
1

Data Structures

COMP2321

Research Paper No. 2

Sorting Algorithms Report

Instructor: Dr. Radi Jarrar

Name: Anas Nimer

 ID: 1180180

Section: 4

2

Contents:
1) Counting sort: .. 3

2) Comb sort: ... 5

3) Gnome sort: ... 7

Summary: ... 9

References: ... 10

3

1) Counting sort:
Counting sort is an efficient algorithm for sorting an array of elements that each

have a nonnegative integer key, for example, an array, sometimes called a list, of

positive integers could have keys that are just the value of the integer as the key,

or a list of words could have keys assigned to them by some scheme mapping the

alphabet to integers (to sort in alphabetical order, for instance). Unlike other

sorting algorithms, such as merge sort, counting sort is an integer-

sorting algorithm, not a comparison based algorithm. While any comparison

based sorting algorithm requires O(nlogn) comparisons, counting sort has a

running time of when the length of the input list is not much smaller than the

largest key value , in the list. Counting sort can be used as a subroutine for other,

more powerful, sorting algorithms such as radix sort.

• Algorithm:

Begin

 max = get maximum element from array.

 define count array of size [max+1]

 for i := 0 to max do

 count[i] = 0 //set all elements in the count array to 0

 done

 for i := 1 to size do

 increase count of each number which have found in the array

 done

 for i := 1 to max do

 count[i] = count[i] + count[i+1] //find cumulative frequency

 done

 for i := size to 1 decrease by 1 do

https://brilliant.org/wiki/sorting-algorithms/
https://brilliant.org/wiki/arrays/
https://brilliant.org/wiki/merge/
https://brilliant.org/wiki/radix-sort/

4

 store the number in the output array

 decrease count[i]

 done

 return the output array

End

• Mechanism that Comb sort works :

Find out the maximum of the element of the specified array and configure a

set of maximum length + 1 for all elements 0. This array is used to store the

number of elements in the array. Then store the number of each element in

their index in the count array and store the cumulative sum of the elements of

the count array. It helps put items in the correct index for the sorted array.

Then Find the index of each element of the original array in the count array.

and finally placing each element at its correct position, decrease its count by

one.

• Properties:

Worst case time complexity o(n+k)=o(n)

Average case time

complexity

o(n+k)=o(n)

Best case time complexity o(n+k)=o(n)

Space complexity o(n+k)=o(n)

Stability Yes , it is Stabil

 In Place Yes, it is in Place

❖ n is the number of values to be sorted, k is the largest number of

the numbers.

❖ This sorting technique is effective when the difference between

different keys are not so big, otherwise, it can increase the

space complexity.

5

2) Comb sort:

Comb Sort is mainly an improvement over Bubble Sort. Bubble sort

always compares adjacent values. So all inversions are removed one

by one. Comb Sort improves on Bubble Sort by using gap of size

more than 1. The gap starts with a large value and shrinks by a factor

of 1.3 in every iteration until it reaches the value 1. Thus, Comb Sort

removes more than one inversion counts with one swap and performs

better than Bubble Sort.

The shrink factor has been empirically found to be 1.3 (by testing

Comb sort on over 200,000 random lists).

• Algorithm:

https://www.geeksforgeeks.org/counting-inversions/
https://www.geeksforgeeks.org/counting-inversions/

6

• Mechanism that Comb sort works :

Set the gap initially to the length of the array wanted to sort , Then Calculate

the new gap by dividing gap by 1.3 , after that Compare array[i] with

array[i + gap] , if the first is element is greater than the second then swap

them and set the swap flag to 1, repeating The previous two steps until gap=1

and swap Flag=0.

• Properties:

Worst case time complexity o(n2)

Average case time

complexity

o(n2/2p)

Best case time complexity o(n)

Space complexity o(1)/ constant

Stability NO, it isn’t Stabil

 In Place NO, it is not in Place

❖ n is the number of values to be sorted, p is the number of

increments.

❖ This sorting technique is effective when the values are sorted.

❖ This sorting technique is defective when the values are arranged

in reverse order and when the values not sorted.

7

Gnome sort:

Gnome Sort also called Stupid sort is based on the concept of a Garden

Gnome sorting his flowerpots. A garden gnome sorts the flowerpots by

the following method- Put items in order by comparing the current item

with the previous item. If they are in order, move to the next item (or

stop if the end is reached). If they are out of order, swap them and move

to the previous item. If there is no previous item, move to the next item.

• Algorithm:

• procedure gnomeSort(a[])

• pos := 1

• while pos < length(a)

• if (a[pos] >= a[pos-1])

• pos := pos + 1

• else

• swap a[pos] and a[pos-1]

• if (pos > 1)

• pos := pos - 1

• end if

• end if

• end while

• end procedure

• Mechanism that Comb sort works :

He looks at the flowerpot next to him and the previous one; if they

are in the right order he steps one pot forward, otherwise he swaps

them and steps one pot backwards.

If there is no previous pot (he is at the starting of the pot line), he

steps forwards; if there is no pot next to him (he is at the end of

the pot line), he is done.

8

• Properties:

Worst case time complexity o(n2)

Average case time

complexity

o(n2)

Best case time complexity o(n)

Space complexity o(1)/ constant

Stability Yes , it is Stabil

 In Place NO, it is not in Place

❖ n is the number of values to be sorted.

❖ This sorting technique is effective when the values are sorted.

❖ This sorting technique is defective when the values are arranged

in reverse order and when the values not sorted.

9

Summary:

Note: From the above table we can see the counting sort is the best sorting

algorithm between them. However, it cannot be used for float or negative

numbers.

Gnome sort is also efficient, since it does not use any extra space, and it is

fast if the data is nearly sorted.

Name Worst time

complexity

Average time

complexity

Best time

complexity

Space

complexity

Stable

Counting sort

O(n) O(n) O(n) O(n Yes

Comb sort O(n2) O(n2/2p) O(n) O(1)/constant NO

Gnome sort O(n2) O(n2) O(n) O(1)/constant Yes

10

References:

https://brilliant.org/wiki/counting-sort/

https://www.tutorialspoint.com/Counting-Sort

https://www.geeksforgeeks.org/comb-sort/

https://www.geeksforgeeks.org/gnome-sort-a-stupid-one/

https://brilliant.org/wiki/counting-sort/
https://www.tutorialspoint.com/Counting-Sort
https://www.geeksforgeeks.org/comb-sort/
https://www.geeksforgeeks.org/gnome-sort-a-stupid-one/

