
I

Faculty of Engineering & Technology

Electrical & Computer Engineering Department

COMP2321

Research Report No.1

Red-Black Trees

Prepared by: Tareq Shannak

ID Number: 1181404

Instructor: Dr. Radi Jarrar

Section Number: 3

Date: 16/5/2020

II

Red-Black Tree’s Concept

 Red-Black tree is a binary search tree which has a balance property to reduce the time

complexity of reaching the last node in the tree. So we can ensure that the depth of the tree is

O(log n). Each node of this tree has an extra bit that determine the node’s color (Red or Black),

and these bits are used to know if the tree is balanced or not yet.

Red-Black Tree’s Properties

 A node is either red or black, and the root and leaves (NIL) are black.

 There are no two adjacent red nodes. So the parent and children of a red node are black.

 All paths from a node to its NIL descendants contain the same number of black nodes.

When it is best to use it

 Red-Black tree is more efficient in the re-balancing stage; because the rotation in this

tree is an O(1) operation, hence the tree offers faster insertion and deletion compared to AVL

tree at the cost of slightly lower lookup, so if your program have to do many insertions or

deletions with less searching, then Red-Black trees should be preferred.

Rotations on Red-Black Trees

 Left Rotate: As shown in the picture, the

parent node will become the left child of its

right child, and the left child (and its

followers if exists) of the right child will

become the right child of the ex-parent.

 Right Rotate: the parent will become the

right child of its left child taking the right

child on its left child (if exists).

III

Red-Black Tree’s Operations

Searching

 Finding an insertion point in the bottom of the tree or a node to delete is similar to the

Finding operation in the simple Binary Search Tree (BST), hence its time complexity is O(log n).

Insertion

 First, a node will be created with the new data (key) and its color is red; because the

leaves (NIL) are black and the red node’s children are always black, this node will be put in the

correct place according to its key. After that, we need to fix violation by recoloring and rotating

the nodes.

When a node is inserted it will produce one of these shapes:

Triangle shape: When Z’s parent is the left child

of Z’s grandparent and Z is parent’s right child,

or vice versa as shown in the image on the right.

Line shape: When Z node is the left child of its

grandparent’s left child, or Z is the right child of

its grandparent’s right child.

There are four cases when a node Z is inserted:

1- The node is the root

Just make its color black because it is the root.

IV

2- The node’s uncle is red

The node’s uncle means the second child of node’s grandparent. As shown in the image

below, the solution is recoloring all nodes except the new node. Pay attention that B isn’t

the root, it’s just a sub-tree.

3- The node’s uncle is black and the shape is triangle.

Z’s parent will rotate to the opposite direction of Z, so Z will become the parent of A as

shown in the image below. The balance operation hasn’t finished yet, hence this tree will go

to the next case.

4- The node’s uncle is black and the shape is line.

First, the grandparent will rotate on the opposite direction of Z and its parent, after that

the tree will be recolored correctly.

V

Deletion

 In insertion, we check color of node’s uncle to decide which case to execute, but in

deletion we check color of node’s sibling to decide the case. First, we delete the node to be

deleted from the tree as any simple Binary Search Tree (BST). To ensure that the heights of

black nodes in every possible path are equal, we need to fix the tree. When a black node

become deleted and replaced by another black node it called double black node. Let V be the

node to be deleted and U is the child that replaces V, we can handle cases as below. Pay

attention that may V is a leaf node, U is NULL and its color is black and s is V’s sibling.

1- Either U or V is red

Just make sure that color of U is black.

2- Both U and V are black

In this case, U will become a double black node after delete operation. If U is root, make it

a single black node, otherwise look to these cases below.

A. S is black and its both children are black.

Recoloring the nodes and make S’s parent a double black if it’s black, if it is red

make the parent single black.

B. S is black and at least one of S’s children is red

Let R be the red child of S, this goes to four subcases to decide the rotations:

i. Right-Right Case: S is a right child and R is a right child or S’s

children are both red when S is a right child.

ii. Right-Left Case: S is a right child and R is a left child.

VI

iii. Left-Left Case: S is a left child and R is a left child or S’s children

are both red when S is a left child. This is the opposite of Right-

Right Case.

iv. Left-Right Case: S is a left child and R is a right child. This is the

opposite of Right-Left Case.

C. S is red

This case make a rotation to move the old S and its parent (and recolor them), so

the new S will be black, hence it will lead us to one of the previous cases (A, B). It

can be divided as two subcases:

i. Right Case: S is a right child. The procedure shown in the image below.

ii. Left Case: It’s the opposite for the subcase above when S is a left child.

Time and Space Complexity

 Average Worst Case

Space O(n) O(n)

Search O(log n) O(log n)

Insert O(log n) O(log n)

Delete O(log n) O(log n)

VII

Example on Red-Black Tree’s Operation

VIII

IX

References

 Data Structure Lecture Notes

 Dr. Radi Jarrar Slides

 https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

 https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/?ref=lbp

 https://stackoverflow.com/questions/9469858/how-to-easily-remember-red-black-

tree-insert-and-delete

 https://www.youtube.com/watch?v=qvZGUFHWChY&list=PL9xmBV_5YoZNqDI8qfOZgzb

qahCUmUEin

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/?ref=lbp
https://stackoverflow.com/questions/9469858/how-to-easily-remember-red-black-tree-insert-and-delete
https://stackoverflow.com/questions/9469858/how-to-easily-remember-red-black-tree-insert-and-delete
https://www.youtube.com/watch?v=qvZGUFHWChY&list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin
https://www.youtube.com/watch?v=qvZGUFHWChY&list=PL9xmBV_5YoZNqDI8qfOZgzbqahCUmUEin

