
Algorithm Analysis: Big O Notation

 Determine the running time of simple algorithms

 Best case

 Average case

 Worst case

 Profile algorithms
 Understand O notation's mathematical basis
 Use O notation to measure running time

John Edgar 2

John Edgar 3

 Algorithms can be described in terms of

 Time efficiency

 Space efficiency

 Choosing an appropriate algorithm can make a
significant difference in the usability of a system

 Government and corporate databases with many millions of
records, which are accessed frequently

 Online search engines

 Real time systems where near instantaneous response is
required

▪ From air traffic control systems to computer games

John Edgar 4

 There are often many ways to solve a problem

 Different algorithms that produce the same results
▪ e.g. there are numerous sorting algorithms

 We are usually interested in how an algorithm
performs when its input is large

 In practice, with today's hardware, most algorithms will
perform well with small input

 There are exceptions to this, such as the Traveling
Salesman Problem

John Edgar 5

 It is possible to count the number of operations that
an algorithm performs

 By a careful visual walkthrough of the algorithm or by

 Inserting code in the algorithm to count and print the
number of times that each line executes (profiling)

 It is also possible to time algorithms

 Compare system time before and after running an
algorithm
▪ Although this ignores various issues

 More sophisticated timer classes exist

John Edgar 6

 It may be useful to time how long an
algorithm takes to rum

 In some cases it may be essential to know how
long an algorithm takes on some system

▪ e.g. air traffic control systems

 But is this a good general comparison
method?

 Running time is affected by a number of
factors other than algorithm efficiency

John Edgar 7

 CPU speed
 Amount of main memory
 Specialized hardware (e.g. graphics card)
 Operating system
 System configuration (e.g. virtual memory)
 Programming language
 Algorithm implementation
 Other programs
 System tasks (e.g. memory management)
 …

John Edgar 8

 Instead of timing an algorithm, count the number of
instructions that it performs

 The number of instructions performed may vary
based on

 The size of the input

 The organization of the input

 The number of instructions can be written as a cost
function on the input size

John Edgar 9

void printArray(int arr[], int size){

for (int i = 0; i < size; ++i){

cout << arr[i] << endl;

}

}

John Edgar 10

Operations performed on
an array of length 10

|

declare and
initialize i

perform comparison,
print array element, and

increment i:10 times

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |

make
comparison
when i = 10

32 operations

 Instead of choosing a particular input size we will
express a cost function for input of size n

 Assume that the running time, t, of an algorithm is
proportional to the number of operations

 Express t as a function of n

 Where t is the time required to process the data using
some algorithm A

 Denote a cost function as tA(n)

▪ i.e. the running time of algorithm A, with input size n

John Edgar 11

void printArray(int arr[], int size){

for (int i = 0; i < size; ++i){

cout << arr[i] << endl;

}

}

John Edgar 12

Operations performed on
an array of length n

1

declare and
initialize i

perform comparison,
print array element, and

increment i: n times

3n 1

make
comparison
when i = n

t = 3n + 2

 The number of operations usually varies based on
the size of the input

 Though not always – consider array lookup

 In addition algorithm performance may vary based
on the organization of the input

 For example consider searching a large array

 If the target is the first item in the array the search will be
very fast

John Edgar 13

 Algorithm efficiency is often calculated for three
broad cases of input

 Best case

 Average (or “usual”) case

 Worst case

 This analysis considers how performance varies
for different inputs of the same size

John Edgar 14

 It can be difficult to determine the exact number of
operations performed by an algorithm
 Though it is often still useful to do so

 An alternative to counting all instructions is to focus
on an algorithm's barometer instruction
 The barometer instruction is the instruction that is executed

the most number of times in an algorithm

 The number of times that the barometer instruction is
executed is usually proportional to its running time

John Edgar 15

 Analyze and compare some different algorithms
 Linear search

 Binary search

 Selection sort

 Insertion sort

 Quick sort

John Edgar 16

 It is often useful to find out whether or not a list
contains a particular item

 Such a search can either return true or false

 Or the position of the item in the list

 If the array isn't sorted use linear search

 Start with the first item, and go through the array
comparing each item to the target

 If the target item is found return true (or the index of
the target element)

John Edgar 18

int linearSearch(int arr[], int size, int x){

 for (int i=0; i < size; i++){

 if(arr[i] == x){

 return i;

 }

 } //for

 return -1; //target not found

}

John Edgar 19

The function returns as soon as
the target item is found

return -1 to indicate that the
item has not been found

 Search an array of n items
 The barometer instruction is equality checking (or

comparisons for short)
 arr[i] == x;

 There are actually two other barometer instructions
▪ What are they?

