
Chapter 3: Lists, Stacks, and Queues

3.2 The comments for Exercise 3.4 regarding the amount of abstractness used apply here. The
running time of the procedure in Fig. 3.1 is OO(LO + PO).

______________________________________________________________________________________________________________________________________________________________

void
PrintLots( List L, List P )
{

int Counter;
Position Lpos, Ppos;

Lpos = First( L );
Ppos = First( P );
Counter = 1;
while( Lpos != NULL && Ppos != NULL )
{

if( Ppos->Element == Counter++ )
{

printf( "%? ", Lpos->Element );
Ppos = Next( Ppos, P );

}
Lpos = Next( Lpos, L );

}
}

Fig. 3.1.
______________________________________________________________________________________________________________________________________________________________

3.3 (a) For singly linked lists, the code is shown in Fig. 3.2.
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______________________________________________________________________________________________________________________________________________________________

/* BeforeP is the cell before the two adjacent cells that are to be swapped. */
/* Error checks are omitted for clarity. */

void
SwapWithNext( Position BeforeP, List L )
{

Position P, AfterP;

P = BeforeP->Next;
AfterP = P->Next; /* Both P and AfterP assumed not NULL. */

P->Next = AfterP->Next;
BeforeP->Next = AfterP;
AfterP->Next = P;

}

Fig. 3.2.
______________________________________________________________________________________________________________________________________________________________

(b) For doubly linked lists, the code is shown in Fig. 3.3.
______________________________________________________________________________________________________________________________________________________________

/* P and AfterP are cells to be switched. Error checks as before. */

void
SwapWithNext( Position P, List L )
{

Position BeforeP, AfterP;

BeforeP = P->Prev;
AfterP = P->Next;

P->Next = AfterP->Next;
BeforeP->Next = AfterP;
AfterP->Next = P;
P->Next->Prev = P;
P->Prev = AfterP;
AfterP->Prev = BeforeP;

}

Fig. 3.3.
______________________________________________________________________________________________________________________________________________________________

3.4 IntersectO is shown on page 9.
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______________________________________________________________________________________________________________________________________________________________

/* This code can be made more abstract by using operations such as */
/* Retrieve and IsPastEnd to replace L1Pos->Element and L1Pos != NULL. */
/* We have avoided this because these operations were not rigorously defined. */

List
Intersect( List L1, List L2 )
{

List Result;
Position L1Pos, L2Pos, ResultPos;

L1Pos = First( L1 ); L2Pos = First( L2 );
Result = MakeEmpty( NULL );
ResultPos = First( Result );
while( L1Pos != NULL && L2Pos != NULL )
{

if( L1Pos->Element < L2Pos->Element )
L1Pos = Next( L1Pos, L1 );

else if( L1Pos->Element > L2Pos->Element )
L2Pos = Next( L2Pos, L2 );

else
{

Insert( L1Pos->Element, Result, ResultPos );
L1 = Next( L1Pos, L1 ); L2 = Next( L2Pos, L2 );
ResultPos = Next( ResultPos, Result );

}
}
return Result;

}
______________________________________________________________________________________________________________________________________________________________

3.5 Fig. 3.4 contains the code for Union.O

3.7 (a) One algorithm is to keep the result in a sorted (by exponent) linked list. Each of the MNO
multiplies requires a search of the linked list for duplicates. Since the size of the linked list
is OO(MNO), the total running time is OO(MO2NO2).

(b) The bound can be improved by multiplying one term by the entire other polynomial, and
then using the equivalent of the procedure in Exercise 3.2 to insert the entire sequence.
Then each sequence takes OO(MNO), but there are only MO of them, giving a time bound of
OO(MO2NO).
(c) An OO(MNOlog MNO) solution is possible by computing all MNO pairs and then sorting by
exponent using any algorithm in Chapter 7. It is then easy to merge duplicates afterward.

(d) The choice of algorithm depends on the relative values of MO and NO. If they are close,
then the solution in part (c) is better. If one polynomial is very small, then the solution in
part (b) is better.
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______________________________________________________________________________________________________________________________________________________________

List
Union( List L1, List L2 )
{

List Result;
ElementType InsertElement;
Position L1Pos, L2Pos, ResultPos;

L1Pos = First( L1 ); L2Pos = First( L2 );
Result = MakeEmpty( NULL );
ResultPos = First( Result );
while ( L1Pos != NULL && L2Pos != NULL ) {

if( L1Pos->Element < L2Pos->Element ) {
InsertElement = L1Pos->Element;
L1Pos = Next( L1Pos, L1 );

}
else if( L1Pos->Element > L2Pos->Element ) {

InsertElement = L2Pos->Element;
L2Pos = Next( L2Pos, L2 );

}
else {

InsertElement = L1Pos->Element;
L1Pos = Next( L1Pos, L1 ); L2Pos = Next( L2Pos, L2 );

}
Insert( InsertElement, Result, ResultPos );
ResultPos = Next( ResultPos, Result );

}
/* Flush out remaining list */
while( L1Pos != NULL ) {

Insert( L1Pos->Element, Result, ResultPos );
L1Pos = Next( L1Pos, L1 ); ResultPos = Next( ResultPos, Result );

}
while( L2Pos != NULL ) {

Insert( L2Pos->Element, Result, ResultPos );
L2Pos = Next( L2Pos, L2 ); ResultPos = Next( ResultPos, Result );

}
return Result;

}

Fig. 3.4.
______________________________________________________________________________________________________________________________________________________________

3.8 One can use the PowO function in Chapter 2, adapted for polynomial multiplication. If PO is
small, a standard method that uses OO(PO) multiplies instead of OO(log PO) might be better
because the multiplies would involve a large number with a small number, which is good
for the multiplication routine in part (b).

