
Algorithm Analysis: Big O Notation 



 Determine the running time of simple algorithms 

 Best case 

 Average case 

 Worst case 

 Profile algorithms 
 Understand O notation's mathematical basis 
 Use O notation to measure running time 
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 Algorithms can be described in terms of 

 Time efficiency 

 Space efficiency 

 Choosing an appropriate algorithm can make a 
significant difference in the usability of a system 

 Government and corporate databases with many millions of 
records, which are accessed frequently 

 Online search engines 

 Real time systems where near instantaneous response is 
required 

▪ From air traffic control systems to computer games 
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 There are often many ways to solve a problem 

 Different algorithms that produce the same results 
▪ e.g. there are numerous sorting algorithms 

 We are usually interested in how an algorithm 
performs when its input is large 

 In practice, with today's hardware, most algorithms will 
perform well with small input 

 There are exceptions to this, such as the Traveling 
Salesman Problem 
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 It is possible to count the number of operations that 
an algorithm performs 

 By a careful visual walkthrough of the algorithm or by 

 Inserting code in the algorithm to count and print the 
number of times that each line executes (profiling) 

 It is also possible to time algorithms 

 Compare system time before and after running an 
algorithm 
▪ Although this ignores various issues 

 More sophisticated timer classes exist 
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 It may be useful to time how long an 
algorithm takes to rum 

 In some cases it may be essential to know how 
long an algorithm takes on some system 

▪ e.g. air traffic control systems 

 But is this a good general comparison 
method? 

 Running time is affected by a number of 
factors other than algorithm efficiency 
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 CPU speed 
 Amount of main memory 
 Specialized hardware (e.g. graphics card) 
 Operating system 
 System configuration (e.g. virtual memory) 
 Programming language 
 Algorithm implementation  
 Other programs 
 System tasks (e.g. memory management) 
 … 
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 Instead of timing an algorithm, count the number of 
instructions that it performs 

 The number of instructions performed may vary 
based on 

 The size of the input 

 The organization of the input 

 The number of instructions can be written as a cost 
function on the input size  
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void printArray(int arr[], int size){ 

for (int i = 0; i < size; ++i){ 

cout << arr[i] << endl; 

} 

} 

John Edgar 10 

Operations performed on 
an array of length 10 

| 

declare and 
initialize i 

perform comparison, 
print array element, and 

increment i:10 times 

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| | 

make 
comparison 
when i = 10 

32 operations 



 Instead of choosing a particular input size we will 
express a cost function for input of size n 

 Assume that the running time, t, of an algorithm is 
proportional to the number of operations 

 Express t as a function of n 

 Where t is the time required to process the data using 
some algorithm A 

 Denote a cost function as tA(n) 

▪ i.e. the running time of algorithm A, with input size n 
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void printArray(int arr[], int size){ 

for (int i = 0; i < size; ++i){ 

cout << arr[i] << endl; 

} 

} 
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Operations performed on 
an array of length n 

1 

declare and 
initialize i 

perform comparison, 
print array element, and 

increment i: n times 

3n 1 

make 
comparison 
when i = n 

t = 3n + 2  



 The number of operations usually varies based on 
the size of the input 

 Though not always –  consider array lookup 

 In addition algorithm performance may vary based 
on the organization of the input 

 For example consider searching a large array 

 If the target is the first item in the array the search will be 
very fast 
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 Algorithm efficiency is often calculated for three 
broad cases of input 

 Best case 

 Average (or “usual”) case 

 Worst case 

 This analysis considers how performance varies 
for different inputs of the same size 
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 It can be difficult to determine the exact number of 
operations performed by an algorithm 
 Though it is often still useful to do so 

 An alternative to counting all instructions is to focus 
on an algorithm's barometer instruction 
 The barometer instruction is the instruction that is executed 

the most number of times in an algorithm 

 The number of times that the barometer instruction is 
executed is usually proportional to its running time 
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 Analyze and compare some different algorithms 
 Linear search 

 Binary search 

 Selection sort 

 Insertion sort 

 Quick sort 
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 It is often useful to find out whether or not a list 
contains a particular item 

 Such a search can either return true or false 

 Or the position of the item in the list 

 If the array isn't sorted use linear search 

 Start with the first item, and go through the array 
comparing each item to the target 

 If the target item is found return true (or the index of 
the target element) 
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int linearSearch(int arr[], int size, int x){ 

 for (int i=0; i < size; i++){ 

  if(arr[i] == x){ 

   return i;  

  }  

 } //for 

 return -1; //target not found 

} 
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The function returns as soon as 
the target item is found 

return -1 to indicate that the 
item has not been found 



 Search an array of n items 
 The barometer instruction is equality checking (or 

comparisons for short) 
 arr[i] == x;  

 There are actually two other barometer instructions 
▪ What are they? 

