Sorting Lower Bound

© 2004 Goodrich, Tamassia Sorting Lower Bound 1

Comparison-Based
Sorting (§ 10.3)

Many sorting algorithms are comparison based.
= They sort by making comparisons between pairs of objects
= Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...
@ Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, Xy, X5, ..., X,

no

yes

© 2004 Goodrich, Tamassia Sorting Lower Bound 2

Counting Comparisons

@ Let us just count comparisons then.

Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

© 2004 Goodrich, Tamassia Sorting Lower Bound 3

Decision Tree Height

#| The height of this decision tree is a lower bound on the running time

#| Every possible input permutation must lead to a separate leaf output.

= If not, some input ...4...5... would have same output ordering as
...5...4..., which would be wrong.

#| Since there are nl=1*2*_.*n leaves, the height is at least log (n!)

T
i
{xa<xb’!] [x[<xd?]

log (n!)
xe<x/? x,<x,? [xp<xq’!j
.
e
.

n!
Sorting Lower Bound 4

minimum height (time)

-
Y |

© 2004 Goodrich, Tamassia

The Lower Bound

Any comparison bsed sorting algorithms takes at
least log (n!) time

Therefore, any such algorithm takes time at least

|

log (n!)> log (gj2 —(n/2)log(n/2).

That is, any comparison- tesed sorting algorithm must
run in Q(n log n) time.

© 2004 Goodrich, Tamassia Sorting Lower Bound 5