3.10 This is a standard programming project. The algorithm can be sped up by setting
M'O = MO modO NO, so that the hot potato never goes around the circle more than once, and
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then if M'O > NO/ 2, passing the potato appropriately in the alternative direction. This
requires a doubly linked list. The worst-case running time is clearly OO(NO minO(MO, NO)),
although when these heuristics are used, and MO and NO are comparable, the algorithm might
be significantly faster. If MO = 1, the algorithm is clearly linear. The VAX/VMS C
compiler’s memory management routines do poorly with the particular pattern of PfreeOs in
this case, causing OO(NOlog NO) behavior.

3.12 Reversal of a singly linked list can be done nonrecursively by using a stack, but this
requires OO(NO) extra space. The solution in Fig. 3.5 is similar to strategies employed in gar-
bage collection algorithms. At the top of the whileO loop, the list from the start to Pre-
viousPosO is already reversed, whereas the rest of the list, from CurrentPosO to the end, is
normal. This algorithm uses only constant extra space.

______________________________________________________________________________________________________________________________________________________________

/* Assuming no header and L is not empty. */

List
ReverseList( List L )
{

Position CurrentPos, NextPos, PreviousPos;

PreviousPos = NULL;
CurrentPos = L;
NextPos = L->Next;
while( NextPos != NULL )
{

CurrentPos->Next = PreviousPos;
PreviousPos = CurrentPos;
CurrentPos = NextPos;
NextPos = NextPos->Next;

}
CurrentPos->Next = PreviousPos;
return CurrentPos;

}

Fig. 3.5.
______________________________________________________________________________________________________________________________________________________________

3.15 (a) The code is shown in Fig. 3.6.

(b) See Fig. 3.7.

(c) This follows from well-known statistical theorems. See Sleator and Tarjan’s paper in
the Chapter 11 references.

3.16 (c) DeleteO takes OO(NO) and is in two nested for loops each of size NO, giving an obvious
OO(NO3) bound. A better bound of OO(NO2) is obtained by noting that only NO elements can be
deleted from a list of size NO, hence OO(NO2) is spent performing deletes. The remainder of
the routine is OO(NO2), so the bound follows.

(d) OO(NO2).
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______________________________________________________________________________________________________________________________________________________________

/* Array implementation, starting at slot 1 */

Position
Find( ElementType X, List L )
{

int i, Where;

Where = 0;
for( i = 1; i < L.SizeOfList; i++ )

if( X == L[i].Element )
{

Where = i;
break;

}

if( Where ) /* Move to front. */
{

for( i = Where; i > 1; i-- )
L[i].Element = L[i-1].Element;

L[1].Element = X;
return 1;

}
else

return 0; /* Not found. */
}

Fig. 3.6.
______________________________________________________________________________________________________________________________________________________________

(e) Sort the list, and make a scan to remove duplicates (which must now be adjacent).

3.17 (a) The advantages are that it is simpler to code, and there is a possible savings if deleted
keys are subsequently reinserted (in the same place). The disadvantage is that it uses more
space, because each cell needs an extra bit (which is typically a byte), and unused cells are
not freed.

3.21 Two stacks can be implemented in an array by having one grow from the low end of the
array up, and the other from the high end down.

3.22 (a) Let EO be our extended stack. We will implement EO with two stacks. One stack, which
we’ll call SO, is used to keep track of the PushOand PopO operations, and the other, MO, keeps
track of the minimum. To implement Push(X,E), we perform Push(X,S). If XO is smaller
than or equal to the top element in stack MO, then we also perform Push(X,M). To imple-
ment Pop(E), we perform Pop(S). If XO is equal to the top element in stack MO, then we also
Pop(M). FindMin(E) is performed by examining the top of MO. All these operations are
clearly OO(1).

(b) This result follows from a theorem in Chapter 7 that shows that sorting must take
Ω(NOlog NO) time. OO(NO) operations in the repertoire, including DeleteMinO, would be
sufficient to sort.
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______________________________________________________________________________________________________________________________________________________________

/* Assuming a header. */

Position
Find( ElementType X, List L )
{

Position PrevPos, XPos;

PrevPos = FindPrevious( X, L );
if( PrevPos->Next != NULL ) /* Found. */
{

XPos = PrevPos ->Next;
PrevPos->Next = XPos->Next;
XPos->Next = L->Next;
L->Next = XPos;
return XPos;

}
else

return NULL;
}

Fig. 3.7.
______________________________________________________________________________________________________________________________________________________________

3.23 Three stacks can be implemented by having one grow from the bottom up, another from the
top down, and a third somewhere in the middle growing in some (arbitrary) direction. If the
third stack collides with either of the other two, it needs to be moved. A reasonable strategy
is to move it so that its center (at the time of the move) is halfway between the tops of the
other two stacks.

3.24 Stack space will not run out because only 49 calls will be stacked. However, the running
time is exponential, as shown in Chapter 2, and thus the routine will not terminate in a rea-
sonable amount of time.

3.25 The queue data structure consists of pointers Q->FrontO and Q->Rear,O which point to the
beginning and end of a linked list. The programming details are left as an exercise because
it is a likely programming assignment.

3.26 (a) This is a straightforward modification of the queue routines. It is also a likely program-
ming assignment, so we do not provide a solution.
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