 How many comparisons does linear search perform? 
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int linearSearch(int arr[], int size, int x){ 

 for (int i=0; i < size; i++){ 

  if(arr[i] == x){ 

   return i;  

  }  

 } //for 

 return -1; //target not found 

} 



 Best case 

 The target is the first element of the array 

 Make 1 comparison 

 Worst case 

 The target is not in the array or 

 The target is at the last position in the array 

 Make n comparisons in either case 

 Average case 

 Is it (best case  + worst case) / 2, i.e. (n + 1) / 2? 
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 There are two situations when the worst case arises 

 When the target is the last item in the array 

 When the target is not there at all 

 To calculate the average cost we need to know how 

often these two situations arise 

 We can make assumptions about this 

 Though any these assumptions may not hold for a 

particular use of linear search 
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 The target is not in the array half the time 

 Therefore half the time the entire array has to be 
checked to determine this 

 There is an equal probability of the target 
being at any array location 

 If it is in the array 

 That is, there is a probability of 1/n that the target 
is at some location i 
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 Work done if the target is not in the array 

 n comparisons 

 This occurs with probability of 0.5 
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 Work done if target is in the array: 

 1 comparison if target is at the 1st location 
▪ Occurs with probability 1/n (second assumption) 

 2 comparisons if target is at the 2nd location 
▪ Also occurs with probability 1/n  

 i comparisons if target is at the ith location 

 Take the weighted average of the values to find the 
total expected number of comparisons (E) 

 E = 1*1/n + 2*1/n + 3*1/n + … + n * 1/n or 

 E = (n + 1) / 2 
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 Target is not in the array: n comparisons 
 Target is in the array (n + 1) / 2 comparisons 
 Take a weighted average of the two amounts: 

 = (n * ½) + ((n + 1) / 2 * ½) 

 = (n / 2) + ((n + 1) / 4) 

 = (2n / 4) + ((n + 1) / 4) 

 = (3n + 1) / 4 

 Therefore, on average, we expect linear search to 
perform (3n + 1) / 4 comparisons 
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 If we sort the target array first we can change the 
linear search average cost to around n / 2 

 Once a value equal to or greater than the target is found 
the search can end 

▪ So, if a sequence contains 8 items, on average, linear 
search compares 4 of them,  

▪ If a sequence contains 1,000,000 items, linear search 
compares 500,000 of them, etc. 

 However, if the array is sorted, it is possible to do 
much better than this by using binary search 
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int binSearch(int arr[], int size, int target){ 

 int low = 0; 

 int high= size - 1; 

 int mid = 0; 

 while (low <= high){ 

  mid = (low + high) / 2; 

  if(target == arr[mid]){ 

   return mid;  

  } else if(target > arr[mid]){ 

   low = mid + 1; 

  } else { //target < arr[mid] 

   high = mid - 1; 

  } 

 } //while 

 return -1; //target not found 

} 
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Index of the last element in 
the array 

Note the if, else if, 
else 



 The algorithm consists of three parts 

 Initialization (setting lower and upper) 

 While loop including a return statement on success 

 Return statement which executes when on failure 

 Initialization and return on failure require the same 
amount of work regardless of input size 

 The number of times that the while loop iterates 
depends on the size of the input 

John Edgar 29 



 The while loop contains an if, else if, else statement 
 The first if condition is met when the target is found 

 And is therefore performed at most once each time the 
algorithm is run 

 The algorithm usually performs 5 operations for each 
iteration of the while loop 

 Checking the while condition 

 Assignment to mid 

 Equality comparison with target 

 Inequality  comparison  

 One other operation (setting either lower or upper) 
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The barometer 
instructions 



 In the best case the target is the midpoint 
element of the array 

 Requiring one iteration of the while loop 
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index 0 1 2 3 4 5 6 7 

arr 1 3 7 11 13 17 19 23 

mid = (0 + 7) / 2 = 3  

binary search (arr, 11) 



 What is the worst case for binary search? 

