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Graphs

• Graphs are mathematical concepts that have 
many applications in computer science. 

• They have many applications in real-life applications such 
as social networks, locations and routers in GPS, …

• A graph consists of a finite set of vertices (i.e., nodes) and 
a set of edges connecting these vertices. 

• Two vertices are called adjacent if they are connected to 
each other by the same edge.
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Graphs

•A graph G=(V, E), is a data structure that 
consists of a finite set of vertices (or nodes) V, 
and a set of edges, E.
•Each edge is a pair (v, w) where v and w are nodes from V.  
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Graphs

• If the pairs are ordered in the graph, then 

the graph is called directed graph(diagraphs). 

• Vertex w is adjacent to v if and only if (v, w) E. In an 
undirected graph with edge (v, w), and hence (w, v), w is 
adjacent to v and v is adjacent to w.
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Graphs - Definitions

• Order: is the number of vertices in a graph
• Size: is the number of edges in a graph
• Vertex degree: is the number of edges that are connected 

to a vertex
• Isolated vertex: is the vertex that is not connected to any 

other vertex in the graph
• Self-loop: an edge from a vertex to itself
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Graphs - Definitions

• Directed graph: is a graph where all  
edges have directions indicating what 
is the start vertex and what is the end vertex

• Undirected graph: is a graph with edges that have no 
directions
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Graphs - Definitions

• Weighted graph: edges of a graph have weights

• Unweighted graph: edges of a graph have no weights
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Graphs - Definitions
• A path in a graph is a sequence of vertices w1, w2, w3, …,wN,  

such that (wi,wi+1) ∈ E for 1 ≤ i < N. The length of such a path is the number 

of edges on the path, which is equal to N – 1.

• A path from a vertex to itself is allowed. If it does not contain edges, then the 

path length is 0. If edge (v,v), then the path v (which is also referred to as a 

loop).

• Cycle: a path w1, w2, w3, …,wN for which N > 2, the first N - 1 vertices are all 

different, and w1 = wN. For example, the sequence D, E, A, B, C, D is a cycle in 

the graph above.
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Graphs - Definitions

• A simple path is a path such that all vertices are 

distinct (except that the first and last might be the same).

• A cycle in a directed graph is a path of length at least one such that 

w1 = wn.

• The path v, u, v is cyclic. However, it is not in undirected graph because 

(v,u) and (u,v) is the same path. 
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Graphs - Definitions

• A directed graph is called acyclic if it has no cycles (DAG) 

- Acyclic directed graph.

• An undirected graph is called connected if there is a path from every 

node to every other node. A directed graph with this property is called 

strongly connected. 
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Graphs - Definitions

• A complete graph is a graph in which there is an edge between every 

pair of vertices. 
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Examples of using graphs

• Airport System 

• Graphs are used to represent networks. The networks may include paths 

in a city or telephone network or circuit network. 

• Graphs are also used in social networks like LinkedIn, Facebook. For 

example, in Facebook, each person is represented with a vertex(or node). 

Each node is a structure and contains information like person id, name, 

gender, and locale. 
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REPRESENTATION OF GRAPHS
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Graph Representation

• A graph is a data structure that consists of two main components: a finite 

set of vertices (i.e., nodes); and a finite set of ordered pairs called edges

• Graphs are most commonly represented using

• Adjacency matrix

• Adjacency list
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Graph Representation

• Consider the following directed graph (the undirected graph is 

represented the same way)

• Suppose that we can number the vertices starting at 1. This graph has 7 

vertices and 12 edges.

• One method is to represent a graph

using a 2D array (adjacency matrix)
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Adjacency Matrix

• Adjacency Matrix: maintain a 2D-Boolean array of size v * v where v is 

the number of vertices in the graph. 

