
Dr. Radi Jarrar – Birzeit University, 2021

COMP2321—DATA STRUCTURES
Stacks

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Dr. Radi Jarrar – Birzeit University, 2021

Stacks

•A stacks is a list with the restriction that insertion and
deletion can be performed only at one position: the end of
the list (called TOP)

•Meaning it is a list with
only one end accessible

2

Dr. Radi Jarrar – Birzeit University, 2021

Stacks

•The fundamental operations of the stack are

•Push: equivalent to insert. Inserts element at top

•Pop: return and delete the most recently added element

•Top: examines (returns) the most recently added element

•Pop or top on empty stack is generally considered an error

•Stacks are known as LIFO (Last In First Out) lists

3

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

//struct node

typedef struct node* PtrToNode;

typedef PtrToNode Stack;

struct node{

int Element;

PtrToNode Next;

};

4

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

int IsEmpty(Stack S){

return S->Next == NULL;

}

5

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

Stack CreateStack(){

Stack S;

S = (struct node)malloc(sizeof(struct node));

if(S == NULL)

printf(“Out of space!”);

S->Next = NULL;

MakeEmpty(S);

return S;

}

6

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

void MakeEmpty(Stack S){

if(S == NULL)

printf(“Out of space!”);

else

while(!IsEmpty(S))

Pop(S);

}

7

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

void Pop(Stack S){

PtrToNode firstCell;

if(IsEmpty(S))

printf(“Empty stack”);

else{

firstCell = S->Next;

S->Next = S->Next->Next;

free(firstCell);

}

}

8

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

int Top(Stack S){

if(!IsEmpty(S))

return S->Next->Element;

printf(“Empty stack”);

return 0;

}

9

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

void Push(int X, Stack S){

PtrToNode temp;

temp = (Stack)malloc(sizeof(struct node));

if(temp == NULL)

printf(“Out of space!”);

else{

temp->Element = X;

temp->Next = S->Next;

S->Next = temp;

}

}

10

Dr. Radi Jarrar – Birzeit University, 2021

Implementation of Stacks

void DisposeStack(Stack S){

MakeEmpty(S);

free(S);

}

11

Dr. Radi Jarrar – Birzeit University, 2021

APPLICATIONS OF STACKS

12

Dr. Radi Jarrar – Birzeit University, 2021

Balancing Symbols

• Is used by compilers to check programs for syntax errors:
missing to close a brace

•Symbols balancing can be done through stacks

• every right brace, bracket, and parenthesis must correspond to its
left counterpart

•E.g., [()] is legal. [(]) is wrong.

13

Dr. Radi Jarrar – Birzeit University, 2021

Balancing Symbols (2)

•The algorithm:
• Make an empty stack

• Read characters till the end of the file

• If a character is an opening symbol, push it onto the stack

• If a character is closing:
• If the stack is empty, then error

• If the symbol popped is not corresponding to the opening, then error

• If corresponding, then continue

• If reached the end of the file and the stack isn’t empty, then
error

14

Dr. Radi Jarrar – Birzeit University, 2021

Balancing Symbols (3)

•E.g., check if the following is correct: [(< (]))]

• [([()])]

15

Dr. Radi Jarrar – Birzeit University, 2021

Postfix evaluation

•Stacks are also used to evaluate postfix expressions and to
convert infix into postfix

• Infix expression is on the form AOB, where O is operator (+, -, *, /, %)

• Postfix expression is on the form ABO

• Prefix expression is on the form OAB

•Postfix expressions are easy to compute using stacks. That is
the reason why we convert infix into postfix

16

Dr. Radi Jarrar – Birzeit University, 2021

Postfix evaluation (2)

•Algorithm

• Create an empty stack

• Read the expression: when a number is seen, push into the stack

• When operator is seen, the operator is applied to the two numbers
(symbols) that are popped from the stack

• The result is pushed back into the stack

17

Dr. Radi Jarrar – Birzeit University, 2021

Postfix evaluation (3)

•E.g., 1 2 + 4 × 5 + 3 -

18

Dr. Radi Jarrar – Birzeit University, 2021

Postfix evaluation (3)

•E.g., 10 2 8 × + 3 -

19

Dr. Radi Jarrar – Birzeit University, 2021

Postfix evaluation (5)

•E.g., 1 2 + 3 × 6 + 2 3 + /

20

Dr. Radi Jarrar – Birzeit University, 2021

Infix to Postfix conversion

•Algorithm

•When a number is read, place it into the output

•When an operation is read, push into a stack

•For operation O, if the top of the stack is lower priority,
then insert it. Else pop the top elements in the stack until
there is no operator having higher priority than O, then
push O into the stack

21

Dr. Radi Jarrar – Birzeit University, 2021

Infix to Postfix conversion (2)

•Notes

• High-precedence operation can be on top of low. The opposite is
not true

• Empty stack for operations

• Empty list for output

• When reaching an opening parenthesis, treat the stack as empty
& execute it first until you reach the closing parenthesis. Then
pop the remaining elements

22

Dr. Radi Jarrar – Birzeit University, 2021

Infix to Postfix conversion (3)

•E.g., A × B^C + D

23

Dr. Radi Jarrar – Birzeit University, 2021

Infix to Postfix conversion (4)

•E.g., (A + B) × (C + D)

24

Dr. Radi Jarrar – Birzeit University, 2021

Infix to Postfix conversion (5)

•E.g., A × (B + C × D) + E

25

Dr. Radi Jarrar – Birzeit University, 2021

Infix to Postfix conversion (6)

•E.g., A × (B + C / D)

26

Dr. Radi Jarrar – Birzeit University, 2021

Other Applications

• In browsers

• The back button saves all previously visited URLs in a stack

• Function call stack

• Used by the operating system to store the return addresses

27

