
Using Recursion 1© 2004 Goodrich, Tamassia

Using Recursion

Using Recursion 2© 2004 Goodrich, Tamassia

Recall the Recursion Pattern (§ 2.5)
Recursion: when a method calls itself
Classic example- - the factorial function:

n! = 1· 2· 3· ··· · (n-1)· n
Recursive definition:

As a Java method:
// recursive factorial function
public static int recursiveFactorial(int n) {

if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n- 1); // recursive case

}





−⋅
=

=
elsenfn
n

nf
)1(

0 if1
)(

Using Recursion 3© 2004 Goodrich, Tamassia

Linear Recursion (§ 4.1.1)
Test for base cases.

Begin by testing for a set of base cases (there
should be at least one).
Every possible chain of recursive calls must
eventually reach a base case, and the handling of
each base case should not use recursion.

Recur once.
Perform a single recursive call. (This recursive step
may involve a test that decides which of several
possible recursive calls to make, but it should
ultimately choose to make just one of these calls
each time we perform this step.)
Define each possible recursive call so that it makes
progress towards a base case.

Using Recursion 4© 2004 Goodrich, Tamassia

A Simple Example of Linear
Recursion

Algorithm LinearSum(A, n):
Input:
A integer array A and an integer

n = 1, such that A has at least
n elements

Output:
The sum of the first n integers
in A

if n = 1 then
return A[0]

else
return LinearSum(A, n - 1) +

A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

Using Recursion 5© 2004 Goodrich, Tamassia

Reversing an Array

Algorithm ReverseArray(A, i, j):
Input: An array A and nonnegative integer

indices i and j
Output: The reversal of the elements in A

starting at index i and ending at j
if i < j then

Swap A[i] and A[j]
ReverseArray(A, i + 1, j - 1)

return

Using Recursion 6© 2004 Goodrich, Tamassia

Defining Arguments for Recursion

In creating recursive methods, it is important
to define the methods in ways that facilitate
recursion.
This sometimes requires we define additional
paramaters that are passed to the method.
For example, we defined the array reversal
method as ReverseArray(A, i, j), not
ReverseArray(A).

Using Recursion 7© 2004 Goodrich, Tamassia

Computing Powers

The power function, p(x,n)=xn, can be
defined recursively:

This leads to an power function that runs in
O(n) time (for we make n recursive calls).
We can do better than this, however.





−⋅
=

=
else)1,(

0 if1
),(

nxpx
n

nxp

Using Recursion 8© 2004 Goodrich, Tamassia

Recursive Squaring
We can derive a more efficient linearly
recursive algorithm by using repeated squaring:

For example,
24= 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16
25= 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32
26= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64
27= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.









>
>

=
−⋅=

even is 0 if
odd is 0 if
0 if

)2/,(
)2/)1(,(

1
),(

2

2

x
x

x

nxp
nxpxnxp

Using Recursion 9© 2004 Goodrich, Tamassia

A Recursive Squaring Method

Algorithm Power(x, n):
Input: A number x and integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y = Power(x, (n - 1)/ 2)
return x · y ·y

else
y = Power(x, n/ 2)
return y · y

Using Recursion 10© 2004 Goodrich, Tamassia

Analyzing the Recursive Squaring
Method

Algorithm Power(x, n):
Input: A number x and

integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y = Power(x, (n - 1)/ 2)
return x · y · y

else
y = Power(x, n/ 2)
return y · y

It is important that we
used a variable twice here
rather than calling the
method twice.

Each time we make a
recursive call we halve the
value of n; hence, we make
log n recursive calls. That
is, this method runs in
O(log n) time.

Using Recursion 11© 2004 Goodrich, Tamassia

Tail Recursion
Tail recursion occurs when a linearly recursive
method makes its recursive call as its last step.
The array reversal method is an example.
Such methods can be easily converted to non-
recursive methods (which saves on some resources).
Example:
Algorithm IterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at

index i and ending at j
while i < j do

Swap A[i] and A[j]
i = i + 1
j = j - 1

return

Using Recursion 12© 2004 Goodrich, Tamassia

Binary Recursion (§ 4.1.2)
Binary recursion occurs whenever there are
two recursive calls for each non-base case.
Example: the DrawTicks method for drawing
ticks on an English ruler.