 How many comparisons does linear search perform?

John Edgar 20

int linearSearch(int arr[], int size, int x){

 for (int i=0; i < size; i++){

 if(arr[i] == x){

 return i;

 }

 } //for

 return -1; //target not found

}

 Best case

 The target is the first element of the array

 Make 1 comparison

 Worst case

 The target is not in the array or

 The target is at the last position in the array

 Make n comparisons in either case

 Average case

 Is it (best case + worst case) / 2, i.e. (n + 1) / 2?

John Edgar 21

 There are two situations when the worst case arises

 When the target is the last item in the array

 When the target is not there at all

 To calculate the average cost we need to know how

often these two situations arise

 We can make assumptions about this

 Though any these assumptions may not hold for a

particular use of linear search

John Edgar 22

 The target is not in the array half the time

 Therefore half the time the entire array has to be
checked to determine this

 There is an equal probability of the target
being at any array location

 If it is in the array

 That is, there is a probability of 1/n that the target
is at some location i

John Edgar 23

 Work done if the target is not in the array

 n comparisons

 This occurs with probability of 0.5

John Edgar 24

 Work done if target is in the array:

 1 comparison if target is at the 1st location
▪ Occurs with probability 1/n (second assumption)

 2 comparisons if target is at the 2nd location
▪ Also occurs with probability 1/n

 i comparisons if target is at the ith location

 Take the weighted average of the values to find the
total expected number of comparisons (E)

 E = 1*1/n + 2*1/n + 3*1/n + … + n * 1/n or

 E = (n + 1) / 2

John Edgar 25

 Target is not in the array: n comparisons
 Target is in the array (n + 1) / 2 comparisons
 Take a weighted average of the two amounts:

 = (n * ½) + ((n + 1) / 2 * ½)

 = (n / 2) + ((n + 1) / 4)

 = (2n / 4) + ((n + 1) / 4)

 = (3n + 1) / 4

 Therefore, on average, we expect linear search to
perform (3n + 1) / 4 comparisons

John Edgar 26

 If we sort the target array first we can change the
linear search average cost to around n / 2

 Once a value equal to or greater than the target is found
the search can end

▪ So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

▪ If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

 However, if the array is sorted, it is possible to do
much better than this by using binary search

John Edgar 27

int binSearch(int arr[], int size, int target){

 int low = 0;

 int high= size - 1;

 int mid = 0;

 while (low <= high){

 mid = (low + high) / 2;

 if(target == arr[mid]){

 return mid;

 } else if(target > arr[mid]){

 low = mid + 1;

 } else { //target < arr[mid]

 high = mid - 1;

 }

 } //while

 return -1; //target not found

}
John Edgar 28

Index of the last element in
the array

Note the if, else if,
else

 The algorithm consists of three parts

 Initialization (setting lower and upper)

 While loop including a return statement on success

 Return statement which executes when on failure

 Initialization and return on failure require the same
amount of work regardless of input size

 The number of times that the while loop iterates
depends on the size of the input

John Edgar 29

 The while loop contains an if, else if, else statement
 The first if condition is met when the target is found

 And is therefore performed at most once each time the
algorithm is run

 The algorithm usually performs 5 operations for each
iteration of the while loop

 Checking the while condition

 Assignment to mid

 Equality comparison with target

 Inequality comparison

 One other operation (setting either lower or upper)

 John Edgar 30

The barometer
instructions

 In the best case the target is the midpoint
element of the array

 Requiring one iteration of the while loop

John Edgar 31

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid = (0 + 7) / 2 = 3

binary search (arr, 11)

 What is the worst case for binary search?