 Either the target is not in the array, or  

 It is found when the search space consists of one 
element 

 How many times does the while loop iterate 
in the worst case? 
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index 0 1 2 3 4 5 6 7 

arr 1 3 7 11 13 17 19 23 

mid = 

binary search (arr, 20) 

(0 + 7) / 2 = 3  (4 + 7) / 2 = 5  (6 + 7) / 2 = 6  done 



 Each iteration of the while loop halves the search space 

 For simplicity assume that n is a power of 2 

▪ So n = 2k (e.g. if n = 128, k = 7) 

 How large is the search space? 

 The first iteration halves the search space to n/2 

 After the second iteration the search space is n/4 

 After the kth  iteration the search space consists of just one 
element, since n/2k = n/n = 1 

▪ Because n = 2k, k = log2n 

 Therefore at most log2n iterations of the while loop are made in 
the worst case! 

John Edgar 33 



 Is the average case more like the best case or the worst 
case? 

 What is the chance that an array element is the target 

▪ 1/n the first time through the loop 

▪ 1/(n/2) the second time through the loop 

▪ … and so on … 

 It is more likely that the target will be found as the 
search space becomes small 

 That is, when the while loop nears its final iteration 

 We can conclude that the average case is more like the worst 
case than the best case 
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n (3n+1)/4 log2(n) 

10 8 3 

100 76 7 

1,000 751 10 

10,000 7,501 13 

100,000 75,001 17 

1,000,000 750,001 20 

10,000,000 7,500,001 24 





 As an example of algorithm analysis let's look at two 
simple sorting algorithms 

 Selection Sort and 

 Insertion Sort 

 Calculate an approximate cost function for these 
two sorting algorithms  

 By analyzing how many operations are performed by 
each algorithm 

 This will include an analysis of how many times the 
algorithms' loops iterate 
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 Selection sort is a simple sorting algorithm 
that repeatedly finds the smallest item 

 The array is divided into a sorted part and an 
unsorted part 

 Repeatedly swap the first unsorted item with 
the smallest unsorted item 

 Starting with the element with index 0, and 

 Ending with last but one element (index n – 1) 
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23 41 33 81 07 19 11 45 find smallest unsorted - 7 comparisons 

07 41 33 81 23 19 11 45 find smallest unsorted - 6 comparisons 

07 11 33 81 23 19 41 45 find smallest unsorted - 5 comparisons 

07 11 19 81 23 33 41 45 find smallest unsorted - 4 comparisons 

07 11 19 23 81 33 41 45 find smallest unsorted - 3 comparisons 

07 11 19 23 33 81 41 45 find smallest unsorted - 2 comparisons 

07 11 19 23 33 41 81 45 find smallest unsorted - 1 comparison  

07 11 19 23 33 41 45 81 



Unsorted elements Comparisons 

n n-1 

n-1 n-2 

… … 

3 2 

2 1 

1 0 

n(n-1)/2 
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void selectionSort(int arr[], int size){ 

 for(int i = 0; i < size -1; ++i){ 

  int smallest = i; 

  // Find the index of the smallest element 

  for(int j = i + 1; j < size; ++j){ 

   if(arr[j] < arr[smallest]){ 

    smallest = j; 

   } 

  } 

  // Swap the smallest with the current item 

  temp = arr[i];{ 

  arr[i] = arr[smallest]; 

  arr[smallest] = temp; 

 } 

} 
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inner loop body 
n(n – 1)/2 times 

outer loop 
n-1 times 



 The barometer operation for selection sort 
must be in the inner loop 

 Since operations in the inner loop are executed 
the greatest number of times 

 The inner loop contains four operations 

 Compare j to array length 

 Compare arr[j] to smallest 

 Change smallest 

 Increment j 
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The barometer 
instructions 



 The barometer instruction is evaluated n(n-1) times 
 Let’s calculate a detailed cost function 

 The outer loop is evaluated n-1 times 
▪ 7 instructions (including the loop statements), cost is 7(n-1) 

 The inner loop is evaluated n(n – 1)/2 times 
▪ There are 4 instructions but one is only evaluated some of the time 

▪ Worst case cost is 4(n(n – 1)/2) 

