
Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Chapter 6: Heap

Data Structures

COMPUTER SCIENCE DEPARTMENT FACULTY OF

ENGINEERING AND TECHNOLOGY

COMP2321

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Which of the following is Complete Binary Tree?

A
B

C

D E

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Definition
• Binary heap: it must follow the two properties:

• Complete binary tree.
• filled on all levels, except last, where filled from left to right

• Order property, e.g. Min-heap or Max-heap
• Min-heap: parent is less than children

• Max-heap: parent is greater than children

06

14

78 18

81 7791

45

5347

6484 9983

Notes :

1) Node keys could be repeated

2) Left child may be greater then right child

and vice versa

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Properties

• Properties.

• Minimum element is in the root.

• Heap with N elements has height = 𝑙𝑜𝑔2 𝑁 .

6

14

78 18

81 7791

45

5347

6484 9983

N = 14

Height = 3

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heaps: Array Implementation
• Implementing binary heaps.

• Use an array: no need for explicit parent or child pointers.

• Parent(i) = 𝑖/2

• Left(i) = 2i

• Right(i) = 2i + 1

6

14

78 18

81 7791

45

5347

6484 9983

1

2 3

4 5 6 7

8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

6 14 45 78 18 47 53 83 91 81 77 84 99 64

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Insertion
• Insert element x into heap.

• Insert into next available slot.

• Bubble up until it's heap ordered.
• Peter principle: nodes rise to level of incompetence

6

14

78 18

81 7791

45

5347

6484 9983 42 next free

slot

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Insertion
• Insert element x into heap.

• Insert into next available slot.

• Bubble up until it's heap ordered.
• Peter principle: nodes rise to level of incompetence

6

14

78 18

81 7791

45

5347

6484 9983 4242

swap with parent

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Insertion

• Insert element x into heap.

• Insert into next available slot.

• Bubble up until it's heap ordered.

• Peter principle: nodes rise to level of incompetence

6

14

78 18

81 7791

45

4247

6484 9983 4253

swap with parent

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Insertion

Insert element x into heap.

 Insert into next available slot.

 Bubble up until it's heap ordered.

– Peter principle: nodes rise to level of incompetence

 O(log N) operations. 6

14

78 18

81 7791

42

4547

6484 9983 53

stop: heap ordered

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Given Data:

44, 33, 77 ,11, 55, 88, 66, 22

Build max heap tree ? (show all works).

Solved At board

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Delete Min
Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle: better subordinate is promoted

6

14

78 18

81 7791

42

4547

6484 9983 53

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Delete Min
• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle: better subordinate is promoted

53

14

78 18

81 7791

42

4547

6484 9983 6

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Delete Min
• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle: better subordinate is promoted

53

14

78 18

81 7791

42

4547

6484 9983

exchange with left child

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Delete Min

• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle: better subordinate is promoted

14

53

78 18

81 7791

42

4547

6484 9983

exchange with right child

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Binary Heap: Delete Min

• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle: better subordinate is promoted

• O(log N) operations. 14

18

78 53

81 7791

42

4547

6484 9983

stop: heap ordered

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Example: Delete root (95)

Solved At board

95

85

25 35

23 1522

72

7069

16

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Heapify
Looking at every node as it’s heap from bottom to up

This take less time O(log n), since creation of heap is costing O(n log n)

12

20 18

15

25

10

40

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Min Heap code

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Heap Sort Algorithm for sorting :

1. Build a max heap from the input data.

2. At this point, the largest item is stored at the root

of the heap. Replace it with the last item of the heap

followed by reducing the size of heap by 1.

Finally, heapify the root of tree.

3. Repeat above steps while size of heap is greater

than 1.

Heapsort

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Heapsort

• Heapsort.

• Insert N items into binary heap.

• Perform N delete-min operations.

• O(N log N) sort.

• No extra storage.

Time Complexity:

• Time complexity of heapify is O(log N).

• Time complexity of create And BuildHeap() is O(N)

• overall time complexity of Heap Sort is O(N log N).

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

Heapsort
void sort(int arr[], int n)

{

// Build heap (rearrange array)

//for (int i = n / 2 - 1; i >= 0; i--)

//heapify(arr, n, i);

// One by one extract an element from heap

for (int i=n-1; i>0; i--)

{

// Move current root to end

int temp = arr[0];

arr[0] = arr[i];

arr[i] = temp;

// call max heapify on the reduced heap

heapify(arr, i, 0);

}
}

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap

