Shortest Paths
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Weighted Graphs (§ 12.5)

# In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

# Edge weights may represent, distances, costs, etc.

@ Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

© 2004 Goodrich, Tamassia Shortest Paths 2

Shortest Paths (§ 12.6)

7 @ Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between « and v.

= Length of a path is the sum of the weights of its edges.
@ Example:

= Shortest path between Providence and Honolulu
@ Applications

= Internet packet routing

= Flight reservations

= Driving directions
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Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path

Property 2:
There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm (§ 12.6.1)

# The distance of a vertex # We grow a “cloud” of vertices,
v from a vertex s is the beginning with s and eventually
length of a shortest path covering all the vertices
between s and v # We store with each vertex v a

# Dijkstra’s algorithm label d(v) representing the
computes the distances distance of v from s in the
of all the vertices from a subgraph consisting of the cloud
given start vertex s and its adjacent vertices

@ Assumptions: # At each step

= the graph is connected = We add to the cloud the vertex
« the edges are u outside the cloud with the
undirected smallest distance label, d(u)
= the edge weights are = We update the labels of the
nonnegative vertices adjacent to u
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Edge Relaxation

# Consideranedgee=(uz)
such that d(u) = 5()“;

= uis the vertex most recently
added to the cloud /

= zis not in the cloud

# The relaxation of edge e
updates distance d(z) as
follows:

d(z) < min{d(z),d(u) + weight(e)}
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Example (cont.)
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# A priority queue stores
the vertices outside the
cloud

= Key: distance
= Element: vertex
@ Locator-based methods
n insert(k,e) returns a
locator
n replaceKey(l,k) changes
the key of an item

@ We store two labels

with each vertex:
= Distance (d(v) label)
= locator in priority
queue
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Dijkstra’s Algorithm

Algorithm DijkstraDistances(G, s)
Q < new heap-based priority queue
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
| < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all e € G.incidentEdges(u)
{ relax edge e }
z < G.opposite(u,e)
r < getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)
Q.replaceKey(getLocator(z),r)
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Analysis of Dijkstra’s Algorithm

@ Graph operations
= Method incidentEdges is called once for each vertex

# Label operations
= We set/get the distance and locator labels of vertex z O(deg(z)) times
= Setting/getting a label takes O(1) time

@ Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

# Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
= Recall that Z, deg(v) = 2m
@ The running time can also be expressed as O(m log n) since the
graph is connected
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# Using the template
method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices

@ We store with each
vertex a third label:

= parent edge in the
shortest path tree

# In the edge relaxation
step, we update the
parent label
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Shortest Paths Tree

Algorithm DijkstraShortestPathsTree(G, s)

for all v € G.vertices()

setParent(v, &)

for all e € G.incidentEdges(u)

{relax edge e }

z < G.opposite(u,e)

r « getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Why Dijkstra’s Algorithm Works

@ Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= Suppose it didn't find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

= When the previous node, D, on the
true shortest path was considered,
its distance was correct.

= But the edge (D,F) was relaxed at
that time!

= Thus, so long as d(F)>d(D), F's
distance cannot be wrong. That is,
there is no wrong vertex.
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Why It Doesn’t Work for
Negative-Weight Edges

# Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess |
up distances for vertices already |

in the cloud.
C’s true distance is 1, but
it is already in the cloud
with d(C)=5!
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Bellman-Ford Algorithm

(not in book)

# Works even with negative-
weight edges

& Must assume directed
edges (for otherwise we
would have negative-
weight cycles)

# Iteration i finds all shortest

paths that use i edges.

Running time: O(nm).

Can be extended to detect

a negative-weight cycle if it

exists

= How?

® &
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Algorithm BellmanFord(G, s)
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
for i < 1 to n-1 do
for each ¢ € Gl.edges()
{ relax edge e }
u < G.origin(e)
z < G.opposite(u,e)
r « getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)

Shortest Paths 14

Bellman-Ford Example

Nodes are labeled with their d(v) values
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DAG-based Algorithm

(not in book)

*

Works even with
negative-weight edges
Uses topological order

Doesn't use any fancy
data structures

Is much faster than
Dijkstra’s algorithm
Running time: O(n+m).

®» & @@
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Algorithm DagDistances(G, s)
for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, ©)
Perform a topological sort of the vertices
for u <— 1 tondo {in topological order}
for each ¢ € G.outEdges(u)
{ relax edge e }
z < G.opposite(u,e)
r « getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)
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DAG Example

Nodes are labeled with theirld(v) values
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