 Some constant amount of work is performed 
▪ Parameters are set and the outer loop control variable is initialized 

 Total cost: 7(n-1) + 4(n(n – 1)/2) + 3 
▪ Assumption: all instructions have the same cost 
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 In broad terms and ignoring the actual number of 
executable statements selection sort 

 Makes n*(n – 1)/2 comparisons, regardless of the original 
order of the input 

 Performs n – 1 swaps 

 Neither of these operations are substantially 
affected by the organization of the input  
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 Another simple sorting algorithm 

 Divides array into sorted and unsorted parts 

 The sorted part of the array is expanded one 
element at a time 

 Find the correct place in the sorted part to place 
the 1st element of the unsorted part 

▪ By searching through all of the sorted elements  

 Move the elements after the insertion point up 
one position to make space 
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23 41 33 81 07 19 11 45 treats first element as sorted part 

07 11 19 23 33 41 45 81 locate position for 45 - 1 comparisons 

23 41 33 81 07 19 11 45 locate position for 41 - 1 comparison 

23 33 41 81 07 19 11 45 locate position for 33 - 2 comparisons 

23 33 41 81 07 19 11 45 locate position for 81 - 1 comparison 

07 23 33 41 81 19 11 45 locate position for 07 - 4 comparisons 

07 19 23 33 41 81 11 45 locate position for 19- 5 comparisons 

07 11 19 23 33 41 81 45 locate position for 11- 6 comparisons 



inner loop body 
how many times? 

void insertionSort(int arr[], int size){ 

 for(int i = 1; i < size; ++i){ 

  temp = arr[i]; 

  int pos = i; 

  // Shuffle up all sorted items > arr[i] 

  while(pos > 0 && arr[pos - 1] > temp){ 

   arr[pos] = arr[pos – 1]; 

   pos--; 

  } //while 

  // Insert the current item 

  arr[pos] = temp; 

 } 

} 
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maximum: i – 1 times for 
each iteration, n * (n – 1) / 2 

outer loop 
n-1  times 

minimum: just the test for 
each outer loop iteration, n  



Sorted 

Elements 

Worst-case 
Search 

Worst-case 
Shuffle 

0 0 0 

1 1 1 

2 2 2 

… … … 

n-1 n-1 n-1 

n(n-1)/2 n(n-1)/2 
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 The efficiency of insertion sort is affected by 
the state of the array to be sorted 

 In the best case the array is already 
completely sorted! 

 No movement of array elements is required 

 Requires n comparisons 
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 In the worst case the array is in reverse order 
 Every item has to be moved all the way to the 

front of the array 

 The outer loop runs n-1 times 

▪ In the first iteration, one comparison and move 

▪ In the last iteration, n-1 comparisons and moves 

▪ On average, n/2 comparisons and moves 

 For a total of n * (n-1) / 2 comparisons and moves 
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 What is the average case cost? 

 Is it closer to the best case? 

 Or the worst case? 

 If random data is sorted, insertion sort is 
usually closer to the worst case 

 Around n * (n-1) / 4 comparisons 

 And what do we mean by average input for a 
sorting algorithm in anyway? 
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 Quicksort is a more efficient sorting algorithm than 
either selection or insertion sort 

 It sorts an array by repeatedly partitioning it 

 Partitioning is the process of dividing an array into 
sections (partitions), based on some criteria 

 Big and small values 

 Negative and positive numbers 

 Names that begin with a-m, names that begin with n-z 

 Darker and lighter pixels 
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Partition this array into 
small and big values using a 
partitioning algorithm 

31 12 07 23 93 02 11 18 
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Partition this array into 
small and big values using a 
partitioning algorithm 

We will partition the array 
around the last value (18), 
we'll call this value the pivot  

31 12 07 23 93 02 11 18 

Use two indices, one at 
each end of the array, call 
them low and high 

18 
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31 12 07 23 93 02 11 18 

arr[low] (31) is greater than the pivot 
and should be on the right, we need to 
swap it with something 

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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31 12 07 23 93 02 11 18 

arr[low] (31) is greater than the pivot 
and should be on the right, we need to 
swap it with something 

arr[high] (11) is less than the pivot so 
swap with arr[low] 

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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31 12 07 23 93 02 11 18 31 11 

