
I

Faculty of Engineering & Technology

Electrical & Computer Engineering Department

COMP2321

Research Report 2

Sorting Algorithms

Prepared by: Tareq Shannak

ID Number: 1181404

Instructor: Dr. Radi Jarar

Section Number: 3

Date: 17/5/2020

II

Cycle Sort

 Algorithm
This type of sort can give us a sorted list of distinct elements. For the first

element in the list, count how many elements are less than this element, and this

element must be in location equals to counter, do nothing if it is equals and check the

next element, otherwise, replace the element to the suitable location, and check the

element that we took its location as we do for the first one. The image below explains

simply shifting the first element ‘b’.

Another obvious example, let the list be {10, 5, 2, 3} , for the first element 10

there are 3 elements less than it, so we will move it to location 3 instead of element 3,

{10, 5, 2, 10}. After that we will check element 3, it has 1 element less than it so it will

moved to location 1, {10, 3, 2, 10} and element 5 will be checked. Element 5 has 2

elements less than it so its new location is 2, {10, 3, 5, 10} and element 2 will be

checked. Element 2 will be in the first location because it is the least number. Finally,

the list becomes sorted {2, 3, 5, 10}, but the code to be implemented will continue to

check all numbers.

Time and Space Complexity

 Time Auxiliary Space

Best Case O(n2) O(1)

Average Case O(n2) O(1)

Worst Case O(n2) O(1)

When the list has been already sorted, the time will be taken is on checking

every element if is it in the right location or not, otherwise time will consume is on

checking and replacing if the element is not in the right location.

III

Cocktail Sort

Algorithm
The algorithm extends bubble sort operating in two directions, so each iteration

of the algorithm is broken up into 2 stages:

First stage

Through the array, each two adjacent elements will be compared, if the left

element is greater than the right one, they will be swapped. At the end, the greatest

element will be in the las location in the array.

Second Stage

It will start in opposite direction through the array starting from the element

recently stored, also it will compare each adjacent elements and swap if requires.

Let the array be {3, 4, 2, 1} as an example. First, we will begin with the first stage

by comparing the first two elements {3, 4, 2, 1}, element 3 is less than element 4 hence

no swapping, {3, 4, 2, 1} element 4 is greater than element 2 hence swap {3, 2, 4, 1},

{3, 2, 4, 1} element 4 is greater than element 1 hence swap {3, 2, 1, 4}, we finished the

first stage. In second stage, {3, 2, 1, 4} element 2 is greater than element 1 hence swap

{3, 1, 2, 4}, {3, 1, 2, 4} element 3 is greater than element 1 hence swap {1, 3, 2, 4}, after

that we put the greatest element in last location and the smallest element in first

location. Repeating first stage, {1, 3, 2, 4} element 3 is greater than element 2 hence

swap {1, 2, 3, 4}. So the final array is ascending sort. In this case, this sort consumes

three traversals, but in bubble sort it will consume four traversals.

 Time and Space Complexity

 Time Auxiliary Space

Best Case O(n) O(1)

Average Case O(n2) O(1)

Worst Case O(n2) O(1)

If the array is already sorted ascending, time complexity will be O(n). It will take

more time if the array has more unsorting elements; so the descending sorted array is

the worst case.

IV

Tree Sort

 Algorithm
This sort is based on Binary Search Tree (BST), we create a BST tree by inserting

the elements of the array to be sorted into the tree. In any node in the tree, its left

subtree’s elements are less than the right ones, so when we do in-order traversal to

insert back tree’s elements into the array, the elements in the array must be sorted.

Example

 Time and Space Complexity

 Time Auxiliary Space

Best Case O(n log n) O(n)

Average Case O(n log n) O(n)

Worst Case O(n2) O(n)

 Time consumes O(log n) to add one element into the tree and O(n log n) to add n

elements. If the tree is self-balancing binary search tree, then its worst case in time

complexity will be O(n log n). If the array is already nearly or completely sorted

(descending or ascending) it makes the worst case.

V

Summary

 According to the time complexity, we can see that the Tree sort is the fastest when it is

balanced, and the unbalanced tree has time complexity slower than the balanced one. Slower

than that, we can say that Cocktail sort is faster than Cycle sort because it has time complexity

in the best case O(n), but Cycle sort is O(n2), so we can consider Cycle sort as the slowest.

 According to the space complexity, Tree sort has the greatest auxiliary space because it

stores the elements into a temporary tree to sort them, so the extra space depends on the

number of elements. On the other hand, Both Cycle sort and Cocktail sort has the least space

because they need a certain temporary space to make the sorting without depending on

number of elements.

 Tree sort can be used when we need a fast sort without looking to memory storing or

with little elements, but if we need to keep the memory safe with neglecting the speed, we can

use either Cocktail sort or Cycle sort.

References

 COMP2321 Lecture Notes

 Dr. Radi Jarrar Slides

 https://www.geeksforgeeks.org/cycle-sort/

 https://en.wikipedia.org/wiki/Cycle_sort

 https://www.geeksforgeeks.org/cocktail-sort/

 https://en.wikipedia.org/wiki/Cocktail_shaker_sort

 https://www.geeksforgeeks.org/tree-sort/

 https://en.wikipedia.org/wiki/Tree_sort

 https://www.youtube.com/watch?v=n2MLjGeK7qA

https://www.geeksforgeeks.org/cycle-sort/
https://en.wikipedia.org/wiki/Cycle_sort
https://www.geeksforgeeks.org/cocktail-sort/
https://en.wikipedia.org/wiki/Cocktail_shaker_sort
https://www.geeksforgeeks.org/tree-sort/
https://en.wikipedia.org/wiki/Tree_sort
https://www.youtube.com/watch?v=n2MLjGeK7qA