 Either the target is not in the array, or

 It is found when the search space consists of one
element

 How many times does the while loop iterate
in the worst case?

John Edgar 32

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid =

binary search (arr, 20)

(0 + 7) / 2 = 3 (4 + 7) / 2 = 5 (6 + 7) / 2 = 6 done

 Each iteration of the while loop halves the search space

 For simplicity assume that n is a power of 2

▪ So n = 2k (e.g. if n = 128, k = 7)

 How large is the search space?

 The first iteration halves the search space to n/2

 After the second iteration the search space is n/4

 After the kth iteration the search space consists of just one
element, since n/2k = n/n = 1

▪ Because n = 2k, k = log2n

 Therefore at most log2n iterations of the while loop are made in
the worst case!

John Edgar 33

 Is the average case more like the best case or the worst
case?

 What is the chance that an array element is the target

▪ 1/n the first time through the loop

▪ 1/(n/2) the second time through the loop

▪ … and so on …

 It is more likely that the target will be found as the
search space becomes small

 That is, when the while loop nears its final iteration

 We can conclude that the average case is more like the worst
case than the best case

John Edgar 34

John Edgar 35

n (3n+1)/4 log2(n)

10 8 3

100 76 7

1,000 751 10

10,000 7,501 13

100,000 75,001 17

1,000,000 750,001 20

10,000,000 7,500,001 24

 As an example of algorithm analysis let's look at two
simple sorting algorithms

 Selection Sort and

 Insertion Sort

 Calculate an approximate cost function for these
two sorting algorithms

 By analyzing how many operations are performed by
each algorithm

 This will include an analysis of how many times the
algorithms' loops iterate

John Edgar 37

 Selection sort is a simple sorting algorithm
that repeatedly finds the smallest item

 The array is divided into a sorted part and an
unsorted part

 Repeatedly swap the first unsorted item with
the smallest unsorted item

 Starting with the element with index 0, and

 Ending with last but one element (index n – 1)

John Edgar 38

John Edgar 39

23 41 33 81 07 19 11 45 find smallest unsorted - 7 comparisons

07 41 33 81 23 19 11 45 find smallest unsorted - 6 comparisons

07 11 33 81 23 19 41 45 find smallest unsorted - 5 comparisons

07 11 19 81 23 33 41 45 find smallest unsorted - 4 comparisons

07 11 19 23 81 33 41 45 find smallest unsorted - 3 comparisons

07 11 19 23 33 81 41 45 find smallest unsorted - 2 comparisons

07 11 19 23 33 41 81 45 find smallest unsorted - 1 comparison

07 11 19 23 33 41 45 81

Unsorted elements Comparisons

n n-1

n-1 n-2

… …

3 2

2 1

1 0

n(n-1)/2

John Edgar 40

void selectionSort(int arr[], int size){

 for(int i = 0; i < size -1; ++i){

 int smallest = i;

 // Find the index of the smallest element

 for(int j = i + 1; j < size; ++j){

 if(arr[j] < arr[smallest]){

 smallest = j;

 }

 }

 // Swap the smallest with the current item

 temp = arr[i];{

 arr[i] = arr[smallest];

 arr[smallest] = temp;

 }

}

John Edgar 41

inner loop body
n(n – 1)/2 times

outer loop
n-1 times

 The barometer operation for selection sort
must be in the inner loop

 Since operations in the inner loop are executed
the greatest number of times

 The inner loop contains four operations

 Compare j to array length

 Compare arr[j] to smallest

 Change smallest

 Increment j

John Edgar 42

The barometer
instructions

 The barometer instruction is evaluated n(n-1) times
 Let’s calculate a detailed cost function

 The outer loop is evaluated n-1 times
▪ 7 instructions (including the loop statements), cost is 7(n-1)

 The inner loop is evaluated n(n – 1)/2 times
▪ There are 4 instructions but one is only evaluated some of the time

▪ Worst case cost is 4(n(n – 1)/2)

 Some constant amount of work is performed
▪ Parameters are set and the outer loop control variable is initialized

