Shortest Paths

© 2004 Goodrich, Tamassia Shortest Paths 1

Weighted Graphs (§ 12.5)

In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

Edge weights may represent, distances, costs, etc.

@ Example:

= Ina flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

© 2004 Goodrich, Tamassia Shortest Paths 2

Shortest Paths (§ 12.6)

7 @ Given a weighted graph and two vertices u and v, we want to

find a path of minimum total weight between « and v.

= Length of a path is the sum of the weights of its edges.
@ Example:

= Shortest path between Providence and Honolulu
@ Applications

= Internet packet routing

= Flight reservations

= Driving directions

© 2004 Goodrich, Tamassia Shortest Paths 3

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path

Property 2:
There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

© 2004 Goodrich, Tamassia Shortest Paths 4

Dijkstra’s Algorithm (§ 12.6.1)

The distance of a vertex # We grow a “cloud” of vertices,
v from a vertex s is the beginning with s and eventually
length of a shortest path covering all the vertices
between s and v # We store with each vertex v a

Dijkstra’s algorithm label d(v) representing the
computes the distances distance of v from s in the
of all the vertices from a subgraph consisting of the cloud
given start vertex s and its adjacent vertices

@ Assumptions: # At each step

= the graph is connected = We add to the cloud the vertex
« the edges are u outside the cloud with the
undirected smallest distance label, d(u)
= the edge weights are = We update the labels of the
nonnegative vertices adjacent to u
© 2004 Goodrich, Tamassia Shortest Paths 5

Edge Relaxation

Consideranedgee=(uz)
such that d(u) = 5()“;

= uis the vertex most recently
added to the cloud /

= zis not in the cloud

The relaxation of edge e
updates distance d(z) as
follows:

d(z) < min{d(z),d(u) + weight(e)}

© 2004 Goodrich, Tamassia Shortest Paths 6

© 2004 Goodrich, Tamassia Shortest Paths

Example (cont.)

© 2004 Goodrich, Tamassia Shortest Paths 8

A priority queue stores
the vertices outside the
cloud

= Key: distance
= Element: vertex
@ Locator-based methods
n insert(k,e) returns a
locator
n replaceKey(l,k) changes
the key of an item

@ We store two labels

with each vertex:
= Distance (d(v) label)
= locator in priority
queue

© 2004 Goodrich, Tamassia

Dijkstra’s Algorithm

Algorithm DijkstraDistances(G, s)
Q < new heap-based priority queue
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
| < Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all e € G.incidentEdges(u)
{ relax edge e }
z < G.opposite(u,e)
r < getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)
Q.replaceKey(getLocator(z),r)

Shortest Paths 9

© 2004 Goodrich, Tamassia

Analysis of Dijkstra’s Algorithm

@ Graph operations
= Method incidentEdges is called once for each vertex

Label operations
= We set/get the distance and locator labels of vertex z O(deg(z)) times
= Setting/getting a label takes O(1) time

@ Priority queue operations

= Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time

= The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
= Recall that Z, deg(v) = 2m
@ The running time can also be expressed as O(m log n) since the
graph is connected

Shortest Paths 10

Using the template
method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices

@ We store with each
vertex a third label:

= parent edge in the
shortest path tree

In the edge relaxation
step, we update the
parent label

© 2004 Goodrich, Tamassia

Shortest Paths Tree

Algorithm DijkstraShortestPathsTree(G, s)

for all v € G.vertices()

setParent(v, &)

for all e € G.incidentEdges(u)

{relax edge e }

z < G.opposite(u,e)

r « getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Shortest Paths 11

© 2004 Goodrich, Tamassia

Why Dijkstra’s Algorithm Works

@ Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= Suppose it didn't find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

= When the previous node, D, on the
true shortest path was considered,
its distance was correct.

= But the edge (D,F) was relaxed at
that time!

= Thus, so long as d(F)>d(D), F's
distance cannot be wrong. That is,
there is no wrong vertex.

Shortest Paths 12

Why It Doesn’t Work for
Negative-Weight Edges

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

= If a node with a negative
incident edge were to be added
late to the cloud, it could mess |
up distances for vertices already |

in the cloud.
C’s true distance is 1, but
it is already in the cloud
with d(C)=5!
© 2004 Goodrich, Tamassia Shortest Paths 13

Bellman-Ford Algorithm

(not in book)

Works even with negative-
weight edges

& Must assume directed
edges (for otherwise we
would have negative-
weight cycles)

Iteration i finds all shortest

paths that use i edges.

Running time: O(nm).

Can be extended to detect

a negative-weight cycle if it

exists

= How?

® &

© 2004 Goodrich, Tamassia

Algorithm BellmanFord(G, s)
for all v € G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, ©)
for i < 1 to n-1 do
for each ¢ € Gl.edges()
{ relax edge e }
u < G.origin(e)
z < G.opposite(u,e)
r « getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)

Shortest Paths 14

Bellman-Ford Example

Nodes are labeled with their d(v) values

© 2004 Goodrich, Tamassia Shortest Paths 15

DAG-based Algorithm

(not in book)

*

Works even with
negative-weight edges
Uses topological order

Doesn't use any fancy
data structures

Is much faster than
Dijkstra’s algorithm
Running time: O(n+m).

®» & @@

© 2004 Goodrich, Tamassia

Algorithm DagDistances(G, s)
for all v € G.vertices()
if v=ys
setDistance(v, 0)
else
setDistance(v, ©)
Perform a topological sort of the vertices
for u <— 1 tondo {in topological order}
for each ¢ € G.outEdges(u)
{ relax edge e }
z < G.opposite(u,e)
r « getDistance(u) + weight(e)
if r < getDistance(z)
setDistance(z,r)

Shortest Paths 16

DAG Example

Nodes are labeled with theirld(v) values

© 2004 Goodrich, Tamassia

5
Shortest Paths (two steps) 17

