
Chapter 4: Trees

4.1 (a) AO.
(b) GO, HO, IO, LO, MO, and KO.

4.2 For node BO:
(a) AO.
(b) DO and EO.
(c) CO.
(d) 1.

(e) 3.

4.3 4.

4.4 There are NO nodes. Each node has two pointers, so there are 2NO pointers. Each node but
the root has one incoming pointer from its parent, which accounts for NO−1 pointers. The
rest are NULL.O

4.5 Proof is by induction. The theorem is trivially true for HO = 0. Assume true for HO = 1, 2, ...,
kO. A tree of height kO+1 can have two subtrees of height at most kO. These can have at most
2kO+1−1 nodes each by the induction hypothesis. These 2kO+2−2 nodes plus the root prove the
theorem for height kO+1 and hence for all heights.

4.6 This can be shown by induction. Alternatively, let NO = number of nodes, FO = number of
full nodes, LO = number of leaves, and HO = number of half nodes (nodes with one child).
Clearly, NO = FO + HO + LO. Further, 2FO + HO = NO − 1 (see Exercise 4.4). Subtracting yields
LO − FO = 1.

4.7 This can be shown by induction. In a tree with no nodes, the sum is zero, and in a one-node
tree, the root is a leaf at depth zero, so the claim is true. Suppose the theorem is true for all
trees with at most kO nodes. Consider any tree with kO+1 nodes. Such a tree consists of an iO
node left subtree and a kO − iO node right subtree. By the inductive hypothesis, the sum for
the left subtree leaves is at most one with respect to the left tree root. Because all leaves are
one deeper with respect to the original tree than with respect to the subtree, the sum is at
most ⁄1

2 with respect to the root. Similar logic implies that the sum for leaves in the right
subtree is at most ⁄1

2, proving the theorem. The equality is true if and only if there are no
nodes with one child. If there is a node with one child, the equality cannot be true because
adding the second child would increase the sum to higher than 1. If no nodes have one
child, then we can find and remove two sibling leaves, creating a new tree. It is easy to see
that this new tree has the same sum as the old. Applying this step repeatedly, we arrive at a
single node, whose sum is 1. Thus the original tree had sum 1.

4.8 (a) - * * a b + c d e.

(b) ((a * b) * (c + d)) - e.

(c) a b * c d + * e -.

-14-

4.9

1

2

3

4

5

6

7

9

1

2

4

5

6

7

9

4.11 This problem is not much different from the linked list cursor implementation. We maintain
an array of records consisting of an element field, and two integers, left and right. The free
list can be maintained by linking through the left field. It is easy to write the CursorNewO
and CursorDisposeO routines, and substitute them for malloc and free.

4.12 (a) Keep a bit array BO. If iO is in the tree, then BO[iO] is true; otherwise, it is false. Repeatedly
generate random integers until an unused one is found. If there are NO elements already in
the tree, then MO − NO are not, and the probability of finding one of these is (MO − NO) / MO.
Thus the expected number of trials is MO / (MO−NO) = α / (α − 1).

(b) To find an element that is in the tree, repeatedly generate random integers until an
already-used integer is found. The probability of finding one is NO / MO, so the expected
number of trials is MO / NO = α.

(c) The total cost for one insert and one delete is α / (α − 1) + α = 1 + α + 1 / (α − 1). Set-
ting α = 2 minimizes this cost.

4.15 (a) NO(0) = 1, NO(1) = 2, NO(HO) = NO(HO−1) + NO(HO−2) + 1.

(b) The heights are one less than the Fibonacci numbers.

4.16

1

2

3

4

5

6

7

9

4.17 It is easy to verify by hand that the claim is true for 1 ≤ kO ≤ 3. Suppose it is true for kO = 1,
2, 3, ... HO. Then after the first 2HO − 1 insertions, 2HO−1 is at the root, and the right subtree is
a balanced tree containing 2HO−1 + 1 through 2HO − 1. Each of the next 2HO−1 insertions,
namely, 2HO through 2HO + 2HO−1 − 1, insert a new maximum and get placed in the right

