
Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES
AND ALGORITHMS
Graphs

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Dr. Radi Jarrar – Birzeit University, 2021

Graphs

• Graphs are mathematical concepts that have
many applications in computer science.

• They have many applications in real-life applications such
as social networks, locations and routers in GPS, …

• A graph consists of a finite set of vertices (i.e., nodes) and
a set of edges connecting these vertices.

• Two vertices are called adjacent if they are connected to
each other by the same edge.

2

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs

•A graph G=(V, E), is a data structure that
consists of a finite set of vertices (or nodes) V,
and a set of edges, E.
•Each edge is a pair (v, w) where v and w are nodes from V.

3

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs

• If the pairs are ordered in the graph, then

the graph is called directed graph(diagraphs).

• Vertex w is adjacent to v if and only if (v, w) E. In an
undirected graph with edge (v, w), and hence (w, v), w is
adjacent to v and v is adjacent to w.

4

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• Order: is the number of vertices in a graph
• Size: is the number of edges in a graph
• Vertex degree: is the number of edges that are connected

to a vertex
• Isolated vertex: is the vertex that is not connected to any

other vertex in the graph
• Self-loop: an edge from a vertex to itself

5

A

B

F

C

ED

G

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• Directed graph: is a graph where all
edges have directions indicating what
is the start vertex and what is the end vertex

• Undirected graph: is a graph with edges that have no
directions

6

A

B

F

C

ED

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• Weighted graph: edges of a graph have weights

• Unweighted graph: edges of a graph have no weights

7

A

B

F

C

ED

0.5

1.5

0.71.4

0.1

0.2

1.0

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions
• A path in a graph is a sequence of vertices w1, w2, w3, …,wN,

such that (wi,wi+1) ∈ E for 1 ≤ i < N. The length of such a path is the number

of edges on the path, which is equal to N – 1.

• A path from a vertex to itself is allowed. If it does not contain edges, then the

path length is 0. If edge (v,v), then the path v (which is also referred to as a

loop).

• Cycle: a path w1, w2, w3, …,wN for which N > 2, the first N - 1 vertices are all

different, and w1 = wN. For example, the sequence D, E, A, B, C, D is a cycle in

the graph above.

8

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A simple path is a path such that all vertices are

distinct (except that the first and last might be the same).

• A cycle in a directed graph is a path of length at least one such that

w1 = wn.

• The path v, u, v is cyclic. However, it is not in undirected graph because

(v,u) and (u,v) is the same path.

9

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A directed graph is called acyclic if it has no cycles (DAG)

- Acyclic directed graph.

• An undirected graph is called connected if there is a path from every

node to every other node. A directed graph with this property is called

strongly connected.

10

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A complete graph is a graph in which there is an edge between every

pair of vertices.

BC

ED

11

Dr. Radi Jarrar – Birzeit University, 2021

Examples of using graphs

• Airport System

• Graphs are used to represent networks. The networks may include paths

in a city or telephone network or circuit network.

• Graphs are also used in social networks like LinkedIn, Facebook. For

example, in Facebook, each person is represented with a vertex(or node).

Each node is a structure and contains information like person id, name,

gender, and locale.

12

Dr. Radi Jarrar – Birzeit University, 2021

REPRESENTATION OF GRAPHS

13

Dr. Radi Jarrar – Birzeit University, 2021

Graph Representation

• A graph is a data structure that consists of two main components: a finite

set of vertices (i.e., nodes); and a finite set of ordered pairs called edges

• Graphs are most commonly represented using

• Adjacency matrix

• Adjacency list

14

Dr. Radi Jarrar – Birzeit University, 2021

Graph Representation

• Consider the following directed graph (the undirected graph is

represented the same way)

• Suppose that we can number the vertices starting at 1. This graph has 7

vertices and 12 edges.

• One method is to represent a graph

using a 2D array (adjacency matrix)

15

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix

• Adjacency Matrix: maintain a 2D-Boolean array of size v * v where v is

the number of vertices in the graph.

