
Algorithm Analysis: Big O Notation

 Determine the running time of simple algorithms

 Best case

 Average case

 Worst case

 Profile algorithms
 Understand O notation's mathematical basis
 Use O notation to measure running time

John Edgar 2

John Edgar 3

 Algorithms can be described in terms of

 Time efficiency

 Space efficiency

 Choosing an appropriate algorithm can make a
significant difference in the usability of a system

 Government and corporate databases with many millions of
records, which are accessed frequently

 Online search engines

 Real time systems where near instantaneous response is
required

▪ From air traffic control systems to computer games

John Edgar 4

 There are often many ways to solve a problem

 Different algorithms that produce the same results
▪ e.g. there are numerous sorting algorithms

 We are usually interested in how an algorithm
performs when its input is large

 In practice, with today's hardware, most algorithms will
perform well with small input

 There are exceptions to this, such as the Traveling
Salesman Problem

John Edgar 5

 It is possible to count the number of operations that
an algorithm performs

 By a careful visual walkthrough of the algorithm or by

 Inserting code in the algorithm to count and print the
number of times that each line executes (profiling)

 It is also possible to time algorithms

 Compare system time before and after running an
algorithm
▪ Although this ignores various issues

 More sophisticated timer classes exist

John Edgar 6

 It may be useful to time how long an
algorithm takes to rum

 In some cases it may be essential to know how
long an algorithm takes on some system

▪ e.g. air traffic control systems

 But is this a good general comparison
method?

 Running time is affected by a number of
factors other than algorithm efficiency

John Edgar 7

 CPU speed
 Amount of main memory
 Specialized hardware (e.g. graphics card)
 Operating system
 System configuration (e.g. virtual memory)
 Programming language
 Algorithm implementation
 Other programs
 System tasks (e.g. memory management)
 …

John Edgar 8

 Instead of timing an algorithm, count the number of
instructions that it performs

 The number of instructions performed may vary
based on

 The size of the input

 The organization of the input

 The number of instructions can be written as a cost
function on the input size

John Edgar 9

void printArray(int arr[], int size){

for (int i = 0; i < size; ++i){

cout << arr[i] << endl;

}

}

John Edgar 10

Operations performed on
an array of length 10

|

declare and
initialize i

perform comparison,
print array element, and

increment i:10 times

||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |

make
comparison
when i = 10

32 operations

 Instead of choosing a particular input size we will
express a cost function for input of size n

 Assume that the running time, t, of an algorithm is
proportional to the number of operations

 Express t as a function of n

 Where t is the time required to process the data using
some algorithm A

 Denote a cost function as tA(n)

▪ i.e. the running time of algorithm A, with input size n

John Edgar 11

void printArray(int arr[], int size){

for (int i = 0; i < size; ++i){

cout << arr[i] << endl;

}

}

John Edgar 12

Operations performed on
an array of length n

1

declare and
initialize i

perform comparison,
print array element, and

increment i: n times

3n 1

make
comparison
when i = n

t = 3n + 2

 The number of operations usually varies based on
the size of the input

 Though not always – consider array lookup

 In addition algorithm performance may vary based
on the organization of the input

 For example consider searching a large array

 If the target is the first item in the array the search will be
very fast

John Edgar 13

 Algorithm efficiency is often calculated for three
broad cases of input

 Best case

 Average (or “usual”) case

 Worst case

 This analysis considers how performance varies
for different inputs of the same size

John Edgar 14

 It can be difficult to determine the exact number of
operations performed by an algorithm
 Though it is often still useful to do so

 An alternative to counting all instructions is to focus
on an algorithm's barometer instruction
 The barometer instruction is the instruction that is executed

the most number of times in an algorithm

 The number of times that the barometer instruction is
executed is usually proportional to its running time

John Edgar 15

 Analyze and compare some different algorithms
 Linear search

 Binary search

 Selection sort

 Insertion sort

 Quick sort

John Edgar 16

 It is often useful to find out whether or not a list
contains a particular item

 Such a search can either return true or false

 Or the position of the item in the list

 If the array isn't sorted use linear search

 Start with the first item, and go through the array
comparing each item to the target

 If the target item is found return true (or the index of
the target element)

John Edgar 18

int linearSearch(int arr[], int size, int x){

 for (int i=0; i < size; i++){

 if(arr[i] == x){

 return i;

 }

 } //for

 return -1; //target not found

}

John Edgar 19

The function returns as soon as
the target item is found

return -1 to indicate that the
item has not been found

 Search an array of n items
 The barometer instruction is equality checking (or

comparisons for short)
 arr[i] == x;

 There are actually two other barometer instructions
▪ What are they?

