Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES AND ALGORITHMS COMP2421 — DATA
AND ALGORITHM
Graphs
Dr. Radi Jarrar
Department of Computer Science
Birzeit University COMP2421—DATA
AND ALGORITHM
Graphs
Dr. Radi Jarrar
Department of Computer Science
Birzeit University

Graphs

Department of Computer Science

 2 and 2 and 2 and 2 and 2 and 2 and 2

F $\big)$

A)

 B Y

 C \rightarrow B \rightarrow

 $D \rightarrow \left(E \right)$

Graphs

- Graphs are mathematical concepts that have many applications in computer science.
- They have many applications in real-life applications such as social networks, locations and routers in GPS, … • Graphs are mathematical concepts that have

many applications in computer science.

• They have many applications in real-life applications such

as social networks, locations and routers in GPS, ...

• A graph consists
- A graph consists of a finite set of vertices (i.e., nodes) and a set of edges connecting these vertices.
- each other by the same edge.

Graphs

- \cdot A graph G=(V, E), is a data structure that consists of a finite set of vertices (or nodes) V, and a set of edges, E.
- Each edge is a pair (v, w) where v and w are nodes from V.

Graphs

- If the pairs are ordered in the graph, then the graph is called directed graph(diagraphs).
- Vertex w is adjacent to v if and only if $(v, w) \in E$. In an undirected graph with edge (v, w) , and hence (w, v) , w is adjacent to v and v is adjacent to w.

 $\overline{\mathbf{5}}$, and the set of the s

G

F $)$

A)

BY FOR

 $C \rightarrow \rightarrow$ B Y

 D \rightarrow E \rightarrow

- Dr. Radi Jarrar Birzeit University
Graphs Definitions
• Order: is the number of vertices in a Order: is the number of vertices in a graph \circ \circ
	- Size: is the number of edges in a graph
	- Vertex degree: is the number of edges that are connected to a vertex
	- Isolated vertex: is the vertex that is not connected to any other vertex in the graph
	- Self-loop: an edge from a vertex to itself

Dr. Radi Jarrar – Birzeit University, 2021

CONS A) BY POST F $)$ $C \rightarrow \bullet$ B Y $D \rightarrow \infty$

 ϵ 6 and ϵ 6 and ϵ 6 and ϵ 6 and ϵ

- Dr. Radi Jarrar Birzeit University
Graphs Definitions
• Directed graph: is a graph where all • Directed graph: is a graph where all edges have directions indicating what is the start vertex and what is the end vertex
	- Undirected graph: is a graph with edges that have no directions

7 and 2007 and 2007 and 2007 and 2007 and

 F)

 1.5 0 1 (A)

 $1.4 \bigcirc 0.7$

A)

 B V $\mathsf{L0}$

1.0

0.2

 $C \rightarrow$ B \prime ^{1.0}

 0.5 \bigwedge 10

 $_{0.1}$ (A)

 $D \rightarrow$ E \searrow _{0.2}

- Dr. Radi Jarrar Birzeit University
Graphs Definitions
• Weighted graph: edges of a graph ha • Weighted graph: edges of a graph have weights \bigodot ^{0.5} B
	- Graphs Definitions

	 Weighted graph: edges of a graph have weights

	 Unweighted graph: edges of a graph have no weights

	 Unweighted graph: edges of a graph have no weights

F $)$

D \rightarrow E \rightarrow

A)

- $\begin{minipage}[c]{0.9\linewidth} \textbf{Dr. Radi Jarrar Birzeit University} \\\\ \textbf{GraphS DefinitionS} \\\\ \textbf{A path in a graph is a sequence of vertices } \textbf{w}_1, \textbf{w}_2, \textbf{w}_3, \textbf{w}_4, \textbf{w}_5, \textbf{w}_6 \\\\ \textbf{M1} & \textbf{M2} & \textbf{M3} & \textbf{M4} \end{minipage}$ • A **path** in a graph is a sequence of vertices w₁, w_{2,} w_{3, ...,}w_N, \qquad (c)—(_B) $\sqrt{2}$ such that $(wi, wi+1) \in E$ for $1 \le i \le N$. The **length** of such a path is the number **of edges on the path, which is equal to N – 1.**

A **path** from a vertex to itself is allowed. If it does not contain edges, then the path from a vertex to itself is allowed. If it does not contain edges, then the path le BY FOR $C \rightarrow \rightarrow$ B Y
- path length is 0. If edge (v,v), then the path v (which is also referred to as a loop). for which N > 2, the first N - 1 vertices are all

s *i* < *N*. The **length** of such a path is the number

s equal to *N* - 1.

is allowed. If it does not contain edges, then the

then the path v (which is also referred t
- Cycle: a path w_1 , w_2 , w_3 , ..., w_N for which N > 2, the first different, and $w_1 = w_N$. For example, the sequence D, E, A, B, C, D is a cycle in the graph above.

