
Chapter 9: Graph Algorithms

9.1 The following ordering is arrived at by using a queue and assumes that vertices appear on an
adjacency list alphabetically. The topological order that results is then

s, G, D, H, A, B, E, I, F, C, t

9.2 Assuming the same adjacency list, the topological order produced when a stack is used is
s, G, H, D, A, E, I, F, B, C, t

Because a topological sort processes vertices in the same manner as a breadth-first search, it
tends to produce a more natural ordering.

9.4 The idea is the same as in Exercise 5.10.

9.5 (a) (Unweighted paths) A->B, A->C, A->B->G, A->B->E, A->C->D, A->B->E->F.

(b) (Weighted paths) A->C, A->B, A->B->G, A->B->G->E, A->B->G->E->F, A->B->G-
>E->D.

9.6 We’ll assume that Dijkstra’s algorithm is implemented with a priority queue of vertices that
uses the DecreaseKeyO operation. Dijkstra’s algorithm uses O|OEO|O DecreaseKeyO operations,
which cost OO(logdOO|OVO|O) each, and O|OVO|O DeleteMinO operations, which cost OO(dOlogdOO|OVO|O)
each. The running time is thus OO(O|OEO|OlogdOO|OVO|O + O|OVO|OdOlogdOO|OVO|O). The cost of the
DecreaseKeyO operations balances the InsertO operations when dO = O|OEO|O/O|OVO|O. For a sparse
graph, this might give a value of dO that is less than 2; we can’t allow this, so dO is chosen to
be max (2,OIO|OEO|O/O|OVO|OOK). This gives a running time of OO(O|OEO|Olog2 + O|OEO|O/O|OVO|OO|OVO|O), which is a
slight theoretical improvement. Moret and Shapiro report (indirectly) that dO-heaps do not
improve the running time in practice.

9.7 (a) The graph shown here is an example. Dijkstra’s algorithm gives a path from AO to CO of
cost 2, when the path from AO to BO to CO has cost 1.

A

C

B

2

3

-2

(b) We define a pass of the algorithm as follows: Pass 0 consists of marking the start vertex
as known and placing its adjacent vertices on the queue. For PjO > 0, pass PjO consists of mark-
ing as known all vertices on the queue at the end of pass PjO − 1. Each pass requires linear
time, since during a pass, a vertex is placed on the queue at most once. It is easy to show by
induction that if there is a shortest path from sO to vO containing kO edges, then dvO will equal
the length of this path by the beginning of pass kO. Thus there are at most O|OVO|O passes,

-45-

giving an OO(O|OEO|OO|OVO|O) bound.

9.8 See the comments for Exercise 9.19.

9.10 (a) Use an array CountO such that for any vertex uO, Count[u]O is the number of distinct paths
from sO to uO known so far. When a vertex vO is marked as known, its adjacency list is
traversed. Let wO be a vertex on the adjacency list.

If dvO + cvO,wO = dwO, then increment Count[w]O by Count[v]O because all shortest paths from sO
to vO with last edge (vO,wO) give a shortest path to wO.
If dvO + cvO,wO < dwO, then pwO and dwO get updated. All previously known shortest paths to wO
are now invalid, but all shortest paths to vO now lead to shortest paths for wO, so set
Count[w]O to equal Count[v].O Note: Zero-cost edges mess up this algorithm.

(b) Use an array NumEdgesO such that for any vertex uO, NumEdges[u]O is the shortest
number of edges on a path of distance duO from sO to uO known so far. Thus NumEdgesO is
used as a tiebreaker when selecting the vertex to mark. As before, vO is the vertex marked
known, and wO is adjacent to vO.
If dvO + cvO,wO = dwO, then change pwO to vO and NumEdges[w]O to NumEdges[v]+1O if
NumEdges[v]+1 < NumEdges[w].

If dvO + cvO,wO < dwO, then update pwO and dwO, and set NumEdges[w]O to NumEdges[v]+1.O
9.11 (This solution is not unique).