 How many comparisons does linear search perform?

John Edgar 20

int linearSearch(int arr[], int size, int x){

 for (int i=0; i < size; i++){

 if(arr[i] == x){

 return i;

 }

 } //for

 return -1; //target not found

}

 Best case

 The target is the first element of the array

 Make 1 comparison

 Worst case

 The target is not in the array or

 The target is at the last position in the array

 Make n comparisons in either case

 Average case

 Is it (best case + worst case) / 2, i.e. (n + 1) / 2?

John Edgar 21

 There are two situations when the worst case arises

 When the target is the last item in the array

 When the target is not there at all

 To calculate the average cost we need to know how

often these two situations arise

 We can make assumptions about this

 Though any these assumptions may not hold for a

particular use of linear search

John Edgar 22

 The target is not in the array half the time

 Therefore half the time the entire array has to be
checked to determine this

 There is an equal probability of the target
being at any array location

 If it is in the array

 That is, there is a probability of 1/n that the target
is at some location i

John Edgar 23

 Work done if the target is not in the array

 n comparisons

 This occurs with probability of 0.5

John Edgar 24

 Work done if target is in the array:

 1 comparison if target is at the 1st location
▪ Occurs with probability 1/n (second assumption)

 2 comparisons if target is at the 2nd location
▪ Also occurs with probability 1/n

 i comparisons if target is at the ith location

 Take the weighted average of the values to find the
total expected number of comparisons (E)

 E = 1*1/n + 2*1/n + 3*1/n + … + n * 1/n or

 E = (n + 1) / 2

John Edgar 25

 Target is not in the array: n comparisons
 Target is in the array (n + 1) / 2 comparisons
 Take a weighted average of the two amounts:

 = (n * ½) + ((n + 1) / 2 * ½)

 = (n / 2) + ((n + 1) / 4)

 = (2n / 4) + ((n + 1) / 4)

 = (3n + 1) / 4

 Therefore, on average, we expect linear search to
perform (3n + 1) / 4 comparisons

John Edgar 26

 If we sort the target array first we can change the
linear search average cost to around n / 2

 Once a value equal to or greater than the target is found
the search can end

▪ So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

▪ If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

 However, if the array is sorted, it is possible to do
much better than this by using binary search

John Edgar 27

int binSearch(int arr[], int size, int target){

 int low = 0;

 int high= size - 1;

 int mid = 0;

 while (low <= high){

 mid = (low + high) / 2;

 if(target == arr[mid]){

 return mid;

 } else if(target > arr[mid]){

 low = mid + 1;

 } else { //target < arr[mid]

 high = mid - 1;

 }

 } //while

 return -1; //target not found

}
John Edgar 28

Index of the last element in
the array

Note the if, else if,
else

 The algorithm consists of three parts

 Initialization (setting lower and upper)

 While loop including a return statement on success

 Return statement which executes when on failure

 Initialization and return on failure require the same
amount of work regardless of input size

 The number of times that the while loop iterates
depends on the size of the input

John Edgar 29

 The while loop contains an if, else if, else statement
 The first if condition is met when the target is found

 And is therefore performed at most once each time the
algorithm is run

 The algorithm usually performs 5 operations for each
iteration of the while loop

 Checking the while condition

 Assignment to mid

 Equality comparison with target

 Inequality comparison

 One other operation (setting either lower or upper)

 John Edgar 30

The barometer
instructions

 In the best case the target is the midpoint
element of the array

 Requiring one iteration of the while loop

John Edgar 31

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid = (0 + 7) / 2 = 3

binary search (arr, 11)

 What is the worst case for binary search?

 Either the target is not in the array, or

 It is found when the search space consists of one
element

 How many times does the while loop iterate
in the worst case?