 Total cost: 7(n-1) + 4(n(n – 1)/2) + 3
▪ Assumption: all instructions have the same cost

John Edgar 43

 In broad terms and ignoring the actual number of
executable statements selection sort

 Makes n*(n – 1)/2 comparisons, regardless of the original
order of the input

 Performs n – 1 swaps

 Neither of these operations are substantially
affected by the organization of the input

John Edgar 44

 Another simple sorting algorithm

 Divides array into sorted and unsorted parts

 The sorted part of the array is expanded one
element at a time

 Find the correct place in the sorted part to place
the 1st element of the unsorted part

▪ By searching through all of the sorted elements

 Move the elements after the insertion point up
one position to make space

John Edgar 45

John Edgar 46

23 41 33 81 07 19 11 45 treats first element as sorted part

07 11 19 23 33 41 45 81 locate position for 45 - 1 comparisons

23 41 33 81 07 19 11 45 locate position for 41 - 1 comparison

23 33 41 81 07 19 11 45 locate position for 33 - 2 comparisons

23 33 41 81 07 19 11 45 locate position for 81 - 1 comparison

07 23 33 41 81 19 11 45 locate position for 07 - 4 comparisons

07 19 23 33 41 81 11 45 locate position for 19- 5 comparisons

07 11 19 23 33 41 81 45 locate position for 11- 6 comparisons

inner loop body
how many times?

void insertionSort(int arr[], int size){

 for(int i = 1; i < size; ++i){

 temp = arr[i];

 int pos = i;

 // Shuffle up all sorted items > arr[i]

 while(pos > 0 && arr[pos - 1] > temp){

 arr[pos] = arr[pos – 1];

 pos--;

 } //while

 // Insert the current item

 arr[pos] = temp;

 }

}

John Edgar 47

maximum: i – 1 times for
each iteration, n * (n – 1) / 2

outer loop
n-1 times

minimum: just the test for
each outer loop iteration, n

Sorted

Elements

Worst-case
Search

Worst-case
Shuffle

0 0 0

1 1 1

2 2 2

… … …

n-1 n-1 n-1

n(n-1)/2 n(n-1)/2

John Edgar 48

 The efficiency of insertion sort is affected by
the state of the array to be sorted

 In the best case the array is already
completely sorted!

 No movement of array elements is required

 Requires n comparisons

John Edgar 49

 In the worst case the array is in reverse order
 Every item has to be moved all the way to the

front of the array

 The outer loop runs n-1 times

▪ In the first iteration, one comparison and move

▪ In the last iteration, n-1 comparisons and moves

▪ On average, n/2 comparisons and moves

 For a total of n * (n-1) / 2 comparisons and moves

John Edgar 50

 What is the average case cost?

 Is it closer to the best case?

 Or the worst case?

 If random data is sorted, insertion sort is
usually closer to the worst case

 Around n * (n-1) / 4 comparisons

 And what do we mean by average input for a
sorting algorithm in anyway?

John Edgar 51

 Quicksort is a more efficient sorting algorithm than
either selection or insertion sort

 It sorts an array by repeatedly partitioning it

 Partitioning is the process of dividing an array into
sections (partitions), based on some criteria

 Big and small values

 Negative and positive numbers

 Names that begin with a-m, names that begin with n-z

 Darker and lighter pixels

John Edgar 53

John Edgar 54

Partition this array into
small and big values using a
partitioning algorithm

31 12 07 23 93 02 11 18

John Edgar 55

Partition this array into
small and big values using a
partitioning algorithm

We will partition the array
around the last value (18),
we'll call this value the pivot

31 12 07 23 93 02 11 18

Use two indices, one at
each end of the array, call
them low and high

18

John Edgar 56

31 12 07 23 93 02 11 18

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 57

31 12 07 23 93 02 11 18

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

arr[high] (11) is less than the pivot so
swap with arr[low]

