
1

Course name: Data structure

Course code: COMP2421

Research Report (1)

{Sorting Algorithms}
__

Instructor: Dr. Ahmad Abusnaina

Name: Dana Imam

Student ID: 1200121

Section number: 2

2

Contents:
• Counting Sort ---3-4

• Cocktail Sort ---5-6

• Bucket Sort --7-9

• Summary Page --10
• References --11

3

1) Counting Sort:
Counting sort method sorts the elements of an array according to its key values
without comparing between them, unlike other sort methods like Merge sort or
Quick sort. According to the name of this sort method, it sorts by counting how
many times each key value occurs in the array, and using those counts to
compute an item's index in the final, sorted array. The key values in the array
often are nonnegative integers, but this sorting method can be extended to work
for negative inputs also.

• The Algorithm of Counting Sort

• How does it work?
Firstly, the maximum element is found in the given array. This maximum
element + 1 will be the length of a new counting array initialized with zeros for
each index. The counting array is used to store the number of occurrences of
each key value in the given array; by adding one at their respective index in
the counting array. After that, the counting array is modified by cumulative
count (adding the previous count). Then, an output array with the same length
of input array is created, and these cumulative counts in the counting array
indicate to the index of each input; by decreasing the count by one, and the

countingSort(array, n) // 'n' is the size of array
 max = find maximum element in the given array

create count array with size maximum + 1
Initialize count array with all 0's
for i = 0 to n
find the count of every unique element and

 store that count at ith position in the count array
for j = 1 to max
Now, find the cumulative sum and store it in count array
for i = n to 1
Restore the array elements
Decrease the count of every restored element by 1
end countingSort

4

result will be the place for the key
value from the original array into
the output array, as shown in this
figure.

• Properties:

• Time complexity:
Worst case Average case Best case

O(n) O(n) O(n)

• Other properties:

Stability Space complexity Space

yes O(n) Out-place

the complexity is the same because no matter how the elements are placed in the
array, the algorithm goes through n+k ->(n) times.

-The weakness of counting sort:

The inputs in counting sort are restricted. Counting sort only works when the
range of potential items in the input is known ahead of time.

If the range of potential values is big, then counting sort requires a lot of
space, so there is a space cost.

5

2) Cocktail Sort:
Cocktail sort is also called as bi-directional bubble sort. It depends on comparing
between each two adjacent elements in the array, like quick, bubble or selection
sort, by traversing through a given array in both directions alternatively.
Therefore, it does not only guarantee to move the largest elements in its correct
place (at the end of the array) like bubble sort, but also guarantees to put the
smallest element in its correct place in the array (at the beginning).

• The Algorithm of Cocktail Sort

• How does it work?
Cocktail sort uses two loops: the first one is from left to right exactly like the
bubble sort; it compares each two adjacent elements and if the one on the left is
greater than the one on the right, they will be swapped, and so on until the end
of the array. Hence, the largest element will be at the end of the array by the end
of this loop. For the second loop, it follows as the same mechanism as the first
loop but reversely; starting from the item just before the most recently sorted

cocktailSort(a, n) // 'a' is the given array, 'n'

is the size of given array

swapped = true

beg = 0

end = n-1

while(swapped)

swapped = false

for i in range from beg to end

if (a[i] > a[i + 1])

swap(a[i], a[i+1])

swapped = true

End if

End for loop

if(!swapped)

break

end if

swapped = false

end = end - 1

for i in range from end - 1 to beg

if (a[i] > a[i + 1])

swap(a[i], a[i+1])

swapped = true

End if

End for loop

6

item, and traversing backward the array with comparing between the adjacent
elements and swapping if needed.

• Properties:

• Time complexity:

Worst case Average case Best case

O(n2) O(n2) O(n)

• Other properties:

Stability Space complexity Space

yes O(1) in-place

o Best Case Complexity - It occurs when there is no sorting required, i.e., the

array is already sorted. The best-case time complexity of cocktail sort
is O(n).

o Average Case Complexity - It occurs when the array elements are in
jumbled order that is not properly ascending and not properly descending.
The average case time complexity of cocktail sort is O(n2).

o Worst Case Complexity - It occurs when the array elements are required to
be sorted in reverse order. That means suppose you have to sort the array
elements in ascending order, but its elements are in descending order. The
worst-case time complexity of cocktail sort is O(n2).

o

-The weakness of Cocktail Sort:

Although Cocktail Sort is very intuitive and easy to understand and
implement, it is highly impractical for solving most problems.
It has an average and worst-case running time of O(n2), and can only run on
its best-case running time of O(n) when the array is already sorted.

