
Chapter 6: Priority Queues (Heaps)

6.1 Yes. When an element is inserted, we compare it to the current minimum and change the
minimum if the new element is smaller. DeleteMinO operations are expensive in this
scheme.

6.2

1

3 2

6 7 5 4

15 14 12 9 10 11 13 8

1

3 2

12 6 4 8

15 14 9 7 5 11 13 10

6.3 The result of three DeleteMins,O starting with both of the heaps in Exercise 6.2, is as fol-
lows:

4

6 5

13 7 10 8

15 14 12 9 11

4

6 5

12 7 10 8

15 14 9 13 11

6.4

6.5 These are simple modifications to the code presented in the text and meant as programming
exercises.

6.6 225. To see this, start with iO=1 and position at the root. Follow the path toward the last
node, doubling iO when taking a left child, and doubling iO and adding one when taking a
right child.

-29-

6.7 (a) We show that HO(NO), which is the sum of the heights of nodes in a complete binary tree
of NO nodes, is NO − bO(NO), where bO(NO) is the number of ones in the binary representation of
NO. Observe that for NO = 0 and NO = 1, the claim is true. Assume that it is true for values of
kO up to and including NO−1. Suppose the left and right subtrees have LO and RO nodes,
respectively. Since the root has height OIlog NOK, we have

HO(NO) = OIlog NOK + HO(LO) + HO(RO)

= OIlog NOK + LO − bO(LO) + RO − bO(RO)

= NO − 1 + (OIlog NOK − bO(LO) − bO(RO))

The second line follows from the inductive hypothesis, and the third follows because
LO + RO = NO − 1. Now the last node in the tree is in either the left subtree or the right sub-
tree. If it is in the left subtree, then the right subtree is a perfect tree, and
bO(RO) = OIlog NOK − 1. Further, the binary representation of NO and LO are identical, with the
exception that the leading 10 in NO becomes 1 in LO. (For instance, if NO = 37 = 100101, LO =
10101.) It is clear that the second digit of NO must be zero if the last node is in the left sub-
tree. Thus in this case, bO(LO) = bO(NO), and

HO(NO) = NO − bO(NO)

If the last node is in the right subtree, then bO(LO) = OIlog NOK. The binary representation of RO
is identical to NO, except that the leading 1 is not present. (For instance, if NO = 27 = 101011,
LO = 01011.) Thus bO(RO) = bO(NO) − 1, and again

HO(NO) = NO − bO(NO)

(b) Run a single-elimination tournament among eight elements. This requires seven com-
parisons and generates ordering information indicated by the binomial tree shown here.

a

bc

d

e

fg

h

The eighth comparison is between bO and cO. If cO is less than bO, then bO is made a child of cO.
Otherwise, both cO and dO are made children of bO.
(c) A recursive strategy is used. Assume that NO = 2kO. A binomial tree is built for the NO
elements as in part (b). The largest subtree of the root is then recursively converted into a
binary heap of 2kO−1 elements. The last element in the heap (which is the only one on an
extra level) is then inserted into the binomial queue consisting of the remaining binomial
trees, thus forming another binomial tree of 2kO−1 elements. At that point, the root has a sub-
tree that is a heap of 2kO−1 − 1 elements and another subtree that is a binomial tree of 2kO−1

elements. Recursively convert that subtree into a heap; now the whole structure is a binary
heap. The running time for NO = 2kO satisfies TO(NO) = 2TO(NO/ 2) + log NO. The base case is
TO(8) = 8.

-30-

6.8 Let DO1, DO2, ..., DkO be random variables representing the depth of the smallest, second smal-
lest, and kOthO smallest elements, respectively. We are interested in calculating EO(DkO). In
what follows, we assume that the heap size NO is one less than a power of two (that is, the
bottom level is completely filled) but sufficiently large so that terms bounded by OO(1 / NO)
are negligible. Without loss of generality, we may assume that the kOthO smallest element is
in the left subheap of the root. Let pPjO,kO be the probability that this element is the PjOthO smal-
lest element in the subheap.

