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Which of the following is Complete Binary Tree? 

A
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Binary Heap:  Definition
• Binary heap: it must follow the two properties:

• Complete binary tree.
• filled on all levels, except last, where filled from left to right

• Order property, e.g. Min-heap or Max-heap
• Min-heap: parent is less than children

• Max-heap: parent is greater than children
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Notes : 

1) Node keys could be repeated

2) Left child may be greater then right child

and vice versa   
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Binary Heap:  Properties

• Properties.

• Minimum element is in the root.

• Heap with N elements has height = 𝑙𝑜𝑔2 𝑁 .
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N = 14

Height = 3
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Binary Heaps:  Array Implementation
• Implementing binary heaps.

• Use an array:  no need for explicit parent or child pointers.

• Parent(i) = 𝑖/2

• Left(i)   = 2i

• Right(i)  = 2i + 1
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Binary Heap:  Insertion
• Insert element x into heap.

• Insert into next available slot.

• Bubble up until it's heap ordered.
• Peter principle:  nodes rise to level of incompetence
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Binary Heap:  Insertion
• Insert element x into heap.

• Insert into next available slot.

• Bubble up until it's heap ordered.
• Peter principle:  nodes rise to level of incompetence
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Binary Heap:  Insertion

• Insert element x into heap.

• Insert into next available slot.

• Bubble up until it's heap ordered.

• Peter principle:  nodes rise to level of incompetence
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Binary Heap:  Insertion

Insert element x into heap.

 Insert into next available slot.

 Bubble up until it's heap ordered.

– Peter principle:  nodes rise to level of incompetence

 O(log N) operations. 6

14

78 18

81 7791

42

4547

6484 9983 53

stop:  heap ordered
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Given Data:

44, 33, 77 ,11, 55, 88, 66, 22

Build max heap tree ? (show all works).

Solved At board 
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Binary Heap:  Delete Min
Delete minimum element from heap.

 Exchange root with rightmost leaf.

 Bubble root down until it's heap ordered.

– power struggle principle:  better subordinate is promoted
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Binary Heap:  Delete Min
• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle:  better subordinate is promoted
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Binary Heap:  Delete Min
• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle:  better subordinate is promoted
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exchange with left child
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Binary Heap:  Delete Min

• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle:  better subordinate is promoted
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Binary Heap:  Delete Min

• Delete minimum element from heap.

• Exchange root with rightmost leaf.

• Bubble root down until it's heap ordered.

• power struggle principle:  better subordinate is promoted

• O(log N) operations. 14
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stop:  heap ordered
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Example: Delete root (95)

Solved At board 
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Heapify 
Looking at every node as it’s heap from bottom  to up

This take less time O(log n), since creation of heap is costing O(n log n)
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Min Heap code
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Heap Sort Algorithm for sorting :

1. Build a max heap from the input data.

2. At this point, the largest item is stored at the root 

of the heap. Replace it with the last item of the heap 

followed by reducing the size of heap by 1. 

Finally, heapify the root of tree.

3. Repeat above steps while size of heap is greater 

than 1.

Heapsort
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Heapsort

• Heapsort.

• Insert N items into binary heap.

• Perform N delete-min operations.

• O(N log N) sort.

• No extra storage.

Time Complexity: 

• Time complexity of heapify is O(log N). 

• Time complexity of create And BuildHeap() is O(N)

• overall time complexity of Heap Sort is O(N log N).
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Heapsort
void sort(int arr[], int n) 

{ 

// Build heap (rearrange array) 

//for (int i = n / 2 - 1; i >= 0; i--) 

//heapify(arr, n, i); 

// One by one extract an element from heap 

for (int i=n-1; i>0; i--) 

{ 

// Move current root to end 

int temp = arr[0]; 

arr[0] = arr[i]; 

arr[i] = temp; 

// call max heapify on the reduced heap 

heapify(arr, i, 0); 

} 
} 



Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|DS:Heap


