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Recall the Recursion Pattern (§ 2.5)
Recursion: when a method calls itself
Classic example- - the factorial function:

n! = 1· 2· 3· ··· · (n-1)· n
Recursive definition:

As a Java method:
// recursive factorial function
public static int recursiveFactorial(int n) { 

if  (n  ==  0)  return  1; // basis case
else return  n  *  recursiveFactorial(n- 1); // recursive case

}
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Linear Recursion (§ 4.1.1)
Test for base cases.

Begin by testing for a set of base cases (there 
should be at least one). 
Every possible chain of recursive calls must
eventually reach a base case, and the handling of 
each base case should not use recursion.

Recur once. 
Perform a single recursive call. (This recursive step 
may involve a test that decides which of several 
possible recursive calls to make, but it should 
ultimately choose to make just one of these calls 
each time we perform this step.)
Define each possible recursive call so that it makes 
progress towards a base case.
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A Simple Example of Linear 
Recursion

Algorithm LinearSum(A, n):
Input: 
A integer array A and an integer 

n = 1, such that A has at least 
n elements

Output: 
The sum of the first n integers 
in A

if n = 1 then
return A[0]

else
return LinearSum(A, n - 1) + 

A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20
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Reversing an Array

Algorithm ReverseArray(A, i,  j):
Input: An array A and nonnegative integer 

indices i and  j
Output: The reversal of the elements in A 

starting at index i and ending at  j
if i <  j then

Swap A[i] and A[ j]
ReverseArray(A, i + 1,  j - 1)

return
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Defining Arguments for Recursion

In creating recursive methods, it is important 
to define the methods in ways that facilitate 
recursion.
This sometimes requires we define additional 
paramaters that are passed to the method.
For example, we defined the array reversal 
method as ReverseArray(A, i,  j), not 
ReverseArray(A).
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Computing Powers

The power function, p(x,n)=xn, can be 
defined recursively:

This leads to an power function that runs in 
O(n) time (for we make n recursive calls).
We can do better than this, however.
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Recursive Squaring
We can derive a more efficient linearly 
recursive algorithm by using repeated squaring:

For example,
24=  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16
25=  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32
26= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64
27= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.









>
>

=
−⋅=

even is 0 if
odd is 0 if
0 if

)2/,(
)2/)1(,(

1
),(

2

2

x
x

x

nxp
nxpxnxp



Using Recursion 9© 2004 Goodrich, Tamassia

A Recursive Squaring Method

Algorithm Power(x, n):
Input: A number x and integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y  = Power(x, (n - 1)/ 2)
return x · y ·y

else
y = Power(x, n/ 2)
return y · y
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Analyzing the Recursive Squaring 
Method

Algorithm Power(x, n):
Input: A number x and 

integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y  = Power(x, (n - 1)/ 2)
return x · y · y

else
y = Power(x, n/ 2)
return y · y

It is important that we 
used a variable twice here 
rather than calling the 
method twice.

Each time we make a 
recursive call we halve the 
value of n; hence, we make 
log n recursive calls. That 
is, this method runs in 
O(log n) time.
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Tail Recursion
Tail recursion occurs when a linearly recursive 
method makes its recursive call as its last step.
The array reversal method is an example.
Such methods can be easily converted to non-
recursive methods (which saves on some resources).
Example:
Algorithm IterativeReverseArray(A, i, j ):

Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at 

index i and ending at j
while i <  j do

Swap A[i ] and A[ j ]
i  = i + 1
j  = j - 1

return
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Binary Recursion (§ 4.1.2)
Binary recursion occurs whenever there are 
two recursive calls for each non-base case.
Example: the DrawTicks method for drawing 
ticks on an English ruler.
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A Binary Recursive Method for 
Drawing Ticks

// draw a tick with no label
public static void  drawOneTick(int tickLength)  {  drawOneTick(tickLength,  - 1);  }

// draw one tick
public static void  drawOneTick(int tickLength,  int tickLabel)  {

for  (int i =  0; i <  tickLength;  i++)
System.out.print("-");

if  (tickLabel >=  0)  System.out.print(" "  +  tickLabel);
System.out.print("\n");

}
public static void  drawTicks(int tickLength)  {  // draw ticks of given length

if  (tickLength >  0)  { // stop when length drops to 0
drawTicks(tickLength- 1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength- 1); // recursively draw right ticks

}
}
public static void  drawRuler(int nInches,  int majorLength)  {  // draw ruler

drawOneTick(majorLength,  0); // draw tick 0 and its label
for  (int i =  1; i <=  nInches;  i++) {

drawTicks(majorLength- 1); // draw ticks for this inch
drawOneTick(majorLength,  i); // draw tick i and its label

}
}

Note the two 
recursive calls
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Another Binary Recusive Method
Problem: add all the numbers in an integer array A:
Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i ]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1
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Computing Fibanacci Numbers

Fibonacci numbers are defined recursively:
F0 =  0
F1 =  1
Fi =  Fi-1

+ Fi-2 for i > 1.

As a recursive algorithm (first attempt):
Algorithm BinaryFib(k):

Input: Nonnegative integer k
Output: The kth Fibonacci number Fk
if k = 1 then

return k
else

return BinaryFib(k - 1) + BinaryFib(k - 2)
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Analyzing the Binary Recursion 
Fibonacci Algorithm

Let nk denote number of recursive calls made by 
BinaryFib(k).  Then

n0 = 1
n1 = 1
n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

Note that the value at least doubles for every other 
value of nk.  That is, nk > 2k/2. It is exponential!
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A Better Fibonacci Algorithm 
Use linear recursion instead:

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk, Fk-1)

if k = 1 then
return (k, 0)

else
(i,  j) = LinearFibonacci(k - 1)
return (i +j, i)

Runs in O(k) time.
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Multiple Recursion (§ 4.1.3)

Motivating example: summation puzzles
pot + pan = bib
dog + cat = pig
boy + girl = baby

Multiple recursion: makes potentially 
many recursive calls (not just one or 
two).
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Algorithm for Multiple Recursion

Algorithm PuzzleSolve(k,S,U):
Input: An integer k, sequence S, and set U (the universe of elements to test)
Output:  An enumeration of all k-length extensions to S using elements in U

without repetitions
for all e  in U do

Remove e from U {e is now being used}
Add e to the end of S
if k = 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k - 1, S,U)
Add e back to U {e is now unused}
Remove e from the end of S

Using Recursion 20© 2004 Goodrich, Tamassia

Visualizing PuzzleSolve

PuzzleSolve(3,(),{a,b,c})

Initial call

PuzzleSolve(2,c,{a,b})PuzzleSolve(2,b,{a,c})PuzzleSolve(2,a,{b,c})

PuzzleSolve(1,ab,{c})

PuzzleSolve(1,ac,{b}) PuzzleSolve(1,cb,{a})

PuzzleSolve(1,ca,{b})

PuzzleSolve(1,bc,{a})

PuzzleSolve(1,ba,{c})

abc

acb

bac

bca

cab

cba