Using Recursion 13© 2004 Goodrich, Tamassia

A Binary Recursive Method for
Drawing Ticks

// draw a tick with no label
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, - 1); }

// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {

for (int i = 0; i < tickLength; i++)
System.out.print("-");

if (tickLabel >= 0) System.out.print(" " + tickLabel);
System.out.print("\n");

}
public static void drawTicks(int tickLength) { // draw ticks of given length

if (tickLength > 0) { // stop when length drops to 0
drawTicks(tickLength- 1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength- 1); // recursively draw right ticks

}
}
public static void drawRuler(int nInches, int majorLength) { // draw ruler

drawOneTick(majorLength, 0); // draw tick 0 and its label
for (int i = 1; i <= nInches; i++) {

drawTicks(majorLength- 1); // draw ticks for this inch
drawOneTick(majorLength, i); // draw tick i and its label

}
}

Note the two
recursive calls

Using Recursion 14© 2004 Goodrich, Tamassia

Another Binary Recusive Method
Problem: add all the numbers in an integer array A:
Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

Using Recursion 15© 2004 Goodrich, Tamassia

Computing Fibanacci Numbers

Fibonacci numbers are defined recursively:
F0 = 0
F1 = 1
Fi = Fi-1

+ Fi-2 for i > 1.

As a recursive algorithm (first attempt):
Algorithm BinaryFib(k):

Input: Nonnegative integer k
Output: The kth Fibonacci number Fk
if k = 1 then

return k
else

return BinaryFib(k - 1) + BinaryFib(k - 2)

Using Recursion 16© 2004 Goodrich, Tamassia

Analyzing the Binary Recursion
Fibonacci Algorithm

Let nk denote number of recursive calls made by
BinaryFib(k). Then

n0 = 1
n1 = 1
n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

Note that the value at least doubles for every other
value of nk. That is, nk > 2k/2. It is exponential!

Using Recursion 17© 2004 Goodrich, Tamassia

A Better Fibonacci Algorithm
Use linear recursion instead:

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk, Fk-1)

if k = 1 then
return (k, 0)

else
(i, j) = LinearFibonacci(k - 1)
return (i +j, i)

Runs in O(k) time.

Using Recursion 18© 2004 Goodrich, Tamassia

Multiple Recursion (§ 4.1.3)

Motivating example: summation puzzles
pot + pan = bib
dog + cat = pig
boy + girl = baby

Multiple recursion: makes potentially
many recursive calls (not just one or
two).

Using Recursion 19© 2004 Goodrich, Tamassia

Algorithm for Multiple Recursion

Algorithm PuzzleSolve(k,S,U):
Input: An integer k, sequence S, and set U (the universe of elements to test)
Output: An enumeration of all k-length extensions to S using elements in U

without repetitions
for all e in U do

Remove e from U {e is now being used}
Add e to the end of S
if k = 1 then

Test whether S is a configuration that solves the puzzle
if S solves the puzzle then

return “Solution found: ” S
else

PuzzleSolve(k - 1, S,U)
Add e back to U {e is now unused}
Remove e from the end of S

Using Recursion 20© 2004 Goodrich, Tamassia

Visualizing PuzzleSolve

PuzzleSolve(3,(),{a,b,c})

Initial call

PuzzleSolve(2,c,{a,b})PuzzleSolve(2,b,{a,c})PuzzleSolve(2,a,{b,c})

PuzzleSolve(1,ab,{c})

PuzzleSolve(1,ac,{b}) PuzzleSolve(1,cb,{a})

PuzzleSolve(1,ca,{b})

PuzzleSolve(1,bc,{a})

PuzzleSolve(1,ba,{c})

abc

acb

bac

bca

cab

cba

