© 2004 Goodrich, Tamassia Tries 1

Preprocessing Strings

@ Preprocessing the pattern speeds up pattern matching
queries

= After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size
If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern
A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A tries supports pattern matching queries in time
proportional to the pattern size

© 2004 Goodrich, Tamassia Tries 2

Standard Tries (§ 11.3.1)

= Each node but the root is labeled with a character

= The children of a node are alphabetically ordered

= The paths from the external nodes to the root yield the strings of S
Example: standard trie for the set of strings

S = { bear, bell, bid, bull, buy, sell, stock, stop }

© 2004 Goodrich, Tamassia Tries 3

The standard trie for a set of strings S is an ordered tree such that:

Analysis of Standard Tries

A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

© 2004 Goodrich, Tamassia Tries 4

Word Matching with a Trie

® We insert the [s[efe] I I IbI I I I I I I [1TIT Ts[tlofelk]1] I
WOI'dS Ofthe 0123 213141516 17 18 1920 21 22 2
E(rai)t(et intoa I8 I5I26I27I28I29I§)I IIIII I IbI IyI I I4t1I42I43ILI45I4I

P IIIdIIItIIIkIIIbIIdIIItIIIkIII
ach |eaf 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
storesthe [fefalr] [t[h[e[[b[e[T[T[2] [s[t[olp[T]
occurrences 69 70 717273747576 77 78 79 80 81 82 83 84 85 86 87 88
of the

associated
word in the

© 2004 Goodrich, Tamassia Tries 51,62 5

Compressed Tries
(§ 11.3.2)

@ A compressed trie has
internal nodes of degree
at least two

It is obtained from
standard trie by
compressing chains of
“redundant” nodes

© 2004 Goodrich, Tamassia Tries 6

Compact Representation

Compact representation of a compressed trie for an array of strings:
= Stores at the nodes ranges of indices instead of substrings
= Uses O(s) space, where s is the number of strings in the array
= Serves as an auxiliary index structure

01234 0123 0123
s[o] = sia1= [b[ullTl] sm= [hlelalr]

sp1= [blefalr] si51 = sig)= [Ble[IT]
si21= [s[e[IT] sle] = st1= [s[t]olp]
s31= [s[t]o[c[K]

624 b2d Bk2d Bad b33
© 2004 Goodrich, Tamassia Tries 7

Suffix Trie (§ 11.3.3)

@ The suffix trie of a string X is the compressed trie of all the
suffixes of X

nimize

|mize| |[nimize | [ze| |nimize | [ze]

© 2004 Goodrich, Tamassia Tries 8

Analysis of Suffix Tries

7 ® Compact representation of the suffix trie for a string
X of size n from an alphabet of size d
= Uses O(n) space

= Supports arbitrary pattern matching queries in X in O(dm)
time, where m is the size of the pattern

= Can be constructed in O(n) time

(mli[n]i[m[i]z]e]
01234567

[4,7] [2,7] [6,7] [2,7] [6,7]

© 2004 Goodrich, Tamassia Tries 9