-15-

subtree, eventually forming a perfectly balanced right subtree of height HO−1. This follows
by the induction hypothesis because the right subtree may be viewed as being formed from
the successive insertion of 2HO−1 + 1 through 2HO + 2HO−1 − 1. The next insertion forces an
imbalance at the root, and thus a single rotation. It is easy to check that this brings 2HO to
the root and creates a perfectly balanced left subtree of height HO−1. The new key is
attached to a perfectly balanced right subtree of height HO−2 as the last node in the right
path. Thus the right subtree is exactly as if the nodes 2HO + 1 through 2HO + 2HO−1 were
inserted in order. By the inductive hypothesis, the subsequent successive insertion of
2HO + 2HO−1 + 1 through 2HO+1 − 1 will create a perfectly balanced right subtree of height
HO−1. Thus after the last insertion, both the left and the right subtrees are perfectly bal-
anced, and of the same height, so the entire tree of 2HO+1 − 1 nodes is perfectly balanced (and
has height HO).

4.18 The two remaining functions are mirror images of the text procedures. Just switch RightO
and LeftO everywhere.

4.20 After applying the standard binary search tree deletion algorithm, nodes on the deletion path
need to have their balance changed, and rotations may need to be performed. Unlike inser-
tion, more than one node may need rotation.

4.21 (a) OO(log log NO).
(b) The minimum AVL tree of height 255 (a huge tree).

4.22
__

Position
DoubleRotateWithLeft(Position K3)
{

Position K1, K2;

K1 = K3->Left;
K2 = K1->Right;

K1->Right = K2->Left;
K3->Left = K2->Right;
K2->Left = K1;
K2->Right = K3;
K1->Height = Max(Height(K1->Left), Height(K1->Right)) + 1;
K3->Height = Max(Height(K3->Left), Height(K3->Right)) + 1;
K2->Height = Max(K1->Height, K3->Height) + 1;

return K3;
}

__

-16-

4.23 After accessing 3,

1

2

3

4

5

6

7

8

9

10

11

12

13

After accessing 9,

1

2

3

4

5

6

7

8

9

10

11

12

13

-17-

After accessing 1,

1

2

3

4

5

6

7

8

9

10

11

12

13

After accessing 5,

1

2

3

4

5

6

7

8

9

10

11

12

13

-18-

4.24

1

2

3

4

5

7

8

9

10

11

12

13

4.25 (a) 523776.

(b) 262166, 133114, 68216, 36836, 21181, 13873.

(c) After FindO(9).

4.26 (a) An easy proof by induction.

4.28 (a-c) All these routines take linear time.
__

/* These functions use the type BinaryTree, which is the same */
/* as TreeNode *, in Fig 4.16. */

int
CountNodes(BinaryTree T)
{

if(T == NULL)
return 0;

return 1 + CountNodes(T->Left) + CountNodes(T->Right);
}

int
CountLeaves(BinaryTree T)
{

if(T == NULL)
return 0;

else if(T->Left == NULL && T->Right == NULL)
return 1;

return CountLeaves(T->Left) + CountLeaves(T->Right);
}

__

-19-

__

/* An alternative method is to use the results of Exercise 4.6. */

int
CountFull(BinaryTree T)
{

if(T == NULL)
return 0;

return (T->Left != NULL && T->Right != NULL) +
CountFull(T->Left) + CountFull(T->Right);

}
__

4.29 We assume the existence of a function RandInt(Lower,Upper),O which generates a uniform
random integer in the appropriate closed interval. MakeRandomTreeO returns NULL if NO is
not positive, or if NO is so large that memory is exhausted.

__

SearchTree
MakeRandomTree1(int Lower, int Upper)
{

SearchTree T;
int RandomValue;

T = NULL;
if(Lower <= Upper)
{

T = malloc(sizeof(struct TreeNode));
if(T != NULL)
{

T->Element = RandomValue = RandInt(Lower, Upper);
T->Left = MakeRandomTree1(Lower, RandomValue - 1);
T->Right = MakeRandomTree1(RandomValue + 1, Upper);

}
else

FatalError("Out of space!");
}
return T;

}

SearchTree
MakeRandomTree(int N)
{

return MakeRandomTree1(1, N);
}

__

-20-

4.30
__

/* LastNode is the address containing last value that was assigned to a node */

SearchTree
GenTree(int Height, int *LastNode)
{

SearchTree T;

if(Height >= 0)
{

T = malloc(sizeof(*T)); /* Error checks omitted; see Exercise 4.29. */
T->Left = GenTree(Height - 1, LastNode);
T->Element = ++*LastNode;
T->Right = GenTree(Height - 2, LastNode);
return T;