First send four units of flow along the path s, G, H, I, t. This gives the following residual
graph:

s

A

D

G

B

E

H

C

F

I

t

1

4

2

2

2

3

3

2 1

2

2

2

3

32

2

41

3

1 4

4

4 4

Next, send three units of flow along s, D, E, F, t. The residual graph that results is as fol-
lows:

s

A

D

G

B

E

H

C

F

I

t

1

1
32

2

2

3

3

2 1

2

2

2

3

32

2

41

3

1 4

4

4 4

Now two units of flow are sent along the path s, G, D, A, B, C, t, yielding the following
residual graph:

-46-

s

A

D

G

B

E

H

C

F

I

t

1

1
3

2

2

3

1

2

2 1

2

2

2

3

32

2

2

21

3

1 4
6

4 4

One unit of flow is then sent along s, D, A, E, C, t:

s

A

D

G

B

E

H

C

F

I

t

1

4

2

1

1 3
3

2 1

2

2

1

13

32

2

1

31

3

1 4
6

4 4

Finally, one unit of flow can go along the path s, A, E, C, t:

s

A

D

G

B

E

H

C

F

I

t

1

4

2

2

3
3

2 1

2

2

2

3

32

2

4
1

3

1 4
6

4 4

The preceding residual graph has no path from s to t. Thus the algorithm terminates. The
final flow graph, which carries 11 units, is as follows:

s

A

D

G

B

E

H

C

F

I

t

1

4

6

2

2

3

3

2 0

4

2

2

3

00

4

40

3

0 4

This flow is not unique. For instance, two units of the flow that goes from G to D to A to E
could go by G to H to E.

-47-

9.12 Let TO be the tree with root rO, and children rO1, rO2, ..., rkO, which are the roots of TO1, TO2, ...,
TkO, which have maximum incoming flow of cO1, cO2, ..., ckO, respectively. By the problem
statement, we may take the maximum incoming flow of rO to be infinity. The recursive
function FindMaxFlow(T, IncomingCap) finds the value of the maximum flow in TO
(finding the actual flow is a matter of bookkeeping); the flow is guaranteed not to exceed
IncomingCapO.
If TO is a leaf, then FindMaxFlowO returns IncomingCapO since we have assumed a sink of
infinite capacity. Otherwise, a standard postorder traversal can be used to compute the max-
imum flow in linear time.

__

FlowType
FindMaxFlow(Tree T, FlowType IncomingCap)
{

FlowType ChildFlow, TotalFlow;

if(IsLeaf(T))
return IncomingCap;

else
{

TotalFlow = 0;
for(each subtree TiO of T)
{

ChildFlow = FindMaxFlow(TiO, min(IncomingCap, ciO));
TotalFlow += ChildFlow;
IncomingCap -= ChildFlow;

}
return TotalFlow;

}
}

__

9.13 (a) Assume that the graph is connected and undirected. If it is not connected, then apply the
algorithm to the connected components. Initially, mark all vertices as unknown. Pick any
vertex vO, color it red, and perform a depth-first search. When a node is first encountered,
color it blue if the DFS has just come from a red node, and red otherwise. If at any point,
the depth-first search encounters an edge between two identical colors, then the graph is not
bipartite; otherwise, it is. A breadth-first search (that is, using a queue) also works. This
problem, which is essentially two-coloring a graph, is clearly solvable in linear time. This
contrasts with three-coloring, which is NP-complete.

(b) Construct an undirected graph with a vertex for each instructor, a vertex for each course,
and an edge between (vO,wO) if instructor vO is qualified to teach course wO. Such a graph is
bipartite; a matching of MO edges means that MO courses can be covered simultaneously.

(c) Give each edge in the bipartite graph a weight of 1, and direct the edge from the instruc-
tor to the course. Add a vertex sO with edges of weight 1 from sO to all instructor vertices.
Add a vertex tO with edges of weight 1 from all course vertices to tO. The maximum flow is
equal to the maximum matching.

-48-

(d) The running time is OO(O|OEO|OO|OVO|O ⁄1
2) because this is the special case of the network flow

problem mentioned in the text. All edges have unit cost, and every vertex (except sO and tO)
has either an indegree or outdegree of 1.

9.14 This is a slight modification of Dijkstra’s algorithm. Let PfOiO be the best flow from sO to iO at
any point in the algorithm. Initially, PfOiO = 0 for all vertices, except sO: PfOsO = ∞.

At each stage, we select vO such that PfOvO is maximum among all unknown vertices. Then for
each wO adjacent to vO, the cost of the flow to wO using vO as an intermediate is min (PfOvO,cvO,wO).
If this value is higher than the current value of PfOwO, then PfOwO and pwO are updated.

