
Chapter 2: Algorithm Analysis

2.1 2/NO, 37, √MMNOO, NO, NOlog log NO, NOlog NO, NOlog (NO2), NOlog2NO, NO1.5, NO2, NO2log NO, NO3, 2NO/ 2,
2NO. NOlog NO and NOlog (NO2) grow at the same rate.

2.2 (a) True.

(b) False. A counterexample is TO1(NO) = 2NO, TO2(NO) = NO, and PfOO(NO) = NO.
(c) False. A counterexample is TO1(NO) = NO2, TO2(NO) = NO, and PfOO(NO) = NO2.

(d) False. The same counterexample as in part (c) applies.

2.3 We claim that NOlog NO is the slower growing function. To see this, suppose otherwise.
Then, NOε/ √MMMMMlog NOO would grow slower than log NO. Taking logs of both sides, we find that,
under this assumption, ε/ √MMMMMMlog NOOlog NO grows slower than log log NO. But the first expres-
sion simplifies to ε√MMMMMMlog NOO. If LO = log NO, then we are claiming that ε√MMLOO grows slower than
log LO, or equivalently, that ε2LO grows slower than log2 LO. But we know that
log2 LO =  ο (LO), so the original assumption is false, proving the claim.

2.4 Clearly, logkO1NO = ο(logkO2NO) if kO1 < kO2, so we need to worry only about positive integers.
The claim is clearly true for kO = 0 and kO = 1. Suppose it is true for kO < iO. Then, by
L’Hospital’s rule,
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N
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The second limit is zero by the inductive hypothesis, proving the claim.

2.5 Let PfOO(NO) = 1 when NO is even, and NO when NO is odd. Likewise, let gO(NO) = 1 when NO is
odd, and NO when NO is even. Then the ratio PfOO(NO) / gO(NO) oscillates between 0 and ∞.

2.6 For all these programs, the following analysis will agree with a simulation:

(I) The running time is OO(NO).
(II) The running time is OO(NO2).

(III) The running time is OO(NO3).

(IV) The running time is OO(NO2).

(V) PjO can be as large as iO2, which could be as large as NO2. kO can be as large as PjO, which is
NO2. The running time is thus proportional to NO.NO2.NO2, which is OO(NO5).

(VI) The ifO statement is executed at most NO3 times, by previous arguments, but it is true
only OO(NO2) times (because it is true exactly iO times for each iO). Thus the innermost loop is
only executed OO(NO2) times. Each time through, it takes OO(PjO2) = OO(NO2) time, for a total of
OO(NO4). This is an example where multiplying loop sizes can occasionally give an overesti-
mate.

2.7 (a) It should be clear that all algorithms generate only legal permutations. The first two
algorithms have tests to guarantee no duplicates; the third algorithm works by shuffling an
array that initially has no duplicates, so none can occur. It is also clear that the first two
algorithms are completely random, and that each permutation is equally likely. The third
algorithm, due to R. Floyd, is not as obvious; the correctness can be proved by induction.
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See

J. Bentley, "Programming Pearls," Communications of the ACM 30 (1987), 754-757.

Note that if the second line of algorithm 3 is replaced with the statement
Swap( A[i], A[ RandInt( 0, N-1 ) ] );

then not all permutations are equally likely. To see this, notice that for NO = 3, there are 27
equally likely ways of performing the three swaps, depending on the three random integers.
Since there are only 6 permutations, and 6 does not evenly divide
27, each permutation cannot possibly be equally represented.

(b) For the first algorithm, the time to decide if a random number to be placed in AO[iO] has
not been used earlier is OO(iO). The expected number of random numbers that need to be
tried is NO/ (NO − iO). This is obtained as follows: iO of the NO numbers would be duplicates.
Thus the probability of success is (NO − iO) / NO. Thus the expected number of independent
trials is NO/ (NO − iO). The time bound is thus
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The second algorithm saves a factor of iO for each random number, and thus reduces the time
bound to OO(NOlog NO) on average. The third algorithm is clearly linear.

(c, d) The running times should agree with the preceding analysis if the machine has enough
memory. If not, the third algorithm will not seem linear because of a drastic increase for
large NO.
(e) The worst-case running time of algorithms I and II cannot be bounded because there is
always a finite probability that the program will not terminate by some given time TO. The
algorithm does, however, terminate with probability 1. The worst-case running time of the
third algorithm is linear - its running time does not depend on the sequence of random
numbers.

2.8 Algorithm 1 would take about 5 days for NO = 10,000, 14.2 years for NO = 100,000 and 140
centuries for NO = 1,000,000. Algorithm 2 would take about 3 hours for NO = 100,000 and
about 2 weeks for NO = 1,000,000. Algorithm 3 would use 1 ⁄1

2 minutes for NO = 1,000,000.
These calculations assume a machine with enough memory to hold the array. Algorithm 4
solves a problem of size 1,000,000 in 3 seconds.

2.9 (a) OO(NO2).

(b) OO(NOlog NO).
2.10 (c) The algorithm is linear.

2.11 Use a variation of binary search to get an OO(log NO) solution (assuming the array is preread).

2.13 (a) Test to see if NO is an odd number (or 2) and is not divisible by 3, 5, 7, ..., √MMNOO.
(b) OO(√MMNOO), assuming that all divisions count for one unit of time.

(c) BO = OO(log NO).
(d) OO(2BO/ 2).

(e) If a 20-bit number can be tested in time TO, then a 40-bit number would require about TO2

time.

(f) BO is the better measure because it more accurately represents the sizeO of the input.
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2.14 The running time is proportional to NO times the sum of the reciprocals of the primes less
than NO. This is OO(NOlog log NO). See Knuth, Volume 2, page 394.

2.15 Compute XO2, XO4, XO8, XO10, XO20, XO40, XO60, and XO62.

2.16 Maintain an array PowersOfXO that can be filled in a for loop. The array will contain XO, XO2,
XO4, up to XO2OIlog NOK

. The binary representation of NO (which can be obtained by testing even or
odd and then dividing by 2, until all bits are examined) can be used to multiply the
appropriate entries of the array.

2.17 For NO = 0 or NO = 1, the number of multiplies is zero. If bO(NO) is the number of ones in the
binary representation of NO, then if NO > 1, the number of multiplies used is

OIlog NOK + bO(NO) − 1

2.18 (a) AO.
(b) BO.
(c) The information given is not sufficient to determine an answer. We have only worst-
case bounds.

(d) Yes.

2.19 (a) Recursion is unnecessary if there are two or fewer elements.

(b) One way to do this is to note that if the first NO−1 elements have a majority, then the last
element cannot change this. Otherwise, the last element could be a majority. Thus if NO is
odd, ignore the last element. Run the algorithm as before. If no majority element emerges,
then return the NOthO element as a candidate.

(c) The running time is OO(NO), and satisfies TO(NO) = TO(NO/ 2) + OO(NO).
(d) One copy of the original needs to be saved. After this, the BO array, and indeed the recur-
sion can be avoided by placing each BiO in the AO array. The difference is that the original
recursive strategy implies that OO(log NO) arrays are used; this guarantees only two copies.

2.20 Otherwise, we could perform operations in parallel by cleverly encoding several integers
into one. For instance, if A = 001, B = 101, C = 111, D = 100, we could add A and B at the
same time as C and D by adding 00A00C + 00B00D. We could extend this to add NO pairs
of numbers at once in unit cost.

2.22 No. If LowO = 1, HighO = 2, then MidO = 1, and the recursive call does not make progress.

2.24 No. As in Exercise 2.22, no progress is made.
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