Quick-Sort

(74962524679 |
(42524 (29579
-2) () (] (=9
© 2004 Goodrich, Tamassia Quick-Sort 1

Quick-Sort (§ 10.2)

Quick sort is a randomized
sorting algorithm based
on the divide- ad onquer

DDDHHD
paradigm:

= Divide: pick a random
element x (called pivot) and I
partition § into |:| ol

+ L elements less than x H_j _Y_} H_j

+ E elements equal x L E G
+ G elements greater than x
= Recur: sort Land G
= Conquer: join L, E and G 0 D |:|
© 2004 Goodrich, Tamassia Quick-Sort 2

Partition

@ We partition an input
sequence as follows:
= We remove, in turn, each
element y from § and
= WeinsertyintoL, Eor G,
depending on the result of
the comparison with the
pivot x
Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G < empty sequences
X < S.remove(p)
while —S.isEmpty()
y « S.remove(S.first())
ify<x
L.insertLast(y)
else if y =x
E.insertLast(y)
else { y>x}
G.insertLast(y)
return L, E, G

© 2004 Goodrich, Tamassia Quick-Sort 3

Quick-Sort Tree

An execution of quick ert is depicted by a binary tree
= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution
= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(749625>24679)

(425 24] (z9579]

= G & 8

© 2004 Goodrich, Tamassia Quick-Sort 4

Execution Example

#Pivot selection

(72943761]

© 2004 Goodrich, Tamassia Quick-Sort

Execution Example (cont.)

@ Partition, recursive call, pivot selection

(72943761)

© 2004 Goodrich, Tamassia Quick-Sort 6

Execution Example (cont.)

@ Partition, recursive call, base case

(72943761)

© 2004 Goodrich, Tamassia Quick-Sort

Execution Example (cont.)

#®Recursive call, ..., base case, join

(72943761)

(243151234]

~ N
& = W W
] 9

© 2004 Goodrich, Tamassia Quick-Sort 8

Execution Example (cont.)

#®Recursive call, pivot selection

(72943761)

(24315 1234] (7912]

© 2004 Goodrich, Tamassia Quick-Sort 9

Execution Example (cont.)

& Partition, ..., recursive call, base case

(72943761)

(24315>1234] (7912)

[1-1] 4334 L] 99
) &9

© 2004 Goodrich, Tamassia Quick-Sort 10

Execution Example (cont.)

@ Join, join
(72943761512346779]
Pl -~
(243151234] (792 5 779

© 2004 Goodrich, Tamassia Quick-Sort 11

Worst-case Running Time

@ The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

@ One of L and G has size n — 1 and the other has size 0
@ The running time is proportional to the sum
n+(n-1)+..+2+1
@ Thus, the worst-case running time of quick-sort is O(n?)
depth time

© 2004 Goodrich, Tamassia Quick-Sort 12

Expected Running Time

@ Consider a recursive call of quick-sort on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

(72943761) (72943761)
-~ ~ -~ ~
2431 797

Good call Bad call

Expected Running Time, Part 2

Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k

For a node of depth i, we expect
= i/2 ancestors are good calls
= The size of the input sequence for the current call is at most (3/4)"2n
£ 4 Therefore, we have expected height

= For a node of depth 2log, ,n,
the expected input size is one

time per level

= The expected height of the

A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:
(12345678910111213141516 |
\ J\. ~ J \\ J

Y
Bad pivots Good pivots Bad pivots

© 2004 Goodrich, Tamassia Quick-Sort 13

quick-sort tree is O(log n)

The amount or work done at the ***”

nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

total expected time: O(n log 1)

© 2004 Goodrich, Tamassia Quick-Sort 14

In-Place Quick-Sort

@ Quick-sort can be implemented
to run in-place

@ In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that

= the elements less than the
pivot have rank less than &

= the elements equal to the pivot
have rank between k and k

= the elements greater than the
pivot have rank greater than &

The recursive calls consider

= elements with rank less than &

© 2004 Goodrich, Tamassia

elements with rank greater
than &

Algorithm inPlaceQuickSort(S, I, r)
Input sequence S, ranks / and r
Output sequence S with the

elements of rank between / and r
rearranged in increasing order
ifl>r
return
i < arandom integer between / and r
X « S.elemAtRank(i)
(h, k) < inPlacePartition(x)
inPlaceQuickSort(S, I, h — 1)
inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

@ Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
j k

(32510735927989769] (pivot =6)

@ Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

Quick-Sort 15

(32510

7

3509

2[79897609]

© 2004 Goodrich, Tamassia

~~—

Quick-Sort 16

Summary of Sorting Algorithms

Algorithm Time Notes
selection st o(n?) : isrl]c;f/)\ia(cc_;eood for small inputs)
insertion st o(r’) 2 LTC-)S\IIa(Cgeood for small inputs)
quick sort Zg;ii%eg) 2 if:-sﬂ:icte(’gr::: (chr:: iIzaer(z;e inputs)
heap sort O(n log n) 2;2;2|?;20d for large inputs)
merge- ot O(n log n) Z::ftuiggidfztrahﬁ:fzpum)
© 2004 Goodrich, Tamassia Quick-Sort ¥

Java Implementation

only works
for distinct
elements

© 2004 Goodrich, Tamassia

public static void quickSort (Object[] S, Comparator c) {

if (S.length < 2) return; // the array is already sorted in this case
quickSortStep(S, c, 0, S.length 1) // recursive sort method

}
private static void quickSortStep (Object[] S, Comparator c,
int leftBound, int rightBound) {
if (leftBound >= rightBound) return; // the indices have crossed
Object temp; // temp object used for swapping
Object pivot = S[rightBound];
int leftIndex = leftBound; // will scan rightward
int rightIndex = rightBound 1 // will scan leftward
while (leftIndex <= rightIndex) { // scan right until larger than the pivot
while ((leftIndex <= rightIndex) && (c.compare(S[leftindex], pivot)<=0))
leftIndex++;
// scan leftward to find an element smaller than the pivot
while ((rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>=0))
rightIndex- ;
if (leftindex < rightIndex) { // both elements were found
temp = S[rightIndex];
S[rightIndex] = S[leftIndex]; // swap these elements
S[leftIndex] = temp;

}// the loop continues until the indices cross
temp = S[rightBound]; // swap pivot with the element at leftindex
S[rightBound] = S[leftIndex];
S[leftindex] = temp; // the pivot is now at leftIndex, so recurse
quickSortStep(S, c, leftBound, leftindex 1)
quickSortStep(S, c, leftIndex+1, rightBound);

}

Quick-Sort 18