Lemma: For kO>1, EO(DkO) =
PjO=1
Σ
kO−1

pPjO,kO(EO(DPjO) + 1).

Proof: An element that is at depth dO in the left subheap is at depth dO + 1 in the entire
subheap. Since EO(DPjO + 1) = EO(DPjO) + 1, the theorem follows.

Since by assumption, the bottom level of the heap is full, each of second, third, ..., kO−1thO

smallest elements are in the left subheap with probability of 0.5. (Technically, the probabil-
ity should be ⁄1

2 − 1/(NO−1) of being in the right subheap and ⁄1
2 + 1/(NO−1) of being in the

left, since we have already placed the kOthO smallest in the right. Recall that we have assumed
that terms of size OO(1/NO) can be ignored.) Thus

pPjO,kO = pkO−PjO,kO =
2kO−2

1_____ (PjO−1
kO−2)

Theorem: EO(DkO) ≤ log kO.

Proof: The proof is by induction. The theorem clearly holds for kO = 1 and kO = 2. We then
show that it holds for arbitrary kO > 2 on the assumption that it holds for all smaller kO. Now,
by the inductive hypothesis, for any 1 ≤ PjO ≤ kO−1,

EO(DPjO) + EO(DkO−PjO) ≤ log PjO + log kO−PjO

Since PfOO(xO) = log xO is convex for xO > 0,

log PjO + log kO−PjO ≤ 2log (kO/ 2)

Thus

EO(DPjO) + EO(DkO−PjO) ≤ log (kO/ 2) + log (kO/ 2)

Furthermore, since pPjO,kO = pkO−PjO,kO,

pPjO,kOEO(DPjO) + pkO−PjO,kOEO(DkO−PjO) ≤pPjO,kOlog (kO/ 2) + pkO−PjO,kOlog (kO/ 2)

From the lemma,

EO(DkO) =
PjO=1
Σ
kO−1

pPjO,kO(EO(DPjO) + 1)

= 1 +
PjO=1
Σ
kO−1

pPjO,kOEO(DPjO)

Thus

EO(DkO) ≤ 1 +
PjO=1
Σ
kO−1

pPjO,kOlog (kO/ 2)

-31-

≤ 1 + log (kO/ 2)
PjO=1
Σ
kO−1

pPjO,kO

≤ 1 + log (kO/ 2)

≤ log kO

completing the proof.

It can also be shown that asymptotically, EO(DkO) ∼∼ log (kO−1) − 0.273548.

6.9 (a) Perform a preorder traversal of the heap.

(b) Works for leftist and skew heaps. The running time is OO(KdO) for dO-heaps.

6.11 Simulations show that the linear time algorithm is the faster, not only on worst-case inputs,
but also on random data.

6.12 (a) If the heap is organized as a (min) heap, then starting at the hole at the root, find a path
down to a leaf by taking the minimum child. The requires roughly log NO comparisons. To
find the correct place where to move the hole, perform a binary search on the log NO ele-
ments. This takes OO(log log NO) comparisons.

(b) Find a path of minimum children, stopping after log NO − log log NO levels. At this point,
it is easy to determine if the hole should be placed above or below the stopping point. If it
goes below, then continue finding the path, but perform the binary search on only the last
log log NO elements on the path, for a total of log NO + log log log NO comparisons. Other-
wise, perform a binary search on the first log NO − log log NO elements. The binary search
takes at most log log NO comparisons, and the path finding took only log NO − log log NO, so
the total in this case is log NO. So the worst case is the first case.

(c) The bound can be improved to log NO + log*NO + OO(1), where log*NO is the inverse Ack-
erman function (see Chapter 8). This bound can be found in reference [16].

6.13 The parent is at position OI(iO + dO − 2)/dOK. The children are in positions (iO − 1)dO + 2, ...,
idO + 1.

6.14 (a) OO((MO + dNO)logdONO).
(b) OO((MO + NO)log NO).
(c) OO(MO + NO2).

