
Chapter 8: The Disjoint Set ADT

8.1 We assume that unions operated on the roots of the trees containing the arguments. Also, in
case of ties, the second tree is made a child of the first. Arbitrary union and union by height
give the same answer (shown as the first tree) for this problem. Union by size gives the
second tree.

2 6

1

4

3

5 7 10 11 12 13

8

9

14

15 16

17

2 6

1 4

3

5 7 10 11 12 13

8

9

14

15 16

17

8.2 In both cases, have nodes 16 and 17 point directly to the root.

8.4 Claim: A tree of height HO has at least 2HO nodes. The proof is by induction. A tree of
height 0 clearly has at least 1 node, and a tree of height 1 clearly has at least 2. Let TO be the
tree of height HO with fewest nodes. Thus at the time of TO’s last union, it must have been a
tree of height HO−1, since otherwise TO would have been smaller at that time than it is now
and still would have been of height HO, which is impossible by assumption of TO’s minimal-
ity. Since TO’s height was updated, it must have been as a result of a union with another tree
of height HO−1. By the induction hypothesis, we know that at the time of the union, TO had
at least 2HO−1 nodes, as did the tree attached to it, for a total of 2HO nodes, proving the claim.
Thus an NO-node tree has depth at most OIlog NOK.

8.5 All answers are OO(MO) because in all cases α(MO, NO) = 1.

8.6 Assuming that the graph has only nine vertices, then the union/find tree that is formed is
shown here. The edge (4,6) does not result in a union because at the time it is examined, 4
and 6 are already in the same component. The connected components are {1,2,3,4,6} and

-42-



{5,7,8,9}.

1

2 3

4 6

5

7 8

9

8.8 (a) When we perform a union, we push onto a stack the two roots and the old values of their
parents. To implement a Deunion,O we only have to pop the stack and restore the values.
This strategy works fine in the absence of path compression.

(b) If path compression is implemented, the strategy described in part (a) does not work
because path compression moves elements out of subtrees. For instance, the sequence
Union(1,2), Union(3,4), Union(1,3), Find(4), Deunion(1,3) will leave 4 in set 1 if path
compression is implemented.

8.9 We assume that the tree is implemented with pointers instead of a simple array. Thus FindO
will return a pointer instead of an actual set name. We will keep an array to map set
numbers to their tree nodes. Union and FindO are implemented in the standard manner. To
perform Remove(X),O first perform a Find(X)O with path compression. Then mark the node
containing XO as vacant. Create a new one-node tree with XO and have it pointed to by the
appropriate array entry. The time to perform a RemoveO is the same as the time to perform a
Find,O except that there potentially could be a large number of vacant nodes. To take care of
this, after NO RemoveOs are performed, perform a FindO on every node, with path compres-
sion. If a FindO(XO) returns a vacant root, then place XO in the root node, and make the old
node containing XO vacant. The results of Exercise 8.11 guarantee that this will take linear
time, which can be charged to the NO RemoveOs. At this point, all vacant nodes (indeed all
nonroot nodes) are children of a root, and vacant nodes can be disposed (if an array of
pointers to them has been kept). This also guarantees that there are never more than 2NO
nodes in the forest and preserves the MOα(MO, NO) asymptotic time bound.

8.11 Suppose there are uO UnionOs and PfOO FindOs. Each union costs constant time, for a total of uO.
A FindO costs one unit per vertex visited. We charge, as in the text, under the following
slightly modified rules:

(A) the vertex is a root or child of the root

(B) otherwise

Essentially, all vertices are in one rank group. During any Find,O there can be at most two
rule (A) charges, for a total of 2fOO. Each vertex can be charged at most once under rule (B)
because after path compression it will be a child of the root. The number of vertices that are
not roots or children of roots is clearly bounded by uO, independent of the unioning strategy,
because each UnionO changes exactly one vertex from root to nonroot status, and this bounds
the number of type (B) nodes. Thus the total rule (B) charges are at most uO. Adding all
charges gives a bound of 2fOO + 2uO, which is linear in the number of operations.

8.13 For each vertex vO, let the pseudorank RvO be defined as OAIlog SvOO
A
K, where SvO is the number of

descendents (including itself) of vO in the final tree, after all UnionOs are performed, ignoring

-43-



path compression.

Although the pseudorank is not maintained by the algorithm, it is not hard to show that the
pseudorank satisfies the same properties as the ranks do in union-by-rank. Clearly, a vertex
with pseudorank RvO has at least 2RvO descendents (by its definition), and the number of ver-
tices of pseudorank RO is at most NO/ 2RO. The union-by-size rule ensures that the parent of a
node has twice as many descendents as the node, so the pseudoranks monotonically increase
on the path toward the root if there is no path compression. The argument in Lemma 8.3
tells us that path compression does not destroy this property.

If we partition the vertices by pseudoranks and assign the charges in the same manner as in
the text proof for union-by-rank, the same steps follow, and the identical bound is obtained.

8.14 This is most conveniently implemented without recursion and is faster because, even if full
path compression is implemented nonrecursively, it requires two passes up the tree. This
requires only one. We leave the coding to the reader since comparing the various UnionO
and FindO strategies is a reasonable programming project. The worst-case running time
remains the same because the properties of the ranks are unchanged. Instead of charging
one unit to each vertex on the path to the root, we can charge two units to alternating ver-
tices (namely, the vertices whose parents are altered by path halving). These vertices get
parents of higher rank, as before, and the same kind of analysis bounds the total charges.

-44-