Dr. Radi Jarrar – Birzeit University, 2021

ONS

9

F $)$

A)

BY FOR

 $C \rightarrow \rightarrow$ B Y

D \rightarrow E \rightarrow

- Dr. Radi Jarrar Birzeit University
Graphs Definitions
• A simple path is a path such that all vertices • A simple path is a path such that all vertices are distinct (except that the first and last might be the same).
- A cycle in a directed graph is a path of length at least one such that $W_1 = W_{n.}$
- The path v, u, v is cyclic. However, it is not in undirected graph because (v,u) and (u,v) is the same path.

 10 and 10 and 10 and 10 and 10

F $)$

A)

BY FOR

 $C \rightarrow \rightarrow$ B Y

D \rightarrow E \rightarrow

- Dr. Radi Jarrar Birzeit University
Graphs Definitions
• A directed graph is called acyclic if it has no cy • A directed graph is called acyclic if it has no cycles (DAG) $\left($ c Dr. Radi Jarrar – Bir:

raphs – Definitions

A directed graph is called acyclic if i

- Acyclic directed graph.

An undirected graph is called conne
- An undirected graph is called connected if there is a path from every node to every other node. A directed graph with this property is called strongly connected.

Dr. Radi Jarrar – Birzeit University
Graphs – Definitions
• A complete graph is a graph in which there is • A complete graph is a graph in which there is an edge between every pair of vertices.

Dr. Radi Jarrar – Birzeit University, 2021
18 graphs Examples of using graphs

- Airport System
- Graphs are used to represent networks. The networks may include paths in a city or telephone network or circuit network.
- Graphs are also used in social networks like LinkedIn, Facebook. For example, in Facebook, each person is represented with a vertex(or node). Each node is a structure and contains information like person id, name, gender, and locale.

Dr. Radi Jarrar – Birzeit University, 2021

13

REPRESENTATION OF GRAPHS

Graph Representation

- A graph is a data structure that consists of two main components: a finite set of vertices (i.e., nodes); and a finite set of ordered pairs called edges
- Graphs are most commonly represented using
	- Adjacency matrix
	- Adjacency list

Graph Representation

- Consider the following directed graph (the undirected graph is represented the same way)
- Suppose that we can number the vertices starting at 1. This graph has 7 vertices and 12 edges.
- One method is to represent a graph using a 2D array (adjacency matrix) $\left(3\right)$

Adjacency Matrix

- Adjacency Matrix: maintain a 2D-Boolean array of size $v * v$ where v is the number of vertices in the graph.
- Let the adjacency matrix adj, each edge is represented with the value true: $adj[v][w] = true$ for the edge (v, w)
- The boolean value can be replaced with a weight to represent a weighted graph
- For undirected graph, the adjacency matrix is symmetric

Dr. Radi Jarrar – Birzeit University, 2021 – 18
X

18

Adjacency Matrix

Adjacency Matrix

Advantages:

- Easy to implement and follow
- Removing and edge/checking if an edge exists in the graph takes $O(1)$

Disadvantages:

- Requires more space $O(n^2)$ if the graph has a few number of edges between vertices
- Adding a vertex will consume $O(n^2)$)
- Very slow to iterate over all edges

Adjacency List

- Is a better solution if the graph is sparse (not dense)
- For each vertex, we keep a list of all adjacent vertices
- The space requirement is then $O(|E| + |V|)$, which is linear in the size of the graph

Figure 9.1 A directed graph

Adjacency List

- Adjacency lists are the standard way to represent graphs
- Undirected graphs can be similarly represented; each edge (u, v) appears in two lists, so the space usage essentially are doubled
- A common requirement in graph algorithms is to find all vertices adjacent to some given vertex v, and this can be done in time proportional to the number of such vertices found, by a simple scan down the appropriate adjacency list

Adjacency List

Advantages:

- Fast to iterate over all edges
- Fast to add/delete a node (vertix)
- Fast to add a new edge $O(1)$
- Memory depends more on the number of edges (and less on the number of nodes), which saves more memory if the adjacency matrix is sparse

Disadvantages:

• Finding a specific edge between any two nodes is slightly slower than the matrix $O(k)$; where k is the number of neighbors nodes

