Vectors and Array Lists

© 2004 Goodrich, Tamassia Vectors 1

The Vector ADT (§5.1)

@ The Vector ADT # Main vector operations:
extends the notion of = Object elemAtRank(integer r):
array by storing a returns the elelmer)t atrank r
sequence of arbitrary without removing it
obiects = object replaceAtRank(integer r,
) object 0): replace the element at
An element can be rank with o and return the old
accessed, inserted or element
removed by specifying = insertAtRank(integer r, object o0):
its rank (number of insert a new element o to have
A kr
elements preceding it ran
P . g it = object removeAtRank(integer r):
@ An exception is removes and returns the element
thrown if an incorrect atrank r
rank is specified (e.g., @ Additional operations size() and
a negative rank) isEmpty()
© 2004 Goodrich, Tamassia Vectors 2

Applications of Vectors

@ Direct applications

= Sorted collection of objects (elementary
database)

& Indirect applications
» Auxiliary data structure for algorithms
= Component of other data structures

© 2004 Goodrich, Tamassia Vectors 3

Array-based Vector

Use an array V of size N

A variable n keeps track of the size of the vector
(number of elements stored)

Operation elemAtRank(r) is implemented in O(1)
time by returning ¥[r]

GEEEEEEEEEEEEEEEEE
012 r n

© 2004 Goodrich, Tamassia Vectors 4

Insertion

& In operation insertAtRank(r, 0), we need to make
room for the new element by shifting forward the
n—relements V[r], ..., V[n — 1]

@ In the worst case (r = 0), this takes O(n) time

Deletion

In operation removeAtRank(r), we need to fill the
hole left by the removed element by shifting
backward the n —r— 1 elements V[r+ 1], ..., V[n — 1]

In the worst case (r = 0), this takes O(n) time

SINEEEEEEEEEEEEEEE VLI T I T lel PP TR T T TTT]
012 r n 012 r n
Y'Y YYD Y Y Y Y
| gEEEEEEEEEEEEEEEEn i AENEEEEEEEEEEEEEEn
012 r n 012 r n
VLIl T lel P TR T TTTT] SINEEEEEEEEEEEEEEE
012 r n 012 r n
© 2004 Goodrich, Tamassia Vectors 5 © 2004 Goodrich, Tamassia Vectors 6
Performance Growable Array-based Vector

In the array based implementation of a Vector
= The space used by the data structure is O(n)
n size, isEmpty, elemAtRank and replaceAtRank run in

O(1) time

n insertAtRank and removeAtRank run in O(n) time

If we use the array in a circular fashion,
insertAtRank(0) and removeAtRank(0) run in
O(1) time

@ In an insertAtRank operation, when the array
is full, instead of throwing an exception, we
can replace the array with a larger one

© 2004 Goodrich, Tamassia Vectors 7

In a push operation, when

; ; Algorithm push(o)
the array is full, instead of | ¢/ _ ¢ /oorh — 1 then
throwing an exception, we A < new array of
can replace the array with size
a Iarger one fori< Otordo

How large should the new Ali] « S[i]
array be? S«A

= incremental strategy: tet+l
increase the size by a Sl <o
constant ¢

= doubling strategy: double
the size

© 2004 Goodrich, Tamassia Vectors

Comparison of the Strategies

@ We compare the incremental strategy and
the doubling strategy by analyzing the total
time 7T(n) needed to perform a series of n
push operations

We assume that we start with an empty
stack represented by an array of size 1
We call amortized time of a push operation

the average time taken by a push over the
series of operations, i.e., T(n)/n

© 2004 Goodrich, Tamassia Vectors 9

Incremental Strategy Analysis

We replace the array &k = n/c times

The total time T(n) of a series of n push
operations is proportional to

ntc+t2c+3ctde+...+kc=
nt+c(l+2+3+...+k)=
n+ ck(k+1)/2
Since c is a constant, 7T(n) is O(n + k?), i.e.,
O(n?)
The amortized time of a push operation is O(n)

© 2004 Goodrich, Tamassia Vectors 10

Doubling Strategy Analysis

We replace the array k = log, n
times

The total time T(n) of a series
of n push operations is
proportional to

ntl1+2+4+8+.. +2k=
n+2kt1—1 =2n-1

#® T(n) is O(n)

The amortized time of a push
operation is O(1)

geometric series

© 2004 Goodrich, Tamassia Vectors 11