}
else

return NULL;
}

SearchTree
MinAvlTree(int H)
{

int LastNodeAssigned = 0;
return GenTree(H, &LastNodeAssigned);

}
__

4.31 There are two obvious ways of solving this problem. One way mimics Exercise 4.29 by
replacing RandInt(Lower,Upper) with (Lower+Upper) / 2. This requires computing
2HO+1−1, which is not that difficult. The other mimics the previous exercise by noting that
the heights of the subtrees are both HO−1. The solution follows:

-21-

__

/* LastNode is the address containing last value that was assigned to a node. */

SearchTree
GenTree(int Height, int *LastNode)
{

SearchTree T = NULL;

if(Height >= 0)
{

T = malloc(sizeof(*T)); /* Error checks omitted; see Exercise 4.29. */
T->Left = GenTree(Height - 1, LastNode);
T->Element = ++*LastNode;
T->Right = GenTree(Height - 1, LastNode);

}
return T;

}

SearchTree
PerfectTree(int H)
{

int LastNodeAssigned = 0;
return GenTree(H, &LastNodeAssigned);

}
__

4.32 This is known as one-dimensional range searching. The time is OO(KO) to perform the
inorder traversal, if a significant number of nodes are found, and also proportional to the
depth of the tree, if we get to some leaves (for instance, if no nodes are found). Since the
average depth is OO(log NO), this gives an OO(KO + log NO) average bound.

__

void
PrintRange(ElementType Lower, ElementType Upper, SearchTree T)
{

if(T != NULL)
{

if(Lower <= T->Element)
PrintRange(Lower, Upper, T->Left);

if(Lower <= T->Element && T->Element <= Upper)
PrintLine(T->Element);

if(T->Element <= Upper)
PrintRange(Lower, Upper, T->Right);

}
}

__

-22-

4.33 This exercise and Exercise 4.34 are likely programming assignments, so we do not provide
code here.

4.35 Put the root on an empty queue. Then repeatedly DequeueO a node and EnqueueO its left and
right children (if any) until the queue is empty. This is OO(NO) because each queue operation
is constant time and there are NO EnqueueO and NO DequeueO operations.

4.36 (a)

0,1

2 : 4

2, 3

6 : -

4, 5

8 : -

6, 7 8, 9

(b)

1,2,3

4 : 6

4, 5 6,7,8

-23-

4.39

A

B

D

H I

E

J

C

F

L

O

K M

QP R

G

N

4.41 The function shown here is clearly a linear time routine because in the worst case it does a
traversal on both TO1 and TO2.

__

int
Similar(BinaryTree T1, BinaryTree T2)
{

if(T1 == NULL || T2 == NULL)
return T1 == NULL && T2 == NULL;

return Similar(T1->Left, T2->Left) && Similar(T1->Right, T2->Right);
}

__

4.43 The easiest solution is to compute, in linear time, the inorder numbers of the nodes in both
trees. If the inorder number of the root of T2 is xO, then find xO in T1 and rotate it to the root.
Recursively apply this strategy to the left and right subtrees of T1 (by looking at the values
in the root of T2’s left and right subtrees). If dNO is the depth of xO, then the running time
satisfies TO(NO) = TO(iO) + TO(NO−iO−1) + dNO, where iO is the size of the left subtree. In the worst
case, dNO is always OO(NO), and iO is always 0, so the worst-case running time is quadratic.
Under the plausible assumption that all values of iO are equally likely, then even if dNO is
always OO(NO), the average value of TO(NO) is OO(NOlog NO). This is a common recurrence that
was already formulated in the chapter and is solved in Chapter 7. Under the more reason-
able assumption that dNO is typically logarithmic, then the running time is OO(NO).

4.44 Add a field to each node indicating the size of the tree it roots. This allows computation of
its inorder traversal number.

4.45 (a) You need an extra bit for each thread.

(c) You can do tree traversals somewhat easier and without recursion. The disadvantage is
that it reeks of old-style hacking.

-24-