Dr. Radi Jarrar – Birzeit University, 2021

23

SORTING GRAPHS

Topological Sort

- A linear order of the vertices in a directed graph
- A topological sort is an ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_j, then v_j appears after vi in the ordering
- An example is the a directed graph that represents the prerequisite of courses in the figure below

Figure 9.3 An acyclic graph representing course prerequisite structure

Topological Sort

- A directed edge (v, w) indicates that course v must be completed before course w may be attempted
- A topological ordering of these courses is any course sequence that does not violate the prerequisite requirement
- Topological ordering is not possible if the graph has a cycle, since for two vertices v and w on the cycle, v precedes w and w precedes v.
- The ordering is not necessarily unique; any legal ordering will work.
• In this graph, v_1 , v_2 , v_5 , v_4 , v_3 , v_7 , v_6
- and v₁, v₂, v₅, v₄, v₇, v₃, v₆ are both topological orderings.

Topological Sort

- Main idea: find a vertex with nothing going into it (i.e., Starting point). Write it down. Remove it and go through the other vertices and check for anyone with nothing coming into it. Repeat. Fopological Sort

• Main idea: find a vertex with nothing going into it (i.e., Stapoint). Write it down. Remove it and go through the other

and check for anyone with nothing coming into it. Repeat

• scan all vertices to • Main idea: find a vertex with nothing going into it (i.e., Starting

• Choose and South Cooler South Hothing coming into it. Repeat.

• Choose and vertices to find the starting point

• if edge (A, B) exists, A must prec
- scan all vertices to find the starting point
- * if edge (A, B) exists, A must precede B in the final order.
- Algorithm:
-
- Repeat until no nodes remain
	-
	-

Dr. Radi Jarrar – Birzeit University, 2021 – 27
– Example

- Indegree:
- 0:
- 1:
- 2:
- 3:

and 28 and 28 and 28 and 28 and 28

Dr. Radi Jarrar – Birzeit University, 2021 – 28
– Example

• Pick 1 and then update:

Dr. Radi Jarrar – Birzeit University, 2021 ²⁹
- Example

- Indegree:
- 0:
- 1:
- 2:
- 3:

Dr. Radi Jarrar – Birzeit University, 2021 – 30
– Example

• Pick 2 and then update:

- Indegree:
- 0:
- 1:
- 2:
- 3:

Dr. Radi Jarrar – Birzeit University, 2021
- Example Dr. Radi Jarrar - Birzeit University, 2021 33
Topological Sort - Example

- Indegree:
- 0:
- 1:
- 2:
- 3:

• Pick 4 and then update:

- Indegree:
- 0:
- 1:
- 2:
- 3:

, and the second contract of \sim

за на селото на сел
В 1930 година од селото на сел

Dr. Radi Jarrar – Birzeit University, 2021
- Example Dr. Radi Jarrar - Birzeit University, 2021 37
Topological Sort - Example $(1)(2)(5)(4)(3)$

- Indegree:
- 0:
- 1:
- 2:
- 3:

 38 . The second contract of the second contract \sim

Dr. Radi Jarrar – Birzeit University, 2021 – 38
– Example Dr. Radi Jarrar - Birzeit University, 2021 38
Topological Sort - Example $(1)(2)(5)(4)(3)$

• Pick 6 and then update:

7)

39

Dr. Radi Jarrar – Birzeit University, 2021
– Example Dr. Radi Jarrar - Birzeit University, 2021 39
Topological Sort - Example 1 $(2)(5)(4)(3)(6)$

- Indegree:
- 0:
- 1:
- 2:
- 3:

 40 and 40 and 40 and 40 and 40

7)

• Pick 7 and then update:

Topological Sort

- First we find the nodes with no predecessors.
- Then, using a queue, we can keep the nodes with no predecessors **EXECUTE ONE OF SET ON EXECUTE ON EXECUTE OF SET OF SOLUTE FIRST WE find the nodes with no predecessors.**
Then, using a queue, we can keep the nodes with no predecessors
and on each dequeue we can remove the edges from the other nodes.

Topological Sort

- Pseudocode:
- 1. Represent the graph with two lists on each vertex (incoming edges and outgoing edges) example and the graph with two lists on each ve
d outgoing edges)
ike an empty queue Q;
ike an empty topologically sorted list T;
sh all items with no predecessors in Q;
nile Q is not empty
Dequeue from Q into u;
Push u in
- 2. Make an empty queue Q;
- 3. Make an empty topologically sorted list T;
- 4. Push all items with no predecessors in Q;
- 5. While Q is not empty
	-
	- Push u in T;

Remove all outgoing edges from u;

6. Return T;

Topological Sort

- This approach will give us a running time complexity is $O(|V| + |E|)$.
- The problem is that we need additional space and an operational queue.