• Let the adjacency matrix adj, each edge is represented with the value 

true: adj[v][w] = true for the edge (v, w)

• The boolean value can be replaced with a weight to represent a weighted 

graph

• For undirected graph, the adjacency matrix is symmetric
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Adjacency Matrix 1 2 3 4 5 6 7

1 1 1 1

2 1 1

3 1

4 1 1 1

5 1 1

6

7 1 
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Adjacency Matrix
Advantages:

• Easy to implement and follow
• Removing and edge/checking if an edge exists in the graph takes O(1)

Disadvantages:

• Requires more space O(n2) if the graph has a few number of edges 
between vertices

• Adding a vertex will consume O(n2) 
• Very slow to iterate over all edges
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Adjacency Matrix
Advantages:

• Easy to implement and follow
• Removing and edge/checking if an edge exists in the graph takes O(1)

Disadvantages:

• Requires more space O(n2) if the graph has a few number of edges 
between vertices

• Adding a vertex will consume O(n2) 
• Very slow to iterate over all edges
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Adjacency List
• Is a better solution if the graph is sparse (not dense)
• For each vertex, we keep a list of all adjacent vertices
• The space requirement is then O(|E| + |V|), which is linear in the size 

of the graph
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Adjacency List

• Adjacency lists are the standard way to represent graphs

• Undirected graphs can be similarly represented; each edge (u, v) 

appears in two lists, so the space usage essentially are doubled

• A common requirement in graph algorithms is to find all vertices 

adjacent to some given vertex v, and this can be done in time 

proportional to the number of such vertices found, by a simple scan 

down the appropriate adjacency list
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Adjacency List
Advantages:

• Fast to iterate over all edges
• Fast to add/delete a node (vertix) 
• Fast to add a new edge O(1)
• Memory depends more on the number of edges (and less on the 

number of nodes), which saves more memory if the adjacency 
matrix is sparse

Disadvantages:

• Finding a specific edge between any two nodes
is slightly slower than the matrix O(k); where k is the number of 
neighbors nodes
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SORTING GRAPHS
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Topological Sort
• A linear order of the vertices in a directed graph
• A topological sort is an ordering of vertices in a directed acyclic graph, such 

that if there is a path from vi to vj, then vj appears after vi in the ordering
• An example is the a directed graph that represents the prerequisite of courses 

in the figure below
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Topological Sort

• A directed edge (v, w) indicates that course v must be completed before course 
w may be attempted

• A topological ordering of these courses is any course sequence that does not 
violate the prerequisite requirement

• Topological ordering is not possible if the graph has a cycle, since for two 
vertices v and w on the cycle, v precedes w and w precedes v.

• The ordering is not necessarily unique; any 
legal ordering will work. 

• In this graph, v1, v2, v5, v4, v3, v7, v6
and v1, v2, v5, v4, v7, v3, v6
are both topological orderings.
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Topological Sort

• Main idea: find a vertex with nothing going into it (i.e., Starting 
point). Write it down. Remove it and go through the other vertices 
and check for anyone with nothing coming into it. Repeat. 

• scan all vertices to find the starting point
• * if edge (A, B) exists, A must precede B in the final order.
• Algorithm: 
• Assume indegree is sorted with each node
• Repeat until no nodes remain

• Choose a node of zero indegree and output it
• Remove the node and all its edges and update indegree
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 1 and then update:
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 2 and then update:
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 5 and then update:
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 4 and then update:
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 3 and then update:
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 6 and then update:
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Topological Sort - Example

• Indegree:
0: 
1:
2:
3:
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Topological Sort - Example

• Pick 7 and then update:
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Topological Sort

• First we find the nodes with no predecessors. 
• Then, using a queue, we can keep the nodes with no predecessors 

and on each dequeue we can remove the edges from the node to all 
other nodes.

41



Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• Pseudocode:
1. Represent the graph with two lists on each vertex (incoming edges 

and outgoing edges) 
2. Make an empty queue Q; 
3. Make an empty topologically sorted list T; 
4. Push all items with no predecessors in Q; 
5. While Q is not empty    

Dequeue from Q into u;    
Push u in T;    
Remove all outgoing edges from u; 

6. Return T; 
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Topological Sort

• This approach will give us a running time complexity is O(|V| + |E|). 
• The problem is that we need additional space and an operational 

queue.
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Topological Sort

• To find a topological ordering is first to find any vertex with no incoming edges. 

We can then print this vertex, and remove it, along with its edges, from the 

graph. Then we apply this same strategy to the rest of the graph.