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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12 07 23 93 02 18 

increment low until it needs to be 
swapped with something 

31 11 12 07 

then decrement high until it can be 
swapped with low  

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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12 07 23 93 02 18 

and then swap them 

31 23 02 11 12 07 

increment low until it needs to be 
swapped with something 

then decrement high until it can be 
swapped with low  

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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12 07 93 18 

repeat this process until 

31 23 02 11 

high and low are the same 

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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repeat this process until 

high and low are the same 

We'd like the pivot value to be in the 
centre of the array, so we will swap it 
with the first item greater than it 

12 07 93 18 31 23 02 11 93 18 

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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smalls bigs 
pivot 

12 07 93 18 31 23 02 11 

We will partition the array 
around the last value (18), 
we'll call this value the pivot 

Use two indices, one at 
each end of the array, call 
them low and high 

Partition this array into 
small and big values using a 
partitioning algorithm 
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Use the same algorithm to 
partition this array into small 
and big values 

00 08 07 01 06 02 05 09 

bigs! 
pivot 

00 08 07 01 06 02 05 09 

smalls 
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Or this one: 

09 08 07 06 05 04 02 01 

bigs 
pivot 

01 08 07 06 05 04 02 09 

smalls 



 The Quicksort algorithm works by repeatedly 
partitioning an array 

 Each time a subarray is partitioned there is 

 A sequence of small values, 

 A sequence of big values, and  

 A pivot value which is in the correct position 

 Partition the small values, and the big values 

 Repeat the process until each subarray being partitioned 
consists of just one element 
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 The Quicksort algorithm repeatedly 
partitions an array until it is sorted 

 Until all partitions consist of at most one element 

 A simple iterative approach would halve each 
sub-array to get partitions 

 But partitions are not necessarily of the same size 

 So the start and end indexes of each partition are 
not easily predictable 
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47 70 36 97 03 67 29 11 48 09 53 

09 29 48 03 47 97 

03 11 29 48 61 

11 
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36 11 61 70 

36 09 97 

08 01 36 

11 09 03 

09 03 

53 

70 47 

29 

11 

53 

48 61 97 70 47 53 

36 29 48 61 97 70 47 53 

36 29 48 61 97 70 47 53 



 One way to implement Quicksort might be to 
record the index of each new partition 

 But this is difficult and requires a reasonable 
amount of space 

 The goal is to record the start and end index of 
each partition 

 This can be achieved by making them the 
parameters of a recursive function 
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void quicksort(arr[], int low, int high){ 

if (low < high){ 

pivot = partition(arr[], low, high) 

quicksort(arr[], low, pivot – 1) 

quicksort(arr[], pivot + 1, high) 

 } 

} 
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 How long does Quicksort take to run? 

 Let's consider the best and the worst case 

 These differ because the partitioning algorithm may not 
always do a good job 

 Let's look at the best case first 

 Each time a sub-array is partitioned the pivot is the exact 
midpoint of the slice (or as close as it can get) 
▪ So it is divided in half 

 What is the running time? 
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08 01 02 07 03 06 04 05 

bigs 
pivot 

04 01 02 03 05 06 08 07 

smalls 

First partition 
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big1 
pivot1 

02 01 04 05 06 08 

sm1 

04 01 02 03 05 06 08 07 

Second partition 

07 03 

pivot1 pivot2 

pivot2 
big2 sm2 
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pivot1 

02 03 04 05 06 07 08 

Third partition 

02 01 03 04 05 06 07 08 

pivot1 done done done 

01 



 Each sub-array is divided in half in each partition 
 Each time a series of sub-arrays are partitioned n 

(approximately)  comparisons are made 

 The process ends once all the sub-arrays left to be 
partitioned are of size 1 

 How many times does n have to be divided in half 
before the result is 1? 
 log2 (n) times 

 Quicksort performs n * log2 (n) operations in the best case 
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First partition 
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09 08 07 06 05 04 02 01 

bigs 
pivot 

01 08 07 06 05 04 02 09 

smalls 
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bigs 
pivot 

01 08 07 06 05 04 02 09 

smalls 

01 08 07 06 05 04 02 09 

Second partition 
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bigs 
pivot 

01 02 07 06 05 04 08 09 

01 08 07 06 05 04 02 09 

Third partition 
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pivot 

01 02 07 06 05 04 08 09 

smalls 

01 02 07 06 05 04 08 09 

Fourth partition 
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bigs 
pivot 

01 02 04 06 05 07 08 09 

01 02 07 06 05 04 08 09 

Fifth partition 
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pivot 

01 02 04 06 05 07 08 09 

smalls 

01 02 04 06 05 07 08 09 

Sixth partition 



John Edgar 82 

pivot 

01 02 04 05 06 07 08 09 

01 02 04 06 05 07 08 09 

Seventh partition! 



