
Chapter 5: Hashing

5.1 (a) On the assumption that we add collisions to the end of the list (which is the easier way if
a hash table is being built by hand), the separate chaining hash table that results is shown
here.
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(c)

9679

4371

1323

6173

4344

1989

4199

0

1

2

3

4

5

6

7

8

9

(d) 1989 cannot be inserted into the table because hashO2(1989) = 6, and the alternative locations
5, 1, 7, and 3 are already taken. The table at this point is as follows:
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5.2 When rehashing, we choose a table size that is roughly twice as large and prime. In our
case, the appropriate new table size is 19, with hash function hO(xO) = xO(modO 19).

(a) Scanning down the separate chaining hash table, the new locations are 4371 in list 1,
1323 in list 12, 6173 in list 17, 4344 in list 12, 4199 in list 0, 9679 in list 8, and 1989 in list
13.

(b) The new locations are 9679 in bucket 8, 4371 in bucket 1, 1989 in bucket 13, 1323 in
bucket 12, 6173 in bucket 17, 4344 in bucket 14 because both 12 and 13 are already occu-
pied, and 4199 in bucket 0.
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(c) The new locations are 9679 in bucket 8, 4371 in bucket 1, 1989 in bucket 13, 1323 in
bucket 12, 6173 in bucket 17, 4344 in bucket 16 because both 12 and 13 are already occu-
pied, and 4199 in bucket 0.

(d) The new locations are 9679 in bucket 8, 4371 in bucket 1, 1989 in bucket 13, 1323 in
bucket 12, 6173 in bucket 17, 4344 in bucket 15 because 12 is already occupied, and 4199
in bucket 0.

5.4 We must be careful not to rehash too often. Let pO be the threshold (fraction of table size) at
which we rehash to a smaller table. Then if the new table has size NO, it contains 2pNO ele-
ments. This table will require rehashing after either 2NO − 2pNO insertions or pNO deletions.
Balancing these costs suggests that a good choice is pO = 2/ 3. For instance, suppose we
have a table of size 300. If we rehash at 200 elements, then the new table size is NO = 150,
and we can do either 100 insertions or 100 deletions until a new rehash is required.

If we know that insertions are more frequent than deletions, then we might choose pO to be
somewhat larger. If pO is too close to 1.0, however, then a sequence of a small number of
deletions followed by insertions can cause frequent rehashing. In the worst case, if pO = 1.0,
then alternating deletions and insertions both require rehashing.

5.5 (a) Since each table slot is eventually probed, if the table is not empty, the collision can be
resolved.

(b) This seems to eliminate primary clustering but not secondary clustering because all ele-
ments that hash to some location will try the same collision resolution sequence.

(c, d) The running time is probably similar to quadratic probing. The advantage here is that
the insertion can’t fail unless the table is full.

(e) A method of generating numbers that are not random (or even pseudorandom) is given
in the references. An alternative is to use the method in Exercise 2.7.

5.6 Separate chaining hashing requires the use of pointers, which costs some memory, and the
standard method of implementing calls on memory allocation routines, which typically are
expensive. Linear probing is easily implemented, but performance degrades severely as the
load factor increases because of primary clustering. Quadratic probing is only slightly more
difficult to implement and gives good performance in practice. An insertion can fail if the
table is half empty, but this is not likely. Even if it were, such an insertion would be so
expensive that it wouldn’t matter and would almost certainly point up a weakness in the
hash function. Double hashing eliminates primary and secondary clustering, but the compu-
tation of a second hash function can be costly. Gonnet and Baeza-Yates [8] compare several
hashing strategies; their results suggest that quadratic probing is the fastest method.

5.7 Sorting the MNO records and eliminating duplicates would require OO(MNOlog MNO) time
using a standard sorting algorithm. If terms are merged by using a hash function, then the
merging time is constant per term for a total of OO(MNO). If the output polynomial is small
and has only OO(MO + NO) terms, then it is easy to sort it in OO((MO + NO)log (MO + NO)) time,
which is less than OO(MNO). Thus the total is OO(MNO). This bound is better because the
model is less restrictive: Hashing is performing operations on the keys rather than just com-
parison between the keys. A similar bound can be obtained by using bucket sort instead of
a standard sorting algorithm. Operations such as hashing are much more expensive than
comparisons in practice, so this bound might not be an improvement. On the other hand, if
the output polynomial is expected to have only OO(MO + NO) terms, then using a hash table
saves a huge amount of space, since under these conditions, the hash table needs only
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OO(MO + NO) space.

Another method of implementing these operations is to use a search tree instead of a hash
table; a balanced tree is required because elements are inserted in the tree with too much
order. A splay tree might be particularly well suited for this type of a problem because it
does well with sequential accesses. Comparing the different ways of solving the problem is
a good programming assignment.

5.8 The table size would be roughly 60,000 entries. Each entry holds 8 bytes, for a total of
480,000 bytes.

5.9 (a) This statement is true.

(b) If a word hashes to a location with value 1, there is no guarantee that the word is in the
dictionary. It is possible that it just hashes to the same value as some other word in the dic-
tionary. In our case, the table is approximately 10% full (30,000 words in a table of
300,007), so there is a 10% chance that a word that is not in the dictionary happens to hash
out to a location with value 1.

(c) 300,007 bits is 37,501 bytes on most machines.

(d) As discussed in part (b), the algorithm will fail to detect one in ten misspellings on aver-
age.

(e) A 20-page document would have about 60 misspellings. This algorithm would be
expected to detect 54. A table three times as large would still fit in about 100K bytes and
reduce the expected number of errors to two. This is good enough for many applications,
especially since spelling detection is a very inexact science. Many misspelled words (espe-
cially short ones) are still words. For instance, typing themO instead of thenO is a misspelling
that won’t be detected by any algorithm.

5.10 To each hash table slot, we can add an extra field that we’ll call WhereOnStack,O and we can
keep an extra stack. When an insertion is first performed into a slot, we push the address (or
number) of the slot onto the stack and set the WhereOnStackO field to point to the top of the
stack. When we access a hash table slot, we check that WhereOnStackO points to a valid part
of the stack and that the entry in the (middle of the) stack that is pointed to by the WhereOn-
StackO field has that hash table slot as an address.

5.14
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