Pattern Matching

lalp]afclala]b]

1

laf[bfalclalb]
A 4 3 2

lalbfafclalb]

© 2004 Goodrich, Tamassia Pattern Matching 1

. B “1;2;3:‘}‘:' o]
Strings (§ 11.1) iy e
b—— - |
A string is a sequence of # Let P be a string of size m
characters = A substring P[i.. j] of Pis the
Examples of strings: subsequence of P consisting of
« Java program the characters with ranks

between i and j
=--HTML document = A prefix of P is a substring of

= DNA sequence the type P[0.. i]
= Digitized image = A suffix of P is a substring of
An alphabet X'is the set of the type Pli..m — 1]
possible characters for a # Given strings T (text) and P
family of strings (pattern), the pattern matching
Example of alphabets: problem consists of finding a

« ASCII substring of 7 equal to P
= Unicode # Applications:
= {0, 1} = Text editors
=« {A,CG,T} = Search engines
= Biological research
© 2004 Goodrich, Tamassia Pattern Matching 2

Brute-Force Pattern
Matching (§ 11.

The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to 7, until either

= a match is found, or
= all placements of the pattern
have been tried

Brute-force pattern matching
runs in time O(nm)

Example of worst case:

s T=aaa...ah

s P=aaah

= may occur in images and
DNA sequences

= unlikely in English text

2.1)

Algorithm BruteForceMatch(T, P)

Input text 7 of size n and pattern
P of sizem

Output starting index of a
substring of T equal to P or —1
if no such substring exists

for i< Oton—m
{ test shift i of the pattern }
j<0
while j < m A T[i + j] = P[j]
jej+1
if j=m
return / {match at i}
else
break while loop {mismatch}
return -1 {no match anywhere}

© 2004 Goodrich, Tamassia Pattern Matching 3

Boyer-Moore Heuristics (§ 11.2.2)

@ The Boyer-Moore’s pattern matching algorithm is based on two
heuristics

Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at 77i] = ¢
= If P contains ¢, shift P to align the last occurrence of ¢ in P with 7Ti]
= Else, shift P to align P[0] with TTi + 1]

Example
la] [plale]e]e]r[n] [m[alt]c[n]in]e] [a]i]g]o[r]i]e]n]m]
1 3 5 11109 8 7
[rlile[n]m] [r[ie[n]m] [rlile[n]m] [elile]n]m]
NLA] AN 6 N
[r[ile]n]m] [rLi]e]n]m] [rLi]e]n]m]

© 2004 Goodrich, Tamassia Pattern Matching 4

Last-Occurrence Function

@ Boyer-Moore's algorithm preprocesses the pattern P and the
alphabet X'to build the last-occurrence function L mapping X'to
integers, where L(c) is defined as

= the largest index i such that P[i] = cor
= -1 if no such index exists

@ Example:
« Z={abcd ¢ 4 b ¢ 4
s P =abacab L(c) 4 5 3 -1

@ The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m + s),
where m is the size of P and s is the size of X

© 2004 Goodrich, Tamassia Pattern Matching 5

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch(T, P, %) Casel: j<1+1
L < lastOccurenceFunction(P, ') [ITT.[.].]a !‘lHH
i—m-1 |
jem=1 LLI.T-T#]a] 1
repeat jl 'I
if 717] = P[] e
if j=0 5
return i { matchati} E\:\:‘::\z‘
else i
Jl:]t:} Case 2: 1 +1<j
else \»HAH-HI-H-H-H
{ character-jump } :
lermil [Jal.T.T2].] !
i<« i+m—min(, | +1) 7 j |
jem—1 Ilm-1+0l
until i>n—1 e
return —1 { no match } [Tal . T.Tol.]
1+
© 2004 Goodrich, Tamassia Pattern Matching 6

Example

laltfalclalalblald]clafb]afcalb]ala]s]t]

1
[a]t]a]cla]s]

