Minimum Spanning Trees

© 2004 Goodrich, Tamassia Minimum Spanning Trees

Minimum Spanning Trees (§ 12.7)

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G
Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
Applications
= Communications networks
= Transportation networks

© 2004 Goodrich, Tamassia Minimum Spanning Trees 2

Cycle Property

Cycle Property:

= Let 7 be a minimum
spanning tree of a
weighted graph G

n Let e be an edge of G
that is not in Tand C let
be the cycle formed by e
with T

weight(f) < weight(e)

Proof:

= By contradiction

n If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

© 2004 Goodrich, Tamassia Minimum Spanning Trees

) Replacing f with e yields
= For every edge fof C, ﬂ a better spanning tree

Partition Property

Partition Property:

= Consider a partition of the vertices of
G into subsets U and V

= Let e be an edge of minimum weight
across the partition

= There is a minimum spanning tree of
G containing edge e

Proof: Replacing f with e yields

= Let T be an MST of G ﬂ another MST

= If T does not contain e, consider the
cycle C formed by e with Tand let f
be an edge of C across the partition

= By the cycle property,

weight(f) < weight(e)

n Thus, weight(f) = weight(e)

= We obtain another MST by replacing
fwith e

© 2004 Goodrich, Tamassia Minimum Spanning Trees 4

Kruskal’s Algorithm (§ 12.7.1)

@ A priority queue stores Algorithm KruskalMST(G)
the edges outside the for cach vertex }7in G do
define a Cloud(v) of € {v}
cloud let O be a priority queue.
= Key: weight Insert all edges into @ using their
= Element: edge ‘;e'eg}%s as the key
@ At the end of the while 7 has fewer than n-1 edges do
algorithm edge e = T.removeMin()
. Let u, v be the endpoints of e
= We are left with one if Cloud(») # Cloud(u) then
cloud that encompasses Addedgeeto T
the MST Merge Cloud(v) and Cloud(u)
= Atree Twhich is our return 7
MST
© 2004 Goodrich, Tamassia Minimum Spanning Trees

Data Structure for Kruskal
~Algortihm (§ 10.6.2)

The algorithm maintains a forest of trees
An edge is accepted it if connects distinct trees

We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with the operations:

- fnd(u): return the set storing u

- uion(u,v): replace the sets storing u and v with
their union

© 2004 Goodrich, Tamassia Minimum Spanning Trees

Representation of a
Partition

Each set is stored in a sequence

Each element has a reference back to the set

= operation find(u) takes O(1) time, and returns the set of
which u is a member.

= in operation union(u,v), we move the elements of the
smaller set to the sequence of the larger set and update
their references

= the time for operation union(u,v) is min(n,n,), where n,
and n, are the sizes of the sets storing u and v
Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

© 2004 Goodrich, Tamassia Minimum Spanning Trees

Partition-Based
Implementation

@ A partition bsed version of Kruskal’s Algorithm
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do
(u,v) < Q.removeMinElement()
if P.find(x) != P.find(v) then Running time:
Add (u,v)to T O((n+m)|09 n)

P.union(u,v)

return 7'

© 2004 Goodrich, Tamassia Minimum Spanning Trees

Kruskal
Example

1846

1464

1235

2704

621

802

1391

946

1090

1121
2342
© 2004 Goodrich, Tamassia Minimum Spanning Trees 9 © 2004 Goodrich, Tamassia Minimum Spanning Trees 10
Minimum Spanning Trees 11 © 2004 Goodrich, Tamassia Minimum Spanning Trees 12

© 2004 Goodrich, Tamassia

© 2004 Goodrich, Tamassia Minimum Spanning Trees .
i panning 13 © 2004 Goodrich, Tamassia Minimum Spanning Trees

© 2004 Goodrich, Tamassia Minimum Spanning Trees .
panning 15 © 2004 Goodrich, Tamassia Minimum Spanning Trees

© 2004 Goodrich, Tamassia Minimum Spanning Trees .
i panning 17 © 2004 Goodrich, Tamassia Minimum Spanning Trees

© 2004 Goodrich, Tamassia Minimum Spanning Trees .
panning 19 © 2004 Goodrich, Tamassia Minimum Spanning Trees

© 2004 Goodrich, Tamassia Minimum Spanning Trees 21

© 2004 Goodrich, Tamassia

Minimum Spanning Trees 22

Prim-Jarnik’s Algorithm (§ 12.7.2)

@ Similar to Dijkstra’s algorithm (for a connected graph)

@ We pick an arbitrary vertex s and we grow the MST as a
cloud of vertices, starting from s

@ We store with each vertex v a label d(v) = the smallest
weight of an edge connecting v to a vertex in the cloud

@ At each step:
= We add to the cloud the
vertex u outside the cloud
with the smallest distance
label
= We update the labels of the
vertices adjacent to u

© 2004 Goodrich, Tamassia Minimum Spanning Trees 23

@ A priority queue stores
the vertices outside the
cloud

= Key: distance
= Element: vertex
Locator-based methods

u insert(k,e) returns a
locator

n replaceKey(l,k) changes
the key of an item
@ We store three labels
with each vertex:
= Distance
= Parent edge in MST
= Locator in priority queue

© 2004 Goodrich, Tamassia

Prim-Jarnik’s Algorithm (cont.)

Algorithm PrimJarnikMST(G)
Q < new heap-based priority queue
s « a vertex of G
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
setParent(v, D)
1 < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpity()
u < Q.removeMin()
for all ¢ € Gl.incidentEdges(u)
7 < G.opposite(u,e)
r < weight(e)
if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Minimum Spanning Trees 24

Example

© 2004 Goodrich, Tamassia Minimum Spanning Trees 25

Example (contd.)

© 2004 Goodrich, Tamassia Minimum Spanning Trees 26

Analysis

@ Graph operations
= Method incidentEdges is called once for each vertex
Label operations

= We set/get the distance, parent and locator labels of vertex z O(deg(z))
times

= Setting/getting a label takes O(1) time
@ Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
= Recall that X, deg(v) = 2m
The running time is O(m log n) since the graph is connected

© 2004 Goodrich, Tamassia Minimum Spanning Trees 27

Baruvka’s Algorithm (Ex. C-12.28)

@ Like Kruskal’s Algorithm, Baruvka’s algorithm grows many
“clouds” at once.

Algorithm BaruvkaMST(G)
T € V {just the vertices of G}
while 7 has fewer than n-1 edges do
for each connected component Cin 7 do
Let edge e be the smallest-weight edge from C to another component in 7.
if e is not already in 7 then
Addedgeeto T
return 7’

Each iteration of the while-loop halves the number of connected
compontents in T.
= The running time is O(m log n).

© 2004 Goodrich, Tamassia Minimum Spanning Trees 28

Baruvka

© 2004 Goodrich, Tamassia Minimum Spanning Trees .
i panning 29 © 2004 Goodrich, Tamassia Minimum Spanning Trees

30

© 2004 Goodrich, Tamassia Minimum Spanning Trees 31