(d) dO= max (2, MO / NO).
(See the related discussion at the end of Section 11.4.)

-32-

6.16

31

18

9

10

4

15

8

5

21

11

6

2

12

11

18

17

6.17

1

2 3

7 6 5 4

8 9 10 11 12 13 14 15

6.18 This theorem is true, and the proof is very much along the same lines as Exercise 4.17.

6.19 If elements are inserted in decreasing order, a leftist heap consisting of a chain of left chil-
dren is formed. This is the best because the right path length is minimized.

6.20 (a) If a DecreaseKeyO is performed on a node that is very deep (very left), the time to per-
colate up would be prohibitive. Thus the obvious solution doesn’t work. However, we can
still do the operation efficiently by a combination of DeleteO and InsertO. To DeleteO an arbi-
trary node xO in the heap, replace xO by the MergeO of its left and right subheaps. This might
create an imbalance for nodes on the path from xO’s parent to the root that would need to be
fixed by a child swap. However, it is easy to show that at most log NO nodes can be affected,
preserving the time bound. This is discussed in Chapter 11.

6.21 Lazy deletion in leftist heaps is discussed in the paper by Cheriton and Tarjan [9]. The gen-
eral idea is that if the root is marked deleted, then a preorder traversal of the heap is formed,
and the frontier of marked nodes is removed, leaving a collection of heaps. These can be
merged two at a time by placing all the heaps on a queue, removing two, merging them, and
placing the result at the end of the queue, terminating when only one heap remains.

6.22 (a) The standard way to do this is to divide the work into passes. A new pass begins when
the first element reappears in a heap that is dequeued. The first pass takes roughly

-33-

2*O1*O(NO/ 2) time units because there are NO/ 2 merges of trees with one node each on the
right path. The next pass takes 2*O2*O(NO/ 4) time units because of the roughly NO/ 4 merges
of trees with no more than two nodes on the right path. The third pass takes 2*O3*O(NO/ 8)
time units, and so on. The sum converges to 4NO.
(b) It generates heaps that are more leftist.

6.23

31

18

9

10

4

15

8

5

21

11

6

2

12

11

18

17

6.24

1

3 2

7 5 6 4

15 11 13 9 14 10 12 8

6.25 This claim is also true, and the proof is similar in spirit to Exercise 4.17 or 6.18.

6.26 Yes. All the single operation estimates in Exercise 6.22 become amortized instead of
worst-case, but by the definition of amortized analysis, the sum of these estimates is a
worst-case bound for the sequence.

6.27 Clearly the claim is true for kO = 1. Suppose it is true for all values iO = 1, 2, ..., kO. A BkO+1
tree is formed by attaching a BkO tree to the root of a BkO tree. Thus by induction, it contains
a BO0 through BkO−1 tree, as well as the newly attached BkO tree, proving the claim.

6.28 Proof is by induction. Clearly the claim is true for kO = 1. Assume true for all values iO = 1,
2, ..., kO. A BkO+1 tree is formed by attaching a BkO tree to the original BkO tree. The original

-34-

thus had (d
k) nodes at depth dO. The attached tree had (dO−1

k) nodes at depth dO−1,

which are now at depth dO. Adding these two terms and using a well-known formula estab-
lishes the theorem.

6.29

4

13 15 23

18 24

65

51

12

21 24

65

14

26 16

18

2

29

55

11

6.30 This is established in Chapter 11.

6.31 The algorithm is to do nothing special − merely InsertO them. This is proved in Chapter 11.

6.35 Don’t keep the key values in the heap, but keep only the difference between the value of the
key in a node and the value of the key in its parent.

6.36 OO(NO + kOlog NO) is a better bound than OO(NOlog kO). The first bound is OO(NO) if
kO = OO(NO / log NO). The second bound is more than this as soon as kO grows faster than a
constant. For the other values Ω(NO / log NO) = kO = ο(NO), the first bound is better. When
kO = Θ(NO), the bounds are identical.

-35-