 Every partition step ends with no values on 
one side of the pivot 

 The array has to be partitioned n times, not 
log2(n) times 

 So in the worst case Quicksort performs around n2 
operations 

 The worst case usually occurs when the array 
is nearly sorted (in either direction) 
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 With a large array we would have to be very, 
very unlucky to get the worst case 

 Unless there was some reason for the array to already 
be partially sorted 

 The average case is much more like the best 
case than the worst case 

 There is an easy way to fix a partially sorted 
arrays to that it is ready for Quicksort 

 Randomize the positions of the array elements! 
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 Linear search: 3(n + 1)/4 – average case 

 Given certain assumptions 

 Binary search: log2n – worst case 

 Average case similar to the worst case 

 Selection sort: n((n – 1) / 2) – all cases 
 Insertion sort: n((n – 1) / 2) – worst case 

 Average case is similar to the worst case 

 Quicksort: n(log2(n)) – best case 

 Average case is similar to the best case 
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 Let's compare these algorithms for some 
arbitrary input size (say n = 1,000) 
 In order of the number of comparisons 

▪ Binary search 

▪ Linear search 

▪ Insertion sort best case 

▪ Quicksort average and best cases 

▪ Selection sort all cases, Insertion sort average and worst 
cases, Quicksort worst case 
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 What do we want to know when comparing 
two algorithms? 

 The most important thing is how quickly the time 
requirements increase with input size 

 e.g. If we double the input size how much longer 
does an algorithm take? 

 Here are some graphs … 
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Hard to see what is happening with n so small … 
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n2 and n(n-1)/2 are growing much faster than any of the others 

0 

2000 

4000 

6000 

8000 

10000 

12000 

10 20 30 40 50 60 70 80 90 100 

N
u

m
b

e
r 

o
f 

O
p

e
ra

ti
o

n
s 

n 

log2n 

5(log2n) 

3(n+1)/4 

n 

n(log2n) 

n((n-1)/2) 

n2 



John Edgar 91 

Hmm!  Let's try a logarithmic scale … 
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Notice how clusters of growth rates start to emerge 
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 Exact counting of operations is often difficult (and 
tedious), even for simple algorithms 

 And is often not much more useful than estimates due to 
the relative importance of other factors 

 O Notation is a mathematical language for 
evaluating the running-time  of algorithms 

 O-notation evaluates the growth rate of an algorithm 
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 Cost Function:  tA(n) = n2 + 20n + 100 
 Which term in the function is the most important? 

 It depends on the size of n 
 n = 2, tA(n) = 4 + 40 + 100 

▪ The constant, 100, is the dominating term 

 n = 10, tA(n) = 100 + 200 + 100 
▪ 20n is the dominating term 

 n = 100, tA(n) = 10,000 + 2,000 + 100 
▪ n2 is the dominating term 

 n = 1000, tA(n) = 1,000,000 + 20,000 + 100 
▪ n2 is still the dominating term 
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 O notation approximates a cost function that allows 
us to estimate growth rate 

 The approximation is usually good enough 

▪ Especially when considering the efficiency of an 
algorithm as n gets very large 

 Count the number of times that an algorithm 
executes its barometer instruction 

 And determine how the count increases as the input size 
increases 
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 Big-O notation does not give a precise formulation 
of the cost function for a particular data size 

 It expresses the general behaviour of the algorithm 
as the data size n grows very large so ignores 

 lower order terms and 

 constants 

 A Big-O cost function is a simple function of n 

 n, n2, log2(n), etc. 
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 An algorithm is said to be order f(n) 

 Denoted as O(f(n)) 

 The function f(n) is the algorithm's growth 
rate function 

 If a problem of size n requires time proportional to 
n then the problem is O(n) 