9.15 One possible minimum spanning tree is shown here. This solution is not unique.

A B C

D E F G

H I J

4

2

3

2

1

3

2

7

1

9.16 Both work correctly. The proof makes no use of the fact that an edge must be nonnegative.

9.17 The proof of this fact can be found in any good graph theory book. A more general theorem
follows:

Theorem: Let GO = (VO, EO) be an undirected, unweighted graph, and let AO be the adjacency
matrix for GO (which contains either 1s or 0s). Let DO be the matrix such that DO[vO][vO] is
equal to the degree of vO; all nondiagonal matrices are 0. Then the number of spanning trees
of GO is equal to the determinant of AO + DO.

9.19 The obvious solution using elementary methods is to bucket sort the edge weights in linear
time. Then the running time of Kruskal’s algorithm is dominated by the Union/FindO opera-
tions and is OO(O|OEO|Oα(O|OEO|O,O|OVO|O)). The Van-Emde Boas priority queues (see Chapter 6 refer-
ences) give an immediate OO(O|OEO|OloglogO|OVO|O) running time for Dijkstra’s algorithm, but this
isn’t even as good as a Fibonacci heap implementation.

More sophisticated priority queue methods that combine these ideas have been proposed,
including M. L. Fredman and D. E. Willard, "Trans-dichotomous Algorithms for Minimum
Spanning Trees and Shortest Paths," Proceedings of the Thirty-first Annual IEEE Sympo-
sium on the Foundations of Computer Science (1990), 719-725. The paper presents a
linear-time minimum spanning tree algorithm and an OO(O|OEO|O+O|OVO|O logO|OVO|O/ loglogO|OVO|O)
implementation of Dijkstra’s algorithm if the edge costs are suitably small.

9.20 Since the minimum spanning tree algorithm works for negative edge costs, an obvious solu-
tion is to replace all the edge costs by their negatives and use the minimum spanning tree
algorithm. Alternatively, change the logic so that < is replaced by >, MinO by MaxO, and vice
versa.

9.21 We start the depth-first search at AO and visit adjacent vertices alphabetically. The articula-
tion points are CO, EO, and FO. CO is an articulation point because LowO[BO] ≥ NumO[CO]; EO is an

-49-

articulation point because LowO[HO] ≥ NumO[EO]; and FO is an articulation point because
LowO[GO] ≥ NumO[FO]; the depth-first spanning tree is shown in Fig. 9.1.

A 1/1

C 2/1

B 3/2 D 11/1

E 4/2

F 5/2

G 6/6

H 7/4

J 8/4

K 9/4

I 10/4

Fig. 9.1.

9.22 The only difficult part is showing that if some nonroot vertex aO is an articulation point, then
there is no back edge between any proper descendent of aO and a proper ancestor of aO in the
depth-first spanning tree. We prove this by a contradiction.

Let uO and vO be two vertices such that every path from uO to vO goes through aO. At least one
of uO and vO is a proper descendent of aO, since otherwise there is a path from uO to vO that
avoids aO. Assume without loss of generality that uO is a proper descendent of aO. Let cO be
the child of aO that contains uO as a descendent. If there is no back edge between a descen-
dent of cO and a proper ancestor of aO, then the theorem is true immediately, so suppose for
the sake of contradiction that there is a back edge (sO, tO). Then either vO is a proper descen-
dent of aO or it isn’t. In the second case, by taking a path from uO to sO to tO to vO, we can
avoid aO, which is a contradiction. In the first case, clearly vO cannot be a descendent of cO, so
let c'O be the child of aO that contains vO as a descendent. By a similar argument as before, the
only possibility is that there is a back edge (s'O, t'O) between a descendent of c'O and a proper
ancestor of aO. Then there is a path from uO to sO to tO to t'O to s'O to vO; this path avoids aO,
which is also a contradiction.

-50-

9.23 (a) Do a depth-first search and count the number of back edges.

(b) This is the feedback edge set problem. See reference [1] or [20].

9.24 Let (vO,wO) be a cross edge. Since at the time wO is examined it is already marked, and wO is
not a descendent of vO (else it would be a forward edge), processing for wO is already com-
plete when processing for vO commences. Thus under the convention that trees (and sub-
trees) are placed left to right, the cross edge goes from right to left.

9.25 Suppose the vertices are numbered in preorder and postorder.

If (vO,wO) is a tree edge, then vO must have a smaller preorder number than wO. It is easy to see
that the converse is true.

