Bucket-Sort and Radix-Sort

s 2]t 2]} o]e]e]!]o]e]
0123 456 7289

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 1

g
Bucket-Sort (§ 10.4.1)

@ Let be § be a sequence of n Algorithm bucketSort(S, N)
(key, .element) entries with Input sequence S of (key, element)
keys in the range [0, N - 1] items with keys in the range
Bucket-sort uses the keys as [0,N-1]
indices into an auxiliary array B Output sequence § sorted by
of sequences (buckets) increasing keys
Phase 1: Empty sequence S by B « array of N empty sequences
moving each entry (k, o) into while —S.isEmpiy()
its bucket B[k] [« S.first()
Phase 2: Fori=0, ..., N— 1, move (k, 0) < S.remove(f)
the entries of bucket B[] to the Blk).insertLast((k, 0))
end of sequence S]
X fori<—OtoN -1
Analysis: _ while —BIil.isEmpty()
= Phase 1 takes O(n) t|me. f < Blilfirst()
» Phase 2 takes O(n + V) tlm‘e (k, 0) < B[i].remove(f)
Bucket-sort takes O(n + N) time S.insertLast((k, 0))
© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 2

Example
Key range [0, 9]
(7.4} <]

)36

AENEINEEEINEIE
o 1 2 3 4 5 6 7 8 9

ﬂ Phase 2

S e)) o V) s) e P

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 3

Properties and Extensions

@ Key type Property Extensions

= The keys are used as = Integer keys in the range [a, 5]
indices into an array + Put entry (k, o) into bucket
and cannot be arbitrary Blk~al
objects = String keys from a set D of

| possible strings, where D has
= No external comparator constant size (e.g., names of
Stable Sort Property the 50 U.S. states)
: + Sort D and compute the rank
= The relat_lve orde_r of r(k) of each string k of D in
any two items with the the sorted sequence
same key is preserved + Put entry (k, o) into bucket
after the execution of B[r(k)]

the algorithm

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 4

Lexicographic Order

A d-tuple is a sequence of d keys (k,, k,, ..., k;), where

key k; is said to be the i-th dimension of the tuple
Example:

= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively

defined as follows

(X1, Xg5 0003 X)) < (V)5 V25 0005 V)
&
X <PV X =P (X, e X) < (Vg oo)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 5

® Let C, be the comparator
that compares two tuples by
their i-th dimension

@ Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

% Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing 4 times algorithm
stableSort, one per
dimension

@ Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

© 2004 Goodrich, Tamassia

Lexicographic-Sort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i < d downto |
stableSor((S, C;)

Example:

(7,4,6) (5.1,5) (2,4,6) (2, 1,4) (3,2, 4)
(2,1,4) (3,2, 4) (5,1,5) (7.4.6) (2.4.,6)
(2,1,4)(5,1,5) (3,2, 4) (7,4.,6) (2,4,6)
(2,1,4) (2.4,6) (3,2,4) (5.1,5) (7.4.,6)

Bucket-Sort and Radix-Sort 6

Radix-Sort (§ 10.4.2)

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

Radix-Sort for

b litintegers
X =Xp_ 1«00 X1X))

Binary Numbers

Consider a sequence of n

& Ch

in each dimension Algorithm radixSort(S, N)

Radix-sort is applicable Input sequence S of d-tuples such
to tuples where the that (0, ..., 0) < (xy, ..., x,) and
keys in each dimension i (Xp e X)) S(V=1, 0., N= 1)
are integers in the for each tuple (x,, ..., x,) in S
range [0, N — 1] Outpu_t sequence S sorted in

! ol lexicographic order

Radix-sort runs in time

O(d(n + N))

for i < d downto |
bucketSort(S, N)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 7

We represent each element | Algorithm binaryRadixSort(S)
as a b- tuple of integers in Inpil;tt:gg}iences of b:bit
It‘ggl;agc?r? \[A(,)i’t#]]]\a[rldzapply Output sequence S sorted

. T replace each element x
This application of the of § with the item (0, x)
radix sort algorithm runs in fori< Otoh—1

O(bn) time replace the key k of

4 For example, we can sort a cach item (k, x) of §

! ith bit x; of
sequence of 32 litintegers bucvl:;&;t(’;' Oz)x
in linear time 2

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 8

‘Example

Sorting a sequence of 4- li integers

(1001)

(1001)

(0001]

(1101]

(1101]

0010)

(1110)

(1110)

Bucket-Sort and Radix-Sort

© 2004 Goodrich, Tamassia