A 432 13 12 1110 9 8
lalt]afelalb] laft]afc]a]b]
4 5 7 A
laltlafclalb] |af[b]afc|a]b]
L N 67

[alb]alc]a]b]

© 2004 Goodrich, Tamassia Pattern Matching 7

Analysis

@ Boyer-Moore’s algorithm
runs in time O(nm + s)
@ Example of worst case:
» T=aaa...a |b|a|a|a|a|a|
=P =bhasa X2 11 10 9 8
The worst case may occur in
images and DNA sequences

la]alafalafalala]a]

[6]afalafa]a]

but is unlikely in English text Y18 17 16 15 14 13
Boyer-Moore’s algorithm is | b | L | C | “a | aja |
significantly faster than the Q94 23 22 21 20 19
brute-force algorithm on | b | 7 | u | P | P | P |
English text
© 2004 Goodrich, Tamassia Pattern Matching 8

© 2004 Goodrich, Tamassia

The KMP Algorithm (§ 11.2.3)

Knuth-Morris-Pratt’s algorithm
compares the pattern to the

text in left-to-right, but shifts [[Tal s[al e[6] x] . .] .].]]

the pattern more intelligently
than the brute-force algorithm.
When a mismatch occurs,
what is the most we can shift
the pattern so as to avoid
redundant comparisons?
Answer: the largest prefix of
P[0. /] that is a suffix of P[1.,]

lJj
|

[al 8] o[[6] 4]

<«—>
No need tOI ! \ Resume

repeat these comparing
comparisons here
Pattern Matching 9

KMP Failure Function

@ Knuth-Morris-Pratt’s
algorithm preprocesses the .
pattern to find matches of Pl
prefixes of the pattern with F)|lojoj1}j1]2]|3
the pattern itself

& The failure function F(j)is| . | . [a[b]ala]b]x] . [.] .].].]

defined as the size of the I
la]blafa]b]d]

largest prefix of P[0.,j] that is
IJ

jloj1{2|3]4]5s

also a suffix of P[1.]

Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] = TTi] \Z‘Z

. A <l
weset j« F(j—-1) Fij— 1)l
1

© 2004 Goodrich, Tamassia Pattern Matching 10

© 2004 Goodrich, Tamassia

The KMP Algorithm

@ The failure function can be
represented by an array and
can be computed in O(m) time

At each iteration of the while-
loop, either

= i increases by one, or

= the shift amount i —j
increases by at least one
(observe that F(j — 1) <j)

@ Hence, there are no more
than 2n iterations of the
while-loop

Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F « failureFunction(P)
i« 0
j<0
while i < n
if 77i] = P[j]
if j=m-1
return i —j { match }
else
i«i+1
je—j+1
else
if j>0
J< Flj-1]
else
i—i+1

return —1 { no match }

Pattern Matching 11

Computing the Failure ‘@
Function =

@ The failure function can be

represented by an_ array an_d Algorithm failureFunction(P)
can be computed in O(m) time FIO] < 0

The construction is similar to i1
the KMP algorithm itself Jj<0
A ! . while i < m
At each iteration of the while- if P[i] = Plj]
loop, either {we have matched j + 1 chars}
= iincreases by one, or F([_’] ‘: 11+ 1
1 1
= the shift amount i —j jejtl
increases by at least one else if j> 0 then
(observe that F(j — 1) <j) {use failure function to shift P}
Hence, there are no more al© Fj-11
tha_n 2m iterations of the Fli] < 0 { no match }
while-loop i+l
© 2004 Goodrich, Tamassia Pattern Matching 12

Example

lalblalclalalbla]c|c[ablalc|alb]alalb]s]

albla|c|al|b

7
La]b]afcla]b]

8 9 1011 12

lalt]a]cla[s]

13
lalblafc|a]b]

14 15 16 17 18 19
alblalcl|lal|b

Jj 0 1 2345
Pjlla |b|a|c|al|b
Fi)lo|o|1]o|1]2

© 2004 Goodrich, Tamassia Pattern Matching 13