Topological Sort

- To find a topological ordering is first to find any vertex with no incoming edges. We can then print this vertex, and remove it, along with its edges, from the graph. Then we apply this same strategy to the rest of the graph. • To find a topological Sort
• To find a topological Sort
• To find a topological ordering is first to find any vertex with no incoming edges.
• We can then print this vertex, and remove it, along with its edges, from the

- (u, v). We compute the indegrees of all vertices in the graph. To find a topological ordering is first to find any vertex with no incoming edges.
We can then print this vertex, and remove it, along with its edges, from the **indeproperal property of the store for each vertex** is first to find any vertex with no incoming edges.
We can then print this vertex, and remove it, along with its edges, from the
graph. Then we apply this same strategy list, we can then apply the algorithm in Figure 9.5 to generate a topological ordering.

Dr. Radi Jarrar – Birzeit University, 2021
- Pseudocode

```
Dr. Radi Jarrar – Birzeit University, 2021<br>
Topological Sort – Pseudocode<br>
void topsort( Graph g)<br>
{
    void topsort( Graph g) 
    \{Dr. Radi Jarrar – Birzeit Un<br>
Ological Sort – Pseudococ<br>
topsort( Graph g)<br>
int counter;<br>
Vertex w, v;<br>
for( counter = 0; counter < NUM_VERTICES; counter<br>
{
         Vertex w, v;
         for( counter = 0; counter < NUM_VERTICES; counter++ )
         {
              v = find_new_vrtex_of_indegree_zero( );
              if(v == null){
                   printf("Graph has a cycle!\n");
                   break;
              }
              topNum[v] = counter;for each Vertex w adjacent to v
              indegree[w]--;
         }
    }
```
Topological Sort

Dr. Radi Jarrar – Birzeit University, 2021
Dr. Radi Jarrar – Birzeit University, 2021
The method findNewVertexOfIndegreeZero scans the array looking for a vertex
with indegree 0 that has not already been assigned a topolog Dr. Radi Jarrar – Birzeit University, 2021

2010 DOD DOD CONDUCT The method find New Vertex Of Indegree Zero scans the array looking for a vertex

with indegree 0 that has not already been assigned a topological number. It returns null if no such vertex exists; this indicates that the graph has a cycle. **Dr. Radi Jarrar – Birzeit University, 2021**
 oppological Sort

The method findNewVertexOfIndegreeZero scans the array looking for a vertex

with indegree 0 that has not already been assigned a topological number. It

r vertices, each call to it takes $O(|V|)$ time. Since there are |V| such calls, the running time of the algorithm is $O(|V|^2)$.

Dr. Radi Jarrar – Birzeit University, 2021
- Example Dr. Radi Jarrar - Birzeit University, 2021 47

Dr. Radi Jarrar – Birzeit University, 2021 – 1888
1988 – Example Dr. Radi Jarrar - Birzeit University, 2021 48

Dr. Radi Jarrar – Birzeit University, 2021 – 1914
1914 – Example Dr. Radi Jarrar - Birzeit University, 2021 49

Dr. Radi Jarrar – Birzeit University, 2021 50

SEARCH ALGORITHMS

Dr. Radi Jarrar – Birzeit University, 2021
gorithms Shortest-Path Algorithms

- Shortest-path algorithms aim at finding the shortest path between nodes in a graph
- The input is a weighted graph: associated with each edge $(\bm{\mathrm{v}}_{\rm i},\bm{\mathrm{v}}_{\rm j})$ is a cost $c_{i,j}$ to traverse the edge Shortest-Path Algorithms

shortest-path algorithms aim at finding the shortest path between

nodes in a graph

• The input is a weighted graph: associated with each edge (v_i, v_j) is a

cost $c_{i,j}$ to traverse the edge

•
- . The cost of a path $v_1v_2\ldots v_N$ is $\sum_{i=1}^{N-1}c_{i, i+1}$ $i=1$ $\mathsf{C}_{i,j+1}$
- This is referred to as the **weighted path length**
- namely, $N 1$

Dr. Radi Jarrar – Birzeit University, 2021
1987 - John Algorithms
1988 - John Algorithms Single-Source Shortest-Path Algorithms

- Given as input a weighted graph, $G = (V, E)$, and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G. • Given as input a weighted graph, $G = (V, E)$, and a distinguite vertex, s, find the shortest weighted path from s to every of vertex in G .

