remove(k) cells until one of the

= We search for an entry following occurs
with key & + A cell i is found that is

either empty or stores
AVAILABLE, or

+ N cells have been

= If such an entry (k, o) is
found, we replace it with

Double Hashing

Double hashing uses a
secondary hash function
d(k) and handles
collisions by placing an
item in the first available
cell of the series

(i + jd(k)) mod N
forj=0,1,...,N—1

The secondary hash
function d(k) cannot

#® Common choice of

compression function for
the secondary hash
function:
d,(k)=q —kmod g
where
m g< N
= g isaprime

The possible values for

LhSAS,‘iej?'Lge;?,d we unsuccessfully probed have zero values d,(k) are
return element o = We store entry (%, 0) in # The table size N must be 1,2,....q
= Else, we return null cell i a prime to allow probing
of all the cells
© 2004 Goodrich, Tamassia Hash Tables 13 © 2004 Goodrich, Tamassia Hash Tables 14
——
Performance of =

Example of Double Hashing

. k _h(k) d(k) Probes
Consider a hash 8 5 3 [s]
table storing integer a0 2 1 [2]
22 9 6 9
key_s_that handles 4 s s[5 1o
collision with double 59 7 4 [7
H 32 6 3 6
haShmg 31 5 4 5 9 0
s N=13 73 8 4 | 8]

= h(k)=kmod 13
 d(k)=7-kmod7

0123456 7289101112

Insert keys 18, 41, a
22, 44, 59, 32, 31,
73, in this order [B1] [aa] [[18[32]59]73[22[44] [|

0123456 7289101112

© 2004 Goodrich, Tamassia Hash Tables 15

Hashing

In the worst case, searches,
insertions and removals on a
hash table take O(n) time

The worst case occurs when
all the keys inserted into the
map collide

The load factor o= n/N
affects the performance of a
hash table

@ Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

1/(1-a

The expected running
time of all the dictionary
ADT operations in a
hash table is O(1)

In practice, hashing is
very fast provided the
load factor is not close
to 100%

Applications of hash
tables:
= small databases
= compilers
= browser caches

© 2004 Goodrich, Tamassia Hash Tables 16

Java Example

/** A hash table with linear probing and the MAD hash function */
public class HashTable implements Map {
protected static class HashEntry implements Entry {

Object key, value;

HashEntry () { /* default constructor */ }

HashEntry(Object k, Object v) { key = k; value = v; }

public Object key() { return key;

public Object value) { return value; }

pubuc HashTable(int bN, Equality Tester tester) {

protected Object setValue(Object v) { // set a new value, returning old $ = "EW;””V[N]/
8:&“} Emp = vale; Java.ui Random rand = new ava i Random();
return temp; // return old value scale = rand.nextint(N-1) +

¥

shift = rand.nextInt(N);
¥

¥
/%% Nested class for a default equahty tester ¥/
pmtected static class D ter i £
tyTester() { /* default ¢ '}
/** Returns whether the two objects are equal. */
public boolean isEquaTo(Object a, Object b) { return a.equals(b); }
¥

pmtectedkstanc Entry AVAILABLE = new HashEntry(null, null); // empty
marker

protected int n = 0; // number of entries in the dictionary
protected int N; 1/ capacity of the bucket array
protected Entry[] A; /1 bucket array
protected EqualityTester T; 1/ the equality tester

protected int scale, shift; // the shift and scaling factors
/*¥* Creates a hash table with initial capacity 1023. */
public HashTable() {
N = 1023; // default capacity
A= new Entry[N];
T = new DefaultEqualityTester(); // use the default equality tester
til.Random rand = new java.util.Random();

)
© 2004 Goodrich, Tamassia Hash Tables

/** Creates a hash table with the given capacity and equality tester. */

17

Java Example
(cont.)

/** Determines whether a key is valid. */
protected void checkKey(Object k) {

b
J** Hash function applying MAD melhod to default hash code. */
public int hashValue(Object ke

return Math.abs(key. hashcude()'scale + shift) % N;
b
7** Returns the number of entries in the hash table. */
public int size() { return n; }
1+ Returs whethe orno the tabl i empty. */
public boolean isEmpty() { return (n
/** Helper search method - returs et found key or -index-1,
* where index is the index of an empty or available slot. */
protected int findEntry(Object key) throws InvalidKeyException {

int avail = 0;

checkKey(key);

int i = hashvalue(key);

null) throw new TnvalidKeyException(*Invalid key: nuil.");

/** Put a key-value pair in the map, replacing previous one if it exists. */
public Object put (Object key, Object value) throws InvalidKeyException {
if (n >= N/2) rehash(); // rehash to keep the load factor <= 0.5
int i = findEntry(key); //find the appropriate spot for this entry
if (i<0){ // this key does not already have a value
A[-i-1] = new HashEntry(key, value); // convert to the proper index

4
return null; // there was no previous value

else // this key has a previous value
return ((HashEntry) A[i]).setValue(value); // set new value & return old

/** Doubles the size of the hash table and rehashes all the entries. */
protected void rehash() {
Entry[] B A;
A = new Entry[N]; // allocate a new version of A twice as big as before
java.util.Random rand = new java.util.Random();
scale = rand.nextInt(N-1) + 1; 1/ new hash scaling factor
shift = rand.nextInt(N); /I new hash shifting factor
for (int i=0; i<B.length; i++)
i ((BLi] != null) && (B[i] != AVAILABLE)) { // if we have a valid entry
indEntry(B[i].key()); // find the appropriate spot
= B[i]; // copy into the new array

/** Removes the key-value pair with a specified key. *

int public Object remove (Object key) throws InvalidkeyException {
' int i = findEntry(key); // find this key first
if (A[i] == null) return -i - 1; // entry is not found if (i < 0) return null; /] nothing to remove
if (Ali] == AVAILABLE) { J/ bucket is deactivated Object toReturn = Afi].value();
a\l ail = i; / remember that this slot is available Ali] = AVAILABLI // mark this slot as
=(+1)%N; 1/ keep looking deactwated

>
else if (T.isEqualTo(key,Alil.key())) // we have found our entry
i

else // this slot is occupied--we must keep looking
i=(i+
3 while (i 1= 3);
return -avail - 1; // entry is not found

J** Returns the value associated with a key. */

public Object get (Object key) throws InvalidKeyException {
int i = findEntry(key); // helper method for finding a key
if (i < 0) return null; // there is no value for this key
return Ali].value(); // return the found value in this case

»
© 2004 Goodrich, Tamassia

return toReturn;

/'m Returns an terator of keys. */
public java.util.Iterator keys() {
new NodeList();
0; I&IEN; i++)
if ((AL1] 1= null) && (A[i] != AVAILABLE))
keys.insertLast(A[i] key());
return keys.elements();

3} 1/ ... values() is similar to keys() and is omitted here ...

Hash Tables 18

