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The Selection Problem
Given an integer k and n elements x1, x2, …, xn, 
taken from a total order, find the k-th smallest 
element in this set.
Of course, we can sort the set in O(n log n) time 
and then index the k-th element.

Can we solve the selection problem faster?

7  4  9  6 2  → 2  4  6 7  9k=3
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Quick-Select (§ 10.7)
Quick- select is a randomized
selection algorithm based on 
the prune- and- search 
paradigm:

Prune: pick a random element x
(called pivot) and partition S into 

L elements less than x
E elements equal x
G elements greater than x

Search: depending on k, either 
answer is in E, or we need to 
recurse in either L or G

x

x

L GE
k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|
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Partition
We partition an input 
sequence as in the quick-sort 
algorithm:

We remove, in turn, each 
element y from S and 
We insert y into L, E or G,
depending on the result of 
the comparison with the 
pivot x

Each insertion and removal is 
at the beginning or at the 
end of a sequence, and 
hence takes O(1) time
Thus, the partition step of 
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G
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Quick-Select Visualization
An execution of quick- select can be visualized by a 
recursion path

Each node represents a recursive call of quick-select, and 
stores k and the remaining sequence

k=5, S=(7  4  9  3 2  6  5  1  8)

5

k=2, S=(7  4  9  6  5  8)

k=2, S=(7  4 6  5)

k=1, S=(7  6  5)
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Expected Running Time
Consider a recursive call of quick-select on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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Expected Running Time, 
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in 
order to get one head is two
Probabilistic Fact #2: Expectation is a linear function:

E(X + Y ) = E(X ) + E(Y )
E(cX ) = cE(X )

Let T(n) denote the expected running time of quick-select.
By Fact #2,

T(n) < T(3n/4) + bn*(expected # of calls before a good call)
By Fact #1,

T(n) < T(3n/4) + 2bn
That is, T(n) is a geometric series:

T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
So T(n) is O(n).
We can solve the selection problem in O(n) expected 
time.
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Deterministic Selection 
We can do selection in O(n) worst-case time.
Main idea: recursively use the selection algorithm itself to find a 
good pivot for quick-select:

Divide S into n/5 sets of 5 each
Find a median in each set
Recursively find the median of the “baby” medians. 

See Exercise C-10.24 for details of analysis.
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