• Let the adjacency matrix adj, each edge is represented with the value

true: adj[v][w] = true for the edge (v, w)

• The boolean value can be replaced with a weight to represent a weighted

graph

• For undirected graph, the adjacency matrix is symmetric

16

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix 1 2 3 4 5 6 7

1 1 1 1

2 1 1

3 1

4 1 1 1

5 1 1

6

7 1

17

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix
Advantages:

• Easy to implement and follow
• Removing and edge/checking if an edge exists in the graph takes O(1)

Disadvantages:

• Requires more space O(n2) if the graph has a few number of edges
between vertices

• Adding a vertex will consume O(n2)
• Very slow to iterate over all edges

18

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix
Advantages:

• Easy to implement and follow
• Removing and edge/checking if an edge exists in the graph takes O(1)

Disadvantages:

• Requires more space O(n2) if the graph has a few number of edges
between vertices

• Adding a vertex will consume O(n2)
• Very slow to iterate over all edges

19

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency List
• Is a better solution if the graph is sparse (not dense)
• For each vertex, we keep a list of all adjacent vertices
• The space requirement is then O(|E| + |V|), which is linear in the size

of the graph

2

4

1

3

6

7

5

32 4

4 5

6

73 6

4 7

6

20

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency List

• Adjacency lists are the standard way to represent graphs

• Undirected graphs can be similarly represented; each edge (u, v)

appears in two lists, so the space usage essentially are doubled

• A common requirement in graph algorithms is to find all vertices

adjacent to some given vertex v, and this can be done in time

proportional to the number of such vertices found, by a simple scan

down the appropriate adjacency list

21

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency List
Advantages:

• Fast to iterate over all edges
• Fast to add/delete a node (vertix)
• Fast to add a new edge O(1)
• Memory depends more on the number of edges (and less on the

number of nodes), which saves more memory if the adjacency
matrix is sparse

Disadvantages:

• Finding a specific edge between any two nodes
is slightly slower than the matrix O(k); where k is the number of
neighbors nodes

22

Dr. Radi Jarrar – Birzeit University, 2021

SORTING GRAPHS

23

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort
• A linear order of the vertices in a directed graph
• A topological sort is an ordering of vertices in a directed acyclic graph, such

that if there is a path from vi to vj, then vj appears after vi in the ordering
• An example is the a directed graph that represents the prerequisite of courses

in the figure below

24

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• A directed edge (v, w) indicates that course v must be completed before course
w may be attempted

• A topological ordering of these courses is any course sequence that does not
violate the prerequisite requirement

• Topological ordering is not possible if the graph has a cycle, since for two
vertices v and w on the cycle, v precedes w and w precedes v.

• The ordering is not necessarily unique; any
legal ordering will work.

• In this graph, v1, v2, v5, v4, v3, v7, v6
and v1, v2, v5, v4, v7, v3, v6
are both topological orderings.

25

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• Main idea: find a vertex with nothing going into it (i.e., Starting
point). Write it down. Remove it and go through the other vertices
and check for anyone with nothing coming into it. Repeat.

• scan all vertices to find the starting point
• * if edge (A, B) exists, A must precede B in the final order.
• Algorithm:
• Assume indegree is sorted with each node
• Repeat until no nodes remain

• Choose a node of zero indegree and output it
• Remove the node and all its edges and update indegree

26

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

27

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 1 and then update:

28

5

76

21

43

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

29

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 2 and then update:

30

5

76

21

43

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

31

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 5 and then update:

32

5

76

21

43

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

33

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 4 and then update:

34

5

76

21 4

3

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

35

5

76

21 4

3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 3 and then update:

36

5

76

21 4

3

5

76

21 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

37

5

76

21 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 6 and then update:

38

5

7

621 4 3

5

76

21 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:
0:
1:
2:
3:

39

5

7

621 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 7 and then update:

40

5

7

621 4 3

5 7621 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• First we find the nodes with no predecessors.
• Then, using a queue, we can keep the nodes with no predecessors

and on each dequeue we can remove the edges from the node to all
other nodes.

41

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• Pseudocode:
1. Represent the graph with two lists on each vertex (incoming edges

and outgoing edges)
2. Make an empty queue Q;
3. Make an empty topologically sorted list T;
4. Push all items with no predecessors in Q;
5. While Q is not empty

Dequeue from Q into u;
Push u in T;
Remove all outgoing edges from u;

6. Return T;

42

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• This approach will give us a running time complexity is O(|V| + |E|).
• The problem is that we need additional space and an operational

queue.

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• To find a topological ordering is first to find any vertex with no incoming edges.

We can then print this vertex, and remove it, along with its edges, from the

graph. Then we apply this same strategy to the rest of the graph.