▪ e.g. If the input size is doubled so is the running time 
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 An algorithm is order f(n) if there are positive 
constants k and m such that  

 tA(n)  k * f(n) for all n  m 
▪ i.e. find constants k and m such that the cost function is less than or 

equal to k * a simpler function for all n greater than or equal to m 

 If so we would say that tA(n) is O(f(n)) 
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 Finding a constant k | tA(n)  k * f(n) shows 
that there is no higher order term than f(n) 

 e.g. If the cost function was n2 + 20n + 100 and I 
believed this was O(n) 

▪ I would not be able to find a constant k | tA(n)  k * f(n) 
for all values of n 

 For some small values of n lower order terms 
may dominate 

 The constant m addresses this issue 
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 The idea is that a cost function can be approximated 
by another, simpler, function  

 The simpler function has 1 variable, the data size n 

 This function is selected such that it represents an upper 
bound on the value of tA(n) 

 Saying that the time efficiency of algorithm A tA(n) 
is O(f(n)) means that 

 A cannot take more than O(f(n)) time to execute, and 

 The cost function tA(n) grows at most as fast as f(n) 

John Edgar 100 



 An algorithm’s cost function is 3n + 12 

 If we can find constants m and k such that: 

 k * n > 3n + 12 for all n  m then 

 The algorithm is O(n) 

 Find values of k and m so that this is true 

 k = 4, and 

 m = 12 then 

 4n  3n + 12 for all n  12 
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 An algorithm’s cost function is 2n2 + 10n + 6 

 If we can find constants m and k such that: 

 k * n2 > 2n2 + 10n + 6 for all n  m then 

 The algorithm is O(n2) 

 Find values of k and m so that this is true 

 k = 3, and 

 m = 11 then 

 3n2 > 2n2 + 10n + 6 for all n  11 
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After this point 3n2 is always going 
to be larger than 2n2 +10n + 6 



 All these expressions are O(n): 

 n, 3n, 61n + 5, 22n – 5, … 

 All these expressions are O(n2): 

 n2, 9n2, 18n2 + 4n – 53, … 

 All these expressions are O(n log n): 

 n(log n), 5n(log 99n), 18 + (4n – 2)(log (5n + 3)), … 
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 O(k * f) = O(f) if k is a constant 

 e.g. O(23 * O(log n)), simplifies to O(log n) 

 O(f + g) = max[O(f), O(g)] 

 O(n + n2), simplifies to O(n2) 

 O(f * g) = O(f) * O(g) 

 O(m * n), equals  O(m) * O(n) 

 Unless there is some known relationship between m and n 
that allows us to simplify it, e.g. m < n 
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 O(1) – constant time 

 The time is independent of n, e.g. list look-up 

 O(log n) – logarithmic time 

 Usually the log is to the base 2, e.g. binary search 

 O(n) – linear time, e.g. linear search 
 O(n*logn) – e.g. Qquicksort, Mergesort 
 O(n2) – quadratic time, e.g. selection sort 
 O(nk) – polynomial (where k is some constant) 

 O(2n) – exponential time, very slow! 
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 We write O(1) to indicate something that takes a 
constant amount of time 

 e.g. finding the minimum element of an ordered array takes O(1) 
time 

▪ The min is either at the first or the last element of the array 

 Important: constants can be large 

 So in practice O(1) is not necessarily efficient 

 It tells us is that the algorithm will run at the same speed no 
matter the size of the input we give it 
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 The O notation growth rate of some algorithms varies 
depending on the input 

 Typically we consider three cases: 

 Worst case, usually (relatively) easy to calculate and therefore 
commonly used 

 Average case, often difficult to calculate 

 Best case, usually easy to calculate but less important than the 
other cases 
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 Linear search 
 Best case: O(1) 

 Average case: O(n) 

 Worst case: O(n) 
 Binary search 
 Best case: O(1) 

 Average case: O(log n) 

 Worst case: O(log n) 
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 Quicksort 

 Best case: O(n(log2n)) 

 Average case: O(n(log2n)) 

 Worst case: O(n2) 

 Mergesort 

 Best case: O(n(log2n)) 

 Average case: O(n(log2n)) 

 Worst case: O(n(log2n)) 
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 Selection sort 

 Best Case: O(n2) 

 Average case: O(n2) 

 Worst case: O(n2) 

 Insertion sort 

 Best case: O(n) 

 Average case: O(n2) 

 Worst case: O(n2) 
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