John Edgar 32

index 0 1 2 3 4 5 6 7

arr 1 3 7 11 13 17 19 23

mid =

binary search (arr, 20)

(0 + 7) / 2 = 3 (4 + 7) / 2 = 5 (6 + 7) / 2 = 6 done

 Each iteration of the while loop halves the search space

 For simplicity assume that n is a power of 2

▪ So n = 2k (e.g. if n = 128, k = 7)

 How large is the search space?

 The first iteration halves the search space to n/2

 After the second iteration the search space is n/4

 After the kth iteration the search space consists of just one
element, since n/2k = n/n = 1

▪ Because n = 2k, k = log2n

 Therefore at most log2n iterations of the while loop are made in
the worst case!

John Edgar 33

 Is the average case more like the best case or the worst
case?

 What is the chance that an array element is the target

▪ 1/n the first time through the loop

▪ 1/(n/2) the second time through the loop

▪ … and so on …

 It is more likely that the target will be found as the
search space becomes small

 That is, when the while loop nears its final iteration

 We can conclude that the average case is more like the worst
case than the best case

John Edgar 34

John Edgar 35

n (3n+1)/4 log2(n)

10 8 3

100 76 7

1,000 751 10

10,000 7,501 13

100,000 75,001 17

1,000,000 750,001 20

10,000,000 7,500,001 24

 As an example of algorithm analysis let's look at two
simple sorting algorithms

 Selection Sort and

 Insertion Sort

 Calculate an approximate cost function for these
two sorting algorithms

 By analyzing how many operations are performed by
each algorithm

 This will include an analysis of how many times the
algorithms' loops iterate

John Edgar 37

 Selection sort is a simple sorting algorithm
that repeatedly finds the smallest item

 The array is divided into a sorted part and an
unsorted part

 Repeatedly swap the first unsorted item with
the smallest unsorted item

 Starting with the element with index 0, and

 Ending with last but one element (index n – 1)

John Edgar 38

John Edgar 39

23 41 33 81 07 19 11 45 find smallest unsorted - 7 comparisons

07 41 33 81 23 19 11 45 find smallest unsorted - 6 comparisons

07 11 33 81 23 19 41 45 find smallest unsorted - 5 comparisons

07 11 19 81 23 33 41 45 find smallest unsorted - 4 comparisons

07 11 19 23 81 33 41 45 find smallest unsorted - 3 comparisons

07 11 19 23 33 81 41 45 find smallest unsorted - 2 comparisons

07 11 19 23 33 41 81 45 find smallest unsorted - 1 comparison

07 11 19 23 33 41 45 81

Unsorted elements Comparisons

n n-1

n-1 n-2

… …

3 2

2 1

1 0

n(n-1)/2

John Edgar 40

void selectionSort(int arr[], int size){

 for(int i = 0; i < size -1; ++i){

 int smallest = i;

 // Find the index of the smallest element

 for(int j = i + 1; j < size; ++j){

 if(arr[j] < arr[smallest]){

 smallest = j;

 }

 }

 // Swap the smallest with the current item

 temp = arr[i];{

 arr[i] = arr[smallest];

 arr[smallest] = temp;

 }

}

John Edgar 41

inner loop body
n(n – 1)/2 times

outer loop
n-1 times

 The barometer operation for selection sort
must be in the inner loop

 Since operations in the inner loop are executed
the greatest number of times

 The inner loop contains four operations

 Compare j to array length

 Compare arr[j] to smallest

 Change smallest

 Increment j

John Edgar 42

The barometer
instructions

 The barometer instruction is evaluated n(n-1) times
 Let’s calculate a detailed cost function

 The outer loop is evaluated n-1 times
▪ 7 instructions (including the loop statements), cost is 7(n-1)

 The inner loop is evaluated n(n – 1)/2 times
▪ There are 4 instructions but one is only evaluated some of the time

▪ Worst case cost is 4(n(n – 1)/2)

 Some constant amount of work is performed
▪ Parameters are set and the outer loop control variable is initialized

 Total cost: 7(n-1) + 4(n(n – 1)/2) + 3
▪ Assumption: all instructions have the same cost