• For example, the shortest weighted

path from v_1 to v_6 has a cost of 6

- For example, the shortest weighted $\left(\begin{array}{cc} v_1 \\ v_2 \end{array} \right)$ path from v_1 to v_6 has a cost of 6 $\overline{a_4}$ and goes from v_1 to v_4 to v_7 to v_6
- between these vertices is 2

Dr. Radi Jarrar – Birzeit University, 2021
1988 - John Algorithms
1988 - Path Algorithms Single-Source Shortest-Path Algorithms <sup>Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• The shortest unweighted path

between these vertices is 2</sup>

- between these vertices is 2
- Generally, when it is not specified whether we are referring to a weighted represents the shortest of Path Algorith
The shortest unweighted path
between these vertices is 2
Generally, when it is not specified
whether we are referring to a weighted
or an unweighted path, the path is $\frac{2}{\sqrt{3}}$
 weighted if the graph is.

Dr. Radi Jarrar – Birzeit University, 2021
1987 - John Algorithms
1988 - John Algorithms Single-Source Shortest-Path Algorithms

- Having negative weights in the graph $\binom{v_1}{v_2}$ $\frac{2}{v_1}$ may cause some problems.
- \cdot The path from v_5 to v_4 has cost 1, $\,\,\sim\,$ but a shorter path exists by following the loop v_5 , v_4 , v_2 , v_5 , v_4 , which has cost −5

Thus, the shortest path between these two points is **undefined**.

Dr. Radi Jarrar – Birzeit University, 2021
1987 - John Algorithms
1988 - John Algorithms Single-Source Shortest-Path Algorithms

- Another example, the shortest path $\begin{matrix} v_1 \\ v_2 \end{matrix}$
- \cdot from v_1 to v_6 is undefined, because \diagup we can get into the same loop.
- This loop is known as a

Dr. Radi Jarrar – Birzeit University, 2021 – 56
10 Martest – Path Algorithms Single-Source Shortest-Path Algorithms

- Negative-cost edges are not necessarily bad, as the cycles are, but their presence seems to make the problem harder.
- For convenience, in the absence of a negative-cost cycle, the shortest path from s to s is zero.

Dr. Radi Jarrar – Birzeit University, 2021
1987 - John Algorithms
1988 - Path Algorithms Single-Source Shortest-Path Algorithms

- There are many examples where we might want to solve the shortest-path problem.
- If the vertices represent computers; the edges represent a link between computers; and the costs represent communication costs (phone bill per megabyte of data), delay costs (number of seconds required to transmit a megabyte), or a combination of these and other factors, then we can use the shortest-path algorithm to find

the cheapest way to send electronic news from one computer to a set of other computers.

Dr. Radi Jarrar – Birzeit University, 2021 – 58
10 Martest – Path Algorithms Single-Source Shortest-Path Algorithms

- Another example is to model an airplane (or transportation routes) by graphs and use a shortest path algorithm to compute the best route between two points.
- In this and many practical applications, we might want to find the shortest path from one vertex, s, to only one other vertex, t.
- Currently there are no algorithms in which finding the path from s to one vertex is any faster (by more than a constant factor) than finding the path from s to all vertices.
- We will solve 4 variations of this problem

 $\begin{minipage}{0.5\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{minipage} \hline \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn$ **Example 19 On Bindy American Strengther Control of the Shortest Paths**

• Given an unweighted graph, *G*. Using

some vertex, *s*, which is an input parameter,

we want to find the shortest path from *s* to some vertex, s, which is an input parameter, we want to find the shortest path from s to \mathbb{V}_6 all other vertices.

Figure 9.10 An unweighted directed graph G

- We are only interested in the number of edges contained on the path (because there are no weights).
- This is clearly a special case of the weighted shortest-path problem, since we could assign all edges a weight of 1.

$\begin{minipage}{0.5\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{minipage} \hline \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \begin{tabular}{l} \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn{2}{c}{\textwidth} \end{tabular} & \multicolumn$

- Suppose we are interested in the length $\bigcup_{\alpha=1}^{\alpha}$ of the shortest path not in the
- actual paths themselves. Keeping track of \mathbb{V}_6 the actual paths will turn out to be a $\frac{1}{\text{Figure 9.10}}$ An unweighted directed graph G matter of simple bookkeeping.

Dr. Radi Jarrar – Birzeit University, 2021
St-Path

61

Weighted Shortest-Path

Dr. Radi Jarrar – Birzeit University, 2021
arch (BFS) Breadth-First Search (BFS)

Dr. Radi Jarrar – Birzeit University, 2021 ⁶³
thm

63

Dijkstra's Algorithm

Dr. Radi Jarrar – Birzeit University, 2021 – 64
119 Tree Minimum Spanning Tree