• To formalize this, we define the indegree of a vertex v as the number of edges

(u, v). We compute the indegrees of all vertices in the graph. Assuming that the

indegree for each vertex is stored and that the graph is read into an adjacency

list, we can then apply the algorithm in Figure 9.5 to generate a topological

ordering.

44

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Pseudocode
void topsort(Graph g)
{

int counter;
Vertex w, v;
for(counter = 0; counter < NUM_VERTICES; counter++)
{

v = find_new_vrtex_of_indegree_zero();
if(v == null){

printf(“Graph has a cycle!\n”);
break;

}
topNum[v] = counter;

for each Vertex w adjacent to v
indegree[w]--;

}
}

45

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

The method findNewVertexOfIndegreeZero scans the array looking for a vertex
with indegree 0 that has not already been assigned a topological number. It
returns null if no such vertex exists; this indicates that the graph has a cycle.
findNewVertexOfIndegreeZero is a simple sequential scan of the array of
vertices, each call to it takes O(|V|) time. Since there are |V| such calls, the
running time of the algorithm is O(|V|2).

46

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

47

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

48

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

49

Dr. Radi Jarrar – Birzeit University, 2021

SEARCH ALGORITHMS

50

Dr. Radi Jarrar – Birzeit University, 2021

Shortest-Path Algorithms
• Shortest-path algorithms aim at finding the shortest path between

nodes in a graph

• The input is a weighted graph: associated with each edge (vi, vj) is a
cost ci,j to traverse the edge

• The cost of a path v1v2 . . . vN is ci, i+1
ேିଵ
ୀଵ

• This is referred to as the weighted path length
• The unweighted path length is the number of edges on the path,

namely, N − 1

51

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms
• Given as input a weighted graph, G = (V, E), and a distinguished

vertex, s, find the shortest weighted path from s to every other
vertex in G.

• For example, the shortest weighted
path from v1 to v6 has a cost of 6
and goes from v1 to v4 to v7 to v6

• The shortest unweighted path
between these vertices is 2

52

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• The shortest unweighted path

between these vertices is 2

• Generally, when it is not specified

whether we are referring to a weighted

or an unweighted path, the path is

weighted if the graph is.

53

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms
• Having negative weights in the graph

may cause some problems.
• The path from v5 to v4 has cost 1,

but a shorter path exists by following
the loop v5, v4, v2, v5, v4, which
has cost −5

• This path is still not the shortest,
because we could stay in the loop
arbitrarily long.

• Thus, the shortest path between these two points is undefined.

54

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Another example, the shortest path

• from v1 to v6 is undefined, because

we can get into the same loop.

• This loop is known as a

• negative-cost cycle; when one is

present in the graph, the shortest paths

are not defined.

55

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Negative-cost edges are not necessarily bad, as the cycles are, but

their presence seems to make the problem harder.

• For convenience, in the absence of a negative-cost cycle, the

shortest path from s to s is zero.

56

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms
• There are many examples where we might want to solve the

shortest-path problem.
• If the vertices represent computers; the edges represent a link

between computers; and the costs represent communication costs
(phone bill per megabyte of data), delay costs (number of seconds
required to transmit a megabyte), or a combination of these and
other factors, then we can use the shortest-path algorithm to find
the cheapest way to send electronic
news from one computer to a set of
other computers.

57

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms
• Another example is to model an airplane (or transportation routes)

by graphs and use a shortest path algorithm to compute the best
route between two points.

• In this and many practical applications, we might want to find the
shortest path from one vertex, s, to only one other vertex, t.

• Currently there are no algorithms in which finding the path from s
to one vertex is any faster (by more than a constant factor) than
finding the path from s to all vertices.

• We will solve 4 variations of this problem

58

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Given an unweighted graph, G. Using
some vertex, s, which is an input parameter,
we want to find the shortest path from s to
all other vertices.

• We are only interested in the number of edges contained on the
path (because there are no weights).

• This is clearly a special case of the weighted shortest-path problem,
since we could assign all edges a weight of 1.

59

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Suppose we are interested in the length
of the shortest path not in the

• actual paths themselves. Keeping track of
the actual paths will turn out to be a
matter of simple bookkeeping.

60

Dr. Radi Jarrar – Birzeit University, 2021

Weighted Shortest-Path

61

Dr. Radi Jarrar – Birzeit University, 2021

Breadth-First Search (BFS)

62

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

63

Dr. Radi Jarrar – Birzeit University, 2021

Minimum Spanning Tree

64