John Edgar 43

 In broad terms and ignoring the actual number of
executable statements selection sort

 Makes n*(n – 1)/2 comparisons, regardless of the original
order of the input

 Performs n – 1 swaps

 Neither of these operations are substantially
affected by the organization of the input

John Edgar 44

 Another simple sorting algorithm

 Divides array into sorted and unsorted parts

 The sorted part of the array is expanded one
element at a time

 Find the correct place in the sorted part to place
the 1st element of the unsorted part

▪ By searching through all of the sorted elements

 Move the elements after the insertion point up
one position to make space

John Edgar 45

John Edgar 46

23 41 33 81 07 19 11 45 treats first element as sorted part

07 11 19 23 33 41 45 81 locate position for 45 - 1 comparisons

23 41 33 81 07 19 11 45 locate position for 41 - 1 comparison

23 33 41 81 07 19 11 45 locate position for 33 - 2 comparisons

23 33 41 81 07 19 11 45 locate position for 81 - 1 comparison

07 23 33 41 81 19 11 45 locate position for 07 - 4 comparisons

07 19 23 33 41 81 11 45 locate position for 19- 5 comparisons

07 11 19 23 33 41 81 45 locate position for 11- 6 comparisons

inner loop body
how many times?

void insertionSort(int arr[], int size){

 for(int i = 1; i < size; ++i){

 temp = arr[i];

 int pos = i;

 // Shuffle up all sorted items > arr[i]

 while(pos > 0 && arr[pos - 1] > temp){

 arr[pos] = arr[pos – 1];

 pos--;

 } //while

 // Insert the current item

 arr[pos] = temp;

 }

}

John Edgar 47

maximum: i – 1 times for
each iteration, n * (n – 1) / 2

outer loop
n-1 times

minimum: just the test for
each outer loop iteration, n

Sorted

Elements

Worst-case
Search

Worst-case
Shuffle

0 0 0

1 1 1

2 2 2

… … …

n-1 n-1 n-1

n(n-1)/2 n(n-1)/2

John Edgar 48

 The efficiency of insertion sort is affected by
the state of the array to be sorted

 In the best case the array is already
completely sorted!

 No movement of array elements is required

 Requires n comparisons

John Edgar 49

 In the worst case the array is in reverse order
 Every item has to be moved all the way to the

front of the array

 The outer loop runs n-1 times

▪ In the first iteration, one comparison and move

▪ In the last iteration, n-1 comparisons and moves

▪ On average, n/2 comparisons and moves

 For a total of n * (n-1) / 2 comparisons and moves

John Edgar 50

 What is the average case cost?

 Is it closer to the best case?

 Or the worst case?

 If random data is sorted, insertion sort is
usually closer to the worst case

 Around n * (n-1) / 4 comparisons

 And what do we mean by average input for a
sorting algorithm in anyway?

John Edgar 51

 Quicksort is a more efficient sorting algorithm than
either selection or insertion sort

 It sorts an array by repeatedly partitioning it

 Partitioning is the process of dividing an array into
sections (partitions), based on some criteria

 Big and small values

 Negative and positive numbers

 Names that begin with a-m, names that begin with n-z

 Darker and lighter pixels

John Edgar 53

John Edgar 54

Partition this array into
small and big values using a
partitioning algorithm

31 12 07 23 93 02 11 18

John Edgar 55

Partition this array into
small and big values using a
partitioning algorithm

We will partition the array
around the last value (18),
we'll call this value the pivot

31 12 07 23 93 02 11 18

Use two indices, one at
each end of the array, call
them low and high

18

John Edgar 56

31 12 07 23 93 02 11 18

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 57

31 12 07 23 93 02 11 18

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

arr[high] (11) is less than the pivot so
swap with arr[low]

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 58

31 12 07 23 93 02 11 18 31 11

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 59

12 07 23 93 02 18

increment low until it needs to be
swapped with something

31 11 12 07

then decrement high until it can be
swapped with low

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 60

12 07 23 93 02 18

and then swap them

31 23 02 11 12 07

increment low until it needs to be
swapped with something

then decrement high until it can be
swapped with low

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 61

12 07 93 18

repeat this process until

31 23 02 11

high and low are the same

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 62

repeat this process until

high and low are the same

We'd like the pivot value to be in the
centre of the array, so we will swap it
with the first item greater than it