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 58

31 12 07 23 93 02 11 18 31 11

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 59

12 07 23 93 02 18

increment low until it needs to be
swapped with something

31 11 12 07

then decrement high until it can be
swapped with low

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 60

12 07 23 93 02 18

and then swap them

31 23 02 11 12 07

increment low until it needs to be
swapped with something

then decrement high until it can be
swapped with low

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 61

12 07 93 18

repeat this process until

31 23 02 11

high and low are the same

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 62

repeat this process until

high and low are the same

We'd like the pivot value to be in the
centre of the array, so we will swap it
with the first item greater than it

12 07 93 18 31 23 02 11 93 18

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 63

smalls bigs
pivot

12 07 93 18 31 23 02 11

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 64

Use the same algorithm to
partition this array into small
and big values

00 08 07 01 06 02 05 09

bigs!
pivot

00 08 07 01 06 02 05 09

smalls

John Edgar 65

Or this one:

09 08 07 06 05 04 02 01

bigs
pivot

01 08 07 06 05 04 02 09

smalls

 The Quicksort algorithm works by repeatedly
partitioning an array

 Each time a subarray is partitioned there is

 A sequence of small values,

 A sequence of big values, and

 A pivot value which is in the correct position

 Partition the small values, and the big values

 Repeat the process until each subarray being partitioned
consists of just one element

John Edgar 66

 The Quicksort algorithm repeatedly
partitions an array until it is sorted

 Until all partitions consist of at most one element

 A simple iterative approach would halve each
sub-array to get partitions

 But partitions are not necessarily of the same size

 So the start and end indexes of each partition are
not easily predictable

John Edgar 67

47 70 36 97 03 67 29 11 48 09 53

09 29 48 03 47 97

03 11 29 48 61

11

John Edgar 68

36 11 61 70

36 09 97

08 01 36

11 09 03

09 03

53

70 47

29

11

53

48 61 97 70 47 53

36 29 48 61 97 70 47 53

36 29 48 61 97 70 47 53

 One way to implement Quicksort might be to
record the index of each new partition

 But this is difficult and requires a reasonable
amount of space

 The goal is to record the start and end index of
each partition

 This can be achieved by making them the
parameters of a recursive function

John Edgar 69

void quicksort(arr[], int low, int high){

if (low < high){

pivot = partition(arr[], low, high)

quicksort(arr[], low, pivot – 1)

quicksort(arr[], pivot + 1, high)

 }

}

John Edgar 70

 How long does Quicksort take to run?

 Let's consider the best and the worst case

 These differ because the partitioning algorithm may not
always do a good job

 Let's look at the best case first

 Each time a sub-array is partitioned the pivot is the exact
midpoint of the slice (or as close as it can get)
▪ So it is divided in half

 What is the running time?

John Edgar 71

John Edgar 72

08 01 02 07 03 06 04 05

bigs
pivot

04 01 02 03 05 06 08 07

smalls

First partition

John Edgar 73

big1
pivot1

02 01 04 05 06 08

sm1

04 01 02 03 05 06 08 07

Second partition

07 03

pivot1 pivot2

pivot2
big2 sm2

John Edgar 74

pivot1

02 03 04 05 06 07 08

Third partition

02 01 03 04 05 06 07 08

pivot1 done done done

01

 Each sub-array is divided in half in each partition
 Each time a series of sub-arrays are partitioned n

(approximately) comparisons are made

 The process ends once all the sub-arrays left to be
partitioned are of size 1

 How many times does n have to be divided in half
before the result is 1?
 log2 (n) times

 Quicksort performs n * log2 (n) operations in the best case

John Edgar 75

First partition

John Edgar 76

09 08 07 06 05 04 02 01

bigs
pivot

01 08 07 06 05 04 02 09

smalls

John Edgar 77

bigs
pivot

01 08 07 06 05 04 02 09

smalls

01 08 07 06 05 04 02 09

Second partition

John Edgar 78

bigs
pivot

01 02 07 06 05 04 08 09

01 08 07 06 05 04 02 09

Third partition

John Edgar 79

pivot

01 02 07 06 05 04 08 09

smalls

01 02 07 06 05 04 08 09

Fourth partition

John Edgar 80

bigs
pivot

01 02 04 06 05 07 08 09

01 02 07 06 05 04 08 09

Fifth partition

John Edgar 81

pivot

01 02 04 06 05 07 08 09

smalls

01 02 04 06 05 07 08 09

Sixth partition

John Edgar 82

pivot

01 02 04 05 06 07 08 09

01 02 04 06 05 07 08 09

Seventh partition!