7

3) Bucket Sort:
Bucket sort is a sorting algorithm which depends on dividing a given unsorted
array elements into groups of specific ranges called buckets. This sorting
algorithm depends on other sorting algorithms in its sorting process; because
when elements of the original array are moved in their suitable buckets, each
bucket needs to be sorted using another sorting algorithm, commonly the
insertion sort. After that, these elements are gathered again from the sorted
buckets and being concatenated into one sorted array. Bucket sort is useful when
input is uniformly distributed over a range. For example: a range from (0.0) to
(1.0).

• The Algorithm of Bucket Sort

• How does it work?
First, an array of size n is being created, which n is the number of the elements in
the given array. Each slot of this new array is considered to be a bucket of a

bucketSort(a[], n)

Create 'n' empty buckets

Do for each array element a[i]

Put array elements into bucket
s, i.e. insert a[i] into bucket[n*a

[i]]

Sort the elements of individual
 buckets by using the insertion

 sort.

At last, gather
the sorted buckets.

End bucketSort

 Bucket Sort(A[])
 1. Let B[0....n-1] be a new array
 2. n=length[A]
 3. for i=0 to n-1
 4. make B[i] an empty list
 5. for i=1 to n
 6. do insert A[i] into list B[n a[i]]
 7. for i=0 to n
 8. do sort list B[i] with insertion-sort

9. Concatenate lists B[0], B[1],........, B[n-1] together in order
End

8

specific range, for example, if the given array contains numbers with range
between 0.0 and 1.0, and this array contains ten element , so n will be ten and
each slot indicates to the range of these elements if they are multiplied by n,
another example: if the given array contains numbers in range(0 – 23) , we can
create five buckets such that first bucket has a range of (0 - 5), and the second
one has the range (5-10) and so on. After that, the elements from the original
array are being divided into these buckets according to their ranges. The next
step is to sort each bucket alone using another method of sorting. And finally,
these sorted buckets are gathered, starting from the smallest range to the largest
one, and concatenated into one new sorted array with the same size of the
original one.

• Properties:

• Time complexity:
Worst case Average case Best case

O(n2) O(n) O(n)

• Other properties:

Stability Space complexity Space

yes O(n) out-place

• Best Case Complexity - It occurs when there is no sorting required, i.e.
the array is already sorted. In Bucket sort, best case occurs when the
elements are uniformly distributed in the buckets. The complexity will be
better if the elements are already sorted in the buckets.

• Average Case Complexity - It occurs when the array elements are in jumbled
order that is not properly ascending and not properly descending.

• Worst case Complexity when there are elements of close range in the
array, they are likely to be placed in the same bucket. This may result in
some buckets having a greater number of elements than others, and It
makes the complexity depend on the sorting algorithm used to sort the
elements of the bucket.

9

The complexity becomes even worse when the elements are in reverse
order. If insertion sort is used to sort elements of the bucket, then time
complexity will be O(n2).

-The weakness of Bucket Sort:

It is not useful if we have a large array because it increases the cost.

10

Summary:

Property Sort method

Counting sort Cocktail sort Bucket sort

Worst Case O(n) O(n2) O(n2)

Average Case O(n) O(n2) O(n)

Best Case O(n) O(n) O(n)

Stability yes yes yes

Space Complexity O(n) O(1) O(n)

Space Out-place In-place Out-place

-According to the time complexity, it is noticeable that counting sort is better than
the others in this report in general; because in its all cases, the time complexity is
Big O of n, while the others might take longer time in worst and average cases.

-According to the space and space complexity, Cocktail sort is the best, because it
does not use external memory to sort the given array.

11

References:

 https://www.javatpoint.com/counting-sort
 https://www.geeksforgeeks.org/counting-sort/.
 https://www.programiz.com/dsa/counting-sort
 https://www.geeksforgeeks.org/cocktail-sort/
 https://www.javatpoint.com/cocktail-sort
 https://www.javatpoint.com/bucket-sort
 https://www.programiz.com/dsa/bucket-sort

https://www.javatpoint.com/counting-sort
https://www.geeksforgeeks.org/counting-sort/#:%7E:text=Counting%20sort%20is%20a%20sorting,object%20in%20the%20output%20sequence.
https://www.geeksforgeeks.org/counting-sort/#:%7E:text=Counting%20sort%20is%20a%20sorting,object%20in%20the%20output%20sequence.
https://www.programiz.com/dsa/counting-sort
https://www.geeksforgeeks.org/cocktail-sort/
https://www.javatpoint.com/cocktail-sort
https://www.javatpoint.com/bucket-sort
https://www.programiz.com/dsa/bucket-sort