12 07 93 18 31 23 02 11 93 18

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 63

smalls bigs
pivot

12 07 93 18 31 23 02 11

We will partition the array
around the last value (18),
we'll call this value the pivot

Use two indices, one at
each end of the array, call
them low and high

Partition this array into
small and big values using a
partitioning algorithm

John Edgar 64

Use the same algorithm to
partition this array into small
and big values

00 08 07 01 06 02 05 09

bigs!
pivot

00 08 07 01 06 02 05 09

smalls

John Edgar 65

Or this one:

09 08 07 06 05 04 02 01

bigs
pivot

01 08 07 06 05 04 02 09

smalls

 The Quicksort algorithm works by repeatedly
partitioning an array

 Each time a subarray is partitioned there is

 A sequence of small values,

 A sequence of big values, and

 A pivot value which is in the correct position

 Partition the small values, and the big values

 Repeat the process until each subarray being partitioned
consists of just one element

John Edgar 66

 The Quicksort algorithm repeatedly
partitions an array until it is sorted

 Until all partitions consist of at most one element

 A simple iterative approach would halve each
sub-array to get partitions

 But partitions are not necessarily of the same size

 So the start and end indexes of each partition are
not easily predictable

John Edgar 67

47 70 36 97 03 67 29 11 48 09 53

09 29 48 03 47 97

03 11 29 48 61

11

John Edgar 68

36 11 61 70

36 09 97

08 01 36

11 09 03

09 03

53

70 47

29

11

53

48 61 97 70 47 53

36 29 48 61 97 70 47 53

36 29 48 61 97 70 47 53

 One way to implement Quicksort might be to
record the index of each new partition

 But this is difficult and requires a reasonable
amount of space

 The goal is to record the start and end index of
each partition

 This can be achieved by making them the
parameters of a recursive function

John Edgar 69

void quicksort(arr[], int low, int high){

if (low < high){

pivot = partition(arr[], low, high)

quicksort(arr[], low, pivot – 1)

quicksort(arr[], pivot + 1, high)

 }

}

John Edgar 70

 How long does Quicksort take to run?

 Let's consider the best and the worst case

 These differ because the partitioning algorithm may not
always do a good job

 Let's look at the best case first

 Each time a sub-array is partitioned the pivot is the exact
midpoint of the slice (or as close as it can get)
▪ So it is divided in half

 What is the running time?

John Edgar 71

John Edgar 72

08 01 02 07 03 06 04 05

bigs
pivot

04 01 02 03 05 06 08 07

smalls

First partition

John Edgar 73

big1
pivot1

02 01 04 05 06 08

sm1

04 01 02 03 05 06 08 07

Second partition

07 03

pivot1 pivot2

pivot2
big2 sm2

John Edgar 74

pivot1

02 03 04 05 06 07 08

Third partition

02 01 03 04 05 06 07 08

pivot1 done done done

01

 Each sub-array is divided in half in each partition
 Each time a series of sub-arrays are partitioned n

(approximately) comparisons are made

 The process ends once all the sub-arrays left to be
partitioned are of size 1

 How many times does n have to be divided in half
before the result is 1?
 log2 (n) times

 Quicksort performs n * log2 (n) operations in the best case

John Edgar 75

First partition

John Edgar 76

09 08 07 06 05 04 02 01

bigs
pivot

01 08 07 06 05 04 02 09

smalls

John Edgar 77

bigs
pivot

01 08 07 06 05 04 02 09

smalls

01 08 07 06 05 04 02 09

Second partition

John Edgar 78

bigs
pivot

01 02 07 06 05 04 08 09

01 08 07 06 05 04 02 09

Third partition

John Edgar 79

pivot

01 02 07 06 05 04 08 09

smalls

01 02 07 06 05 04 08 09

Fourth partition

John Edgar 80

bigs
pivot

01 02 04 06 05 07 08 09

01 02 07 06 05 04 08 09

Fifth partition

John Edgar 81

pivot

01 02 04 06 05 07 08 09

smalls

01 02 04 06 05 07 08 09

Sixth partition

John Edgar 82

pivot

01 02 04 05 06 07 08 09

01 02 04 06 05 07 08 09

Seventh partition!

