
Selection 1© 2004 Goodrich, Tamassia

Selection

Selection 2© 2004 Goodrich, Tamassia

The Selection Problem
Given an integer k and n elements x1, x2, …, xn,
taken from a total order, find the k-th smallest
element in this set.
Of course, we can sort the set in O(n log n) time
and then index the k-th element.

Can we solve the selection problem faster?

7 4 9 6 2 → 2 4 6 7 9k=3

Selection 3© 2004 Goodrich, Tamassia

Quick-Select (§ 10.7)
Quick- select is a randomized
selection algorithm based on
the prune- and- search
paradigm:

Prune: pick a random element x
(called pivot) and partition S into

L elements less than x
E elements equal x
G elements greater than x

Search: depending on k, either
answer is in E, or we need to
recurse in either L or G

x

x

L GE
k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

Selection 4© 2004 Goodrich, Tamassia

Partition
We partition an input
sequence as in the quick-sort
algorithm:

We remove, in turn, each
element y from S and
We insert y into L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

Selection 5© 2004 Goodrich, Tamassia

Quick-Select Visualization
An execution of quick- select can be visualized by a
recursion path

Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

Selection 6© 2004 Goodrich, Tamassia

Expected Running Time
Consider a recursive call of quick-select on a sequence of size s

Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Selection 7© 2004 Goodrich, Tamassia

Expected Running Time,
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two
Probabilistic Fact #2: Expectation is a linear function:

E(X + Y) = E(X) + E(Y)
E(cX) = cE(X)

Let T(n) denote the expected running time of quick-select.
By Fact #2,

T(n) < T(3n/4) + bn*(expected # of calls before a good call)
By Fact #1,

T(n) < T(3n/4) + 2bn
That is, T(n) is a geometric series:

T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …
So T(n) is O(n).
We can solve the selection problem in O(n) expected
time.

Selection 8© 2004 Goodrich, Tamassia

Deterministic Selection
We can do selection in O(n) worst-case time.
Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

Divide S into n/5 sets of 5 each
Find a median in each set
Recursively find the median of the “baby” medians.

See Exercise C-10.24 for details of analysis.

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