 Every partition step ends with no values on
one side of the pivot

 The array has to be partitioned n times, not
log2(n) times

 So in the worst case Quicksort performs around n2
operations

 The worst case usually occurs when the array
is nearly sorted (in either direction)

John Edgar 83

 With a large array we would have to be very,
very unlucky to get the worst case

 Unless there was some reason for the array to already
be partially sorted

 The average case is much more like the best
case than the worst case

 There is an easy way to fix a partially sorted
arrays to that it is ready for Quicksort

 Randomize the positions of the array elements!

John Edgar 84

 Linear search: 3(n + 1)/4 – average case

 Given certain assumptions

 Binary search: log2n – worst case

 Average case similar to the worst case

 Selection sort: n((n – 1) / 2) – all cases
 Insertion sort: n((n – 1) / 2) – worst case

 Average case is similar to the worst case

 Quicksort: n(log2(n)) – best case

 Average case is similar to the best case

John Edgar 86

 Let's compare these algorithms for some
arbitrary input size (say n = 1,000)
 In order of the number of comparisons

▪ Binary search

▪ Linear search

▪ Insertion sort best case

▪ Quicksort average and best cases

▪ Selection sort all cases, Insertion sort average and worst
cases, Quicksort worst case

John Edgar 87

 What do we want to know when comparing
two algorithms?

 The most important thing is how quickly the time
requirements increase with input size

 e.g. If we double the input size how much longer
does an algorithm take?

 Here are some graphs …

John Edgar 88

0

50

100

150

200

250

300

350

400

450

10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 89

Hard to see what is happening with n so small …

John Edgar 90

n2 and n(n-1)/2 are growing much faster than any of the others

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 91

Hmm! Let's try a logarithmic scale …

0

200000000000

400000000000

600000000000

800000000000

1000000000000

1200000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 92

Notice how clusters of growth rates start to emerge

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

1000000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

 Exact counting of operations is often difficult (and
tedious), even for simple algorithms

 And is often not much more useful than estimates due to
the relative importance of other factors

 O Notation is a mathematical language for
evaluating the running-time of algorithms

 O-notation evaluates the growth rate of an algorithm

John Edgar 93

 Cost Function: tA(n) = n2 + 20n + 100
 Which term in the function is the most important?

 It depends on the size of n
 n = 2, tA(n) = 4 + 40 + 100

▪ The constant, 100, is the dominating term

 n = 10, tA(n) = 100 + 200 + 100
▪ 20n is the dominating term

 n = 100, tA(n) = 10,000 + 2,000 + 100
▪ n2 is the dominating term

 n = 1000, tA(n) = 1,000,000 + 20,000 + 100
▪ n2 is still the dominating term

John Edgar 94

 O notation approximates a cost function that allows
us to estimate growth rate

 The approximation is usually good enough

▪ Especially when considering the efficiency of an
algorithm as n gets very large

 Count the number of times that an algorithm
executes its barometer instruction

 And determine how the count increases as the input size
increases

John Edgar 95

 Big-O notation does not give a precise formulation
of the cost function for a particular data size

 It expresses the general behaviour of the algorithm
as the data size n grows very large so ignores

 lower order terms and

 constants

 A Big-O cost function is a simple function of n

 n, n2, log2(n), etc.