 Every partition step ends with no values on
one side of the pivot

 The array has to be partitioned n times, not
log2(n) times

 So in the worst case Quicksort performs around n2
operations

 The worst case usually occurs when the array
is nearly sorted (in either direction)

John Edgar 83

 With a large array we would have to be very,
very unlucky to get the worst case

 Unless there was some reason for the array to already
be partially sorted

 The average case is much more like the best
case than the worst case

 There is an easy way to fix a partially sorted
arrays to that it is ready for Quicksort

 Randomize the positions of the array elements!

John Edgar 84

 Linear search: 3(n + 1)/4 – average case

 Given certain assumptions

 Binary search: log2n – worst case

 Average case similar to the worst case

 Selection sort: n((n – 1) / 2) – all cases
 Insertion sort: n((n – 1) / 2) – worst case

 Average case is similar to the worst case

 Quicksort: n(log2(n)) – best case

 Average case is similar to the best case

John Edgar 86

 Let's compare these algorithms for some
arbitrary input size (say n = 1,000)
 In order of the number of comparisons

▪ Binary search

▪ Linear search

▪ Insertion sort best case

▪ Quicksort average and best cases

▪ Selection sort all cases, Insertion sort average and worst
cases, Quicksort worst case

John Edgar 87

 What do we want to know when comparing
two algorithms?

 The most important thing is how quickly the time
requirements increase with input size

 e.g. If we double the input size how much longer
does an algorithm take?

 Here are some graphs …

John Edgar 88

0

50

100

150

200

250

300

350

400

450

10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 89

Hard to see what is happening with n so small …

John Edgar 90

n2 and n(n-1)/2 are growing much faster than any of the others

0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 91

Hmm! Let's try a logarithmic scale …

0

200000000000

400000000000

600000000000

800000000000

1000000000000

1200000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

John Edgar 92

Notice how clusters of growth rates start to emerge

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

1000000000000

10 50 100 500 1000 5000 10000 50000 100000 500000 1000000

N
u

m
b

e
r

o
f

O
p

e
ra

ti
o

n
s

n

log2n

5(log2n)

3(n+1)/4

n

n(log2n)

n((n-1)/2)

n2

 Exact counting of operations is often difficult (and
tedious), even for simple algorithms

 And is often not much more useful than estimates due to
the relative importance of other factors

 O Notation is a mathematical language for
evaluating the running-time of algorithms

 O-notation evaluates the growth rate of an algorithm

John Edgar 93

 Cost Function: tA(n) = n2 + 20n + 100
 Which term in the function is the most important?

 It depends on the size of n
 n = 2, tA(n) = 4 + 40 + 100

▪ The constant, 100, is the dominating term

 n = 10, tA(n) = 100 + 200 + 100
▪ 20n is the dominating term

 n = 100, tA(n) = 10,000 + 2,000 + 100
▪ n2 is the dominating term

 n = 1000, tA(n) = 1,000,000 + 20,000 + 100
▪ n2 is still the dominating term

John Edgar 94

 O notation approximates a cost function that allows
us to estimate growth rate

 The approximation is usually good enough

▪ Especially when considering the efficiency of an
algorithm as n gets very large

 Count the number of times that an algorithm
executes its barometer instruction

 And determine how the count increases as the input size
increases

John Edgar 95

 Big-O notation does not give a precise formulation
of the cost function for a particular data size

 It expresses the general behaviour of the algorithm
as the data size n grows very large so ignores

 lower order terms and

 constants

 A Big-O cost function is a simple function of n

 n, n2, log2(n), etc.