• To formalize this, we define the indegree of a vertex v as the number of edges 

(u, v). We compute the indegrees of all vertices in the graph. Assuming that the 

indegree for each vertex is stored and that the graph is read into an adjacency 

list, we can then apply the algorithm in Figure 9.5 to generate a topological 

ordering.
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Topological Sort - Pseudocode
void topsort( Graph g) 
{

int counter;
Vertex w, v;
for( counter = 0; counter < NUM_VERTICES; counter++ )
{

v = find_new_vrtex_of_indegree_zero( );
if( v == null ){

printf(“Graph has a cycle!\n”);
break;

}
topNum[v] = counter;

for each Vertex w adjacent to v
indegree[w]--;

}
}
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Topological Sort

The method findNewVertexOfIndegreeZero scans the array looking for a vertex 
with indegree 0 that has not already been assigned a topological number. It 
returns null if no such vertex exists; this indicates that the graph has a cycle.
findNewVertexOfIndegreeZero is a simple sequential scan of the array of 
vertices, each call to it takes O(|V|) time. Since there are |V| such calls, the 
running time of the algorithm is O(|V|2).
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Topological Sort - Example
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Topological Sort - Example
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Topological Sort - Example
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SEARCH ALGORITHMS 
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Shortest-Path Algorithms
• Shortest-path algorithms aim at finding the shortest path between 

nodes in a graph

• The input is a weighted graph: associated with each edge (vi, vj) is a 
cost ci,j to traverse the edge

• The cost of a path v1v2 . . . vN is ci, i+1
ேିଵ
ୀଵ

• This is referred to as the weighted path length
• The unweighted path length is the number of edges on the path, 

namely, N − 1
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Single-Source Shortest-Path Algorithms
• Given as input a weighted graph, G = (V, E), and a distinguished 

vertex, s, find the shortest weighted path from s to every other 
vertex in G.

• For example, the shortest weighted
path from v1 to v6 has a cost of 6
and goes from v1 to v4 to v7 to v6

• The shortest unweighted path 
between these vertices is 2
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Single-Source Shortest-Path Algorithms

• The shortest unweighted path 

between these vertices is 2

• Generally, when it is not specified 

whether we are referring to a weighted 

or an unweighted path, the path is 

weighted if the graph is.
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Single-Source Shortest-Path Algorithms
• Having negative weights in the graph

may cause some problems.
• The path from v5 to v4 has cost 1, 

but a shorter path exists by following 
the loop v5, v4, v2, v5, v4, which 
has cost −5

• This path is still not the shortest, 
because we could stay in the loop 
arbitrarily long.

• Thus, the shortest path between these two points is undefined.
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Single-Source Shortest-Path Algorithms

• Another example, the shortest path

• from v1 to v6 is undefined, because 

we can get into the same loop. 

• This loop is known as a

• negative-cost cycle; when one is 

present in the graph, the shortest paths 

are not defined.
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Single-Source Shortest-Path Algorithms

• Negative-cost edges are not necessarily bad, as the cycles are, but 

their presence seems to make the problem harder. 

• For convenience, in the absence of a negative-cost cycle, the 

shortest path from s to s is zero.
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Single-Source Shortest-Path Algorithms
• There are many examples where we might want to solve the 

shortest-path problem.
• If the vertices represent computers; the edges represent a link 

between computers; and the costs represent communication costs 
(phone bill per megabyte of data), delay costs (number of seconds 
required to transmit a megabyte), or a combination of these and 
other factors, then we can use the shortest-path algorithm to find 
the cheapest way to send electronic 
news from one computer to a set of 
other computers.
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Single-Source Shortest-Path Algorithms
• Another example is to model an airplane (or transportation routes) 

by graphs and use a shortest path algorithm to compute the best 
route between two points. 

• In this and many practical applications, we might want to find the 
shortest path from one vertex, s, to only one other vertex, t.

• Currently there are no algorithms in which finding the path from s 
to one vertex is any faster (by more than a constant factor) than 
finding the path from s to all vertices.

• We will solve 4 variations of this problem
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Unweighted Shortest Paths

• Given an unweighted graph, G. Using 
some vertex, s, which is an input parameter, 
we want to find the shortest path from s to 
all other vertices. 

• We are only interested in the number of edges contained on the 
path (because there are no weights).

• This is clearly a special case of the weighted shortest-path problem, 
since we could assign all edges a weight of 1.
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Unweighted Shortest Paths

• Suppose we are interested in the length
of the shortest path not in the

• actual paths themselves. Keeping track of 
the actual paths will turn out to be a 
matter of simple bookkeeping.

60



Dr. Radi Jarrar – Birzeit University, 2021

Weighted Shortest-Path
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Breadth-First Search (BFS)
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Dijkstra’s Algorithm
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Minimum Spanning Tree
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