John Edgar 96

 An algorithm is said to be order f(n)

 Denoted as O(f(n))

 The function f(n) is the algorithm's growth
rate function

 If a problem of size n requires time proportional to
n then the problem is O(n)

▪ e.g. If the input size is doubled so is the running time

John Edgar 97

 An algorithm is order f(n) if there are positive
constants k and m such that

 tA(n)  k * f(n) for all n  m
▪ i.e. find constants k and m such that the cost function is less than or

equal to k * a simpler function for all n greater than or equal to m

 If so we would say that tA(n) is O(f(n))

John Edgar 98

 Finding a constant k | tA(n)  k * f(n) shows
that there is no higher order term than f(n)

 e.g. If the cost function was n2 + 20n + 100 and I
believed this was O(n)

▪ I would not be able to find a constant k | tA(n)  k * f(n)
for all values of n

 For some small values of n lower order terms
may dominate

 The constant m addresses this issue

John Edgar 99

 The idea is that a cost function can be approximated
by another, simpler, function

 The simpler function has 1 variable, the data size n

 This function is selected such that it represents an upper
bound on the value of tA(n)

 Saying that the time efficiency of algorithm A tA(n)
is O(f(n)) means that

 A cannot take more than O(f(n)) time to execute, and

 The cost function tA(n) grows at most as fast as f(n)

John Edgar 100

 An algorithm’s cost function is 3n + 12

 If we can find constants m and k such that:

 k * n > 3n + 12 for all n  m then

 The algorithm is O(n)

 Find values of k and m so that this is true

 k = 4, and

 m = 12 then

 4n  3n + 12 for all n  12

John Edgar 101

 An algorithm’s cost function is 2n2 + 10n + 6

 If we can find constants m and k such that:

 k * n2 > 2n2 + 10n + 6 for all n  m then

 The algorithm is O(n2)

 Find values of k and m so that this is true

 k = 3, and

 m = 11 then

 3n2 > 2n2 + 10n + 6 for all n  11

John Edgar 102

John Edgar 103

0

200

400

600

800

1000

1200

1400

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2n2+10n+6

3n2

After this point 3n2 is always going
to be larger than 2n2 +10n + 6

 All these expressions are O(n):

 n, 3n, 61n + 5, 22n – 5, …

 All these expressions are O(n2):

 n2, 9n2, 18n2 + 4n – 53, …

 All these expressions are O(n log n):

 n(log n), 5n(log 99n), 18 + (4n – 2)(log (5n + 3)), …

John Edgar 104

 O(k * f) = O(f) if k is a constant

 e.g. O(23 * O(log n)), simplifies to O(log n)

 O(f + g) = max[O(f), O(g)]

 O(n + n2), simplifies to O(n2)

 O(f * g) = O(f) * O(g)

 O(m * n), equals O(m) * O(n)

 Unless there is some known relationship between m and n
that allows us to simplify it, e.g. m < n

John Edgar 105

 O(1) – constant time

 The time is independent of n, e.g. list look-up

 O(log n) – logarithmic time

 Usually the log is to the base 2, e.g. binary search

 O(n) – linear time, e.g. linear search
 O(n*logn) – e.g. Qquicksort, Mergesort
 O(n2) – quadratic time, e.g. selection sort
 O(nk) – polynomial (where k is some constant)

 O(2n) – exponential time, very slow!

John Edgar 106

 We write O(1) to indicate something that takes a
constant amount of time

 e.g. finding the minimum element of an ordered array takes O(1)
time

▪ The min is either at the first or the last element of the array

 Important: constants can be large

 So in practice O(1) is not necessarily efficient

 It tells us is that the algorithm will run at the same speed no
matter the size of the input we give it

John Edgar 107

 The O notation growth rate of some algorithms varies
depending on the input

 Typically we consider three cases:

 Worst case, usually (relatively) easy to calculate and therefore
commonly used

 Average case, often difficult to calculate

 Best case, usually easy to calculate but less important than the
other cases

John Edgar 108

 Linear search
 Best case: O(1)

 Average case: O(n)

 Worst case: O(n)
 Binary search
 Best case: O(1)

 Average case: O(log n)

 Worst case: O(log n)

John Edgar 109

 Quicksort

 Best case: O(n(log2n))

 Average case: O(n(log2n))

 Worst case: O(n2)

 Mergesort

 Best case: O(n(log2n))

 Average case: O(n(log2n))

 Worst case: O(n(log2n))

John Edgar 110

 Selection sort

 Best Case: O(n2)

 Average case: O(n2)

 Worst case: O(n2)

 Insertion sort

 Best case: O(n)

 Average case: O(n2)

 Worst case: O(n2)

John Edgar 111