John Edgar 96

 An algorithm is said to be order f(n)

 Denoted as O(f(n))

 The function f(n) is the algorithm's growth
rate function

 If a problem of size n requires time proportional to
n then the problem is O(n)

▪ e.g. If the input size is doubled so is the running time

John Edgar 97

 An algorithm is order f(n) if there are positive
constants k and m such that

 tA(n) k * f(n) for all n m
▪ i.e. find constants k and m such that the cost function is less than or

equal to k * a simpler function for all n greater than or equal to m

 If so we would say that tA(n) is O(f(n))

John Edgar 98

 Finding a constant k | tA(n) k * f(n) shows
that there is no higher order term than f(n)

 e.g. If the cost function was n2 + 20n + 100 and I
believed this was O(n)

▪ I would not be able to find a constant k | tA(n) k * f(n)
for all values of n

 For some small values of n lower order terms
may dominate

 The constant m addresses this issue

John Edgar 99

 The idea is that a cost function can be approximated
by another, simpler, function

 The simpler function has 1 variable, the data size n

 This function is selected such that it represents an upper
bound on the value of tA(n)

 Saying that the time efficiency of algorithm A tA(n)
is O(f(n)) means that

 A cannot take more than O(f(n)) time to execute, and

 The cost function tA(n) grows at most as fast as f(n)

John Edgar 100

 An algorithm’s cost function is 3n + 12

 If we can find constants m and k such that:

 k * n > 3n + 12 for all n m then

 The algorithm is O(n)

 Find values of k and m so that this is true

 k = 4, and

 m = 12 then

 4n 3n + 12 for all n 12

John Edgar 101

 An algorithm’s cost function is 2n2 + 10n + 6

 If we can find constants m and k such that:

 k * n2 > 2n2 + 10n + 6 for all n m then

 The algorithm is O(n2)

 Find values of k and m so that this is true

 k = 3, and

 m = 11 then

 3n2 > 2n2 + 10n + 6 for all n 11

John Edgar 102

John Edgar 103

0

200

400

600

800

1000

1200

1400

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2n2+10n+6

3n2

After this point 3n2 is always going
to be larger than 2n2 +10n + 6

 All these expressions are O(n):

 n, 3n, 61n + 5, 22n – 5, …

 All these expressions are O(n2):

 n2, 9n2, 18n2 + 4n – 53, …

 All these expressions are O(n log n):

 n(log n), 5n(log 99n), 18 + (4n – 2)(log (5n + 3)), …

John Edgar 104

 O(k * f) = O(f) if k is a constant

 e.g. O(23 * O(log n)), simplifies to O(log n)

 O(f + g) = max[O(f), O(g)]

 O(n + n2), simplifies to O(n2)

 O(f * g) = O(f) * O(g)

 O(m * n), equals O(m) * O(n)

 Unless there is some known relationship between m and n
that allows us to simplify it, e.g. m < n

John Edgar 105

 O(1) – constant time

 The time is independent of n, e.g. list look-up

 O(log n) – logarithmic time

 Usually the log is to the base 2, e.g. binary search

 O(n) – linear time, e.g. linear search
 O(n*logn) – e.g. Qquicksort, Mergesort
 O(n2) – quadratic time, e.g. selection sort
 O(nk) – polynomial (where k is some constant)

 O(2n) – exponential time, very slow!

John Edgar 106

 We write O(1) to indicate something that takes a
constant amount of time

 e.g. finding the minimum element of an ordered array takes O(1)
time

▪ The min is either at the first or the last element of the array

 Important: constants can be large

 So in practice O(1) is not necessarily efficient

 It tells us is that the algorithm will run at the same speed no
matter the size of the input we give it

John Edgar 107

 The O notation growth rate of some algorithms varies
depending on the input

 Typically we consider three cases:

 Worst case, usually (relatively) easy to calculate and therefore
commonly used

 Average case, often difficult to calculate

 Best case, usually easy to calculate but less important than the
other cases

John Edgar 108

 Linear search
 Best case: O(1)

 Average case: O(n)

 Worst case: O(n)
 Binary search
 Best case: O(1)

 Average case: O(log n)

 Worst case: O(log n)

John Edgar 109

 Quicksort

 Best case: O(n(log2n))

 Average case: O(n(log2n))

 Worst case: O(n2)

 Mergesort

 Best case: O(n(log2n))

 Average case: O(n(log2n))

 Worst case: O(n(log2n))

John Edgar 110

 Selection sort

 Best Case: O(n2)

 Average case: O(n2)

 Worst case: O(n2)

 Insertion sort

 Best case: O(n)

 Average case: O(n2)

 Worst case: O(n2)

John Edgar 111