If (vO,wO) is a cross edge, then vO must have both a larger preorder and postorder number than
wO. The converse is shown as follows: because vO has a larger preorder number, wO cannot be
a descendent of vO; because it has a larger postorder number, vO cannot be a descendent of wO;
thus they must be in different trees.

Otherwise, vO has a larger preorder number but is not a cross edge. To test if (vO,wO) is a back
edge, keep a stack of vertices that are active in the depth-first search call (that is, a stack of
vertices on the path from the current root). By keeping a bit array indicating presence on
the stack, we can easily decide if (vO,wO) is a back edge or a forward edge.

9.26 The first depth-first spanning tree is

A

B

C

D E

F

G

GrO, with the order in which to perform the second depth-first search, is shown next. The
strongly connected components are {F} and all other vertices.

-51-

A,7

B,6

C,4

D,2

E,3

F,1

G,5

9.28 This is the algorithm mentioned in the references.

9.29 As an edge (vO,wO) is implicitly processed, it is placed on a stack. If vO is determined to be an
articulation point because LowO[wO] ≥ NumO[vO], then the stack is popped until edge (vO,wO) is
removed: The set of popped edges is a biconnected component. An edge (vO,wO) is not
placed on the stack if the edge (wO,vO) was already processed as a back edge.

9.30 Let (uO,vO) be an edge of the breadth-first spanning tree. (uO,vO) are connected, thus they must
be in the same tree. Let the root of the tree be rO; if the shortest path from rO to uO is duO, then
uO is at level duO; likewise, vO is at level dvO. If (uO,vO) were a back edge, then duO > dvO, and vO is
visited before uO. But if there were an edge between uO and vO, and vO is visited first, then
there would be a tree edge (vO,uO), and not a back edge (uO,vO). Likewise, if (uO,vO) were a for-
ward edge, then there is some wO, distinct from uO and vO, on the path from uO to vO; this con-
tradicts the fact that dvO = dwO + 1. Thus only tree edges and cross edges are possible.

9.31 Perform a depth-first search. The return from each recursive call implies the edge traversal
in the opposite direction. The time is clearly linear.

9.33 If there is an Euler circuit, then it consists of entering and exiting nodes; the number of
entrances clearly must equal the number of exits. If the graph is not strongly connected,
there cannot be a cycle connecting all the vertices. To prove the converse, an algorithm
similar in spirit to the undirected version can be used.

9.34 Neither of the proposed algorithms works. For example, as shown, a depth-first search of a
biconnected graph that follows A, B, C, D is forced back to A, where it is stranded.

A B

D C

FE

9.35 These are classic graph theory results. Consult any graph theory for a solution to this exer-
cise.

9.36 All the algorithms work without modification for multigraphs.

-52-

9.37 Obviously, GO must be connected. If each edge of GO can be converted to a directed edge
and produce a strongly connected graph G'O, then GO is convertible.O
Then, if the removal of a single edge disconnects GO, GO is not convertible since this would
also disconnect G'O. This is easy to test by checking to see if there are any single-edge
biconnected components.

Otherwise, perform a depth-first search on GO and direct each tree edge away from the root
and each back edge toward the root. The resulting graph is strongly connected because, for
any vertex vO, we can get to a higher level than vO by taking some (possibly 0) tree edges and
a back edge. We can apply this until we eventually get to the root, and then follow tree
edges down to any other vertex.

9.38 (b) Define a graph where each stick is represented by a vertex. If stick SiO is above SPjO and
thus must be removed first, then place an edge from SiO to SPjO. A legal pick-up ordering is
given by a topological sort; if the graph has a cycle, then the sticks cannot be picked up.

9.39 Given an instance of clique, form the graph G'O that is the complement graph of GO: (vO,wO) is
an edge in G'O if and only if it is not an edge in GO. Then G'O has a vertex cover of at most
O|OVO|O − KO if GO has a clique of size at least KO. (The vertices that form the vertex cover are
exactly those not in the clique.) The details of the proof are left to the reader.

9.40 A proof can be found in Garey and Johnson [20].

9.41 Clearly, the baseball card collector problem (BCCP) is in NPO, because it is easy to check if
KO packets contain all the cards. To show it is NP-complete, we reduce vertex cover to it.
Let GO = (VO, EO) and KO be an instance of vertex cover. For each vertex vO, place all edges
adjacent to vO in packet PvO. The KO packets will contain all edges (baseball cards) iff GO can
be covered by KO vertices.

-53-

