

Faculty of Engineering and Tecnology

Computer Science Department

Graphs_2

Graphs Search Algorithms

Shortest-Path Algorithms

- Single-Source shortest path: find the shortest path from a source vertex s to all vertices in a graph
- Single-Destination shortest path: find a shorter path to a given destination vertex d from all vertices in a graph
- Single-Pair shortest path: find the shortest path from a source vertex u to a destination vertex v
- All-Pairs shortest path: find the shortest path from a source vertex u
 to a destination vertex v for all vertices u and v in the graph

Shortest-Path Algorithms

- Shortest-path algorithms aim at finding the shortest path between nodes in a graph
- The input is a weighted graph: associated with each edge (v_i, v_j) is a cost $c_{i,j}$ to traverse the edge
- The cost of a path $v_1 v_2 \dots v_N$ is $\sum_{i=1}^{N-1} c_{i, i+1}$
- This is referred to as the weighted path length
- The unweighted path length is the number of edges on the path,
 namely, N 1

Single-Source Shortest-Path Algorithms

- Given as input a weighted graph, G = (V, E), and a distinguished vertex, s, find the shortest weighted path from s to every other vertex in G.
- For example, the shortest weighted path from v₁ to v₆ has a cost of 6 and goes from v₁ to v₄ to v₇ to v₆
- The shortest unweighted path between these vertices is 2

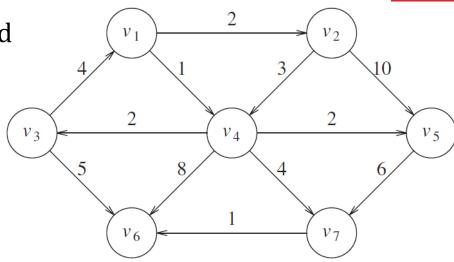
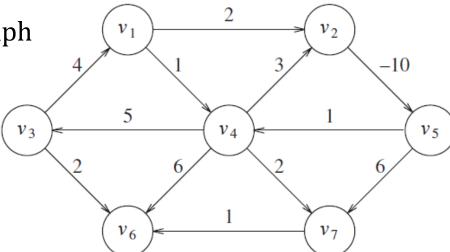


Figure 9.8 A directed graph *G*

Single-Source Shortest-Path Algorithms

 Having negative weights in the graph may cause some problems.

- The path from v_5 to v_4 has cost 1, but a shorter path exists by following the loop v_5 , v_4 , v_2 , v_5 , v_4 , which has a cost of -5
- This path is still not the shortest, because we could stay in the loop Figure 9.9 A graph with a negative-cost cycle arbitrarily long.
- Thus, the shortest path between these two points is undefined.



Single-Source Shortest-Path Algorithms

Another example, the shortest path

• from v_1 to v_6 is undefined, because we can get into the same loop.

This loop is known as a
 negative-cost cycle; when one is
 present in the graph, the shortest paths
 are not defined.

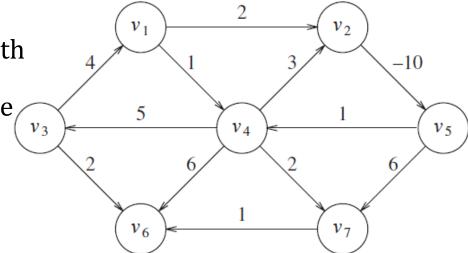
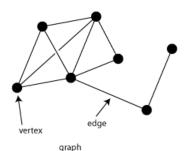


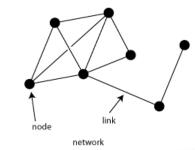
Figure 9.9 A graph with a negative-cost cycle

- Negative-cost edges are not necessarily bad, as the cycles are, but their presence seems to make the problem harder.
- For convenience, in the absence of a negative-cost cycle, the shortest path from *s* to *s* is zero.

- There are many examples where we might want to solve the shortest-path problem.
- If the vertices represent computers; the edges represent a link between computers; and the costs represent communication costs (phone bill per megabyte of data), delay costs (number of seconds required to transmit a megabyte), or a combination of these and other factors, then we can use the shortest-path algorithm to find

the cheapest way to send electronic news from one computer to a set of other computers.





- Another example is to model an airplane (or transportation routes) by graphs and use a shortest path algorithm to compute the best route between two points.
- In this and many practical applications, we might want to find the shortest path from one vertex, *s*, to only one other vertex, *t*.
- Currently there are no algorithms in which finding the path from *s* to one vertex is any faster (by more than a constant factor) than finding the path from *s* to all vertices.
- We will solve 4 variations of this problem

- Given an unweighted graph, G. Using some vertex, s, which is an input parameter, we want to find the shortest path from s
- v_3 v_7

Figure 9.10 An unweighted directed graph *G*

- We are only interested in the number of edges contained on the path (because there are no weights).
- This is clearly a special case of the weighted shortest-path problem, since we could assign all edges a weight of 1.

to all other vertices.

- Suppose we are interested in the length
 of the shortest path not in the
 actual paths themselves. Keeping track of
 the actual paths will turn out to be a
 matter of simple bookkeeping.
- v_1 v_2 v_3 v_4 v_5

Figure 9.10 An unweighted directed graph *G*

- Suppose we choose s to be v_3 .
- Immediately, we can tell that the shortest path from s to v_3 is then a path of length 0.
- We can mark this information and then obtain the following graph

- Now look for vertices that are distant by 1 from s (v₃), which are the adjacent vertices of s.
- v₁ and v₆ are the adjacent vertices to s.

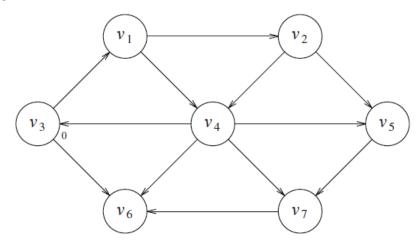


Figure 9.11 Graph after marking the start node as reachable in zero edges

- Now find vertices whose shortest path from s is exactly 2, by finding all the vertices adjacent to v_1 and v_6 (the vertices at distance 1).
- v₂ and v₄ are the adjacent vertices to s.

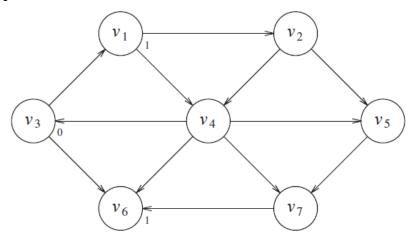


Figure 9.12 Graph after finding all vertices whose path length from s is 1

• Finally we can find, by examining vertices adjacent to the recently evaluated v_2 and v_4 , that v_5 and v_7 have a shortest path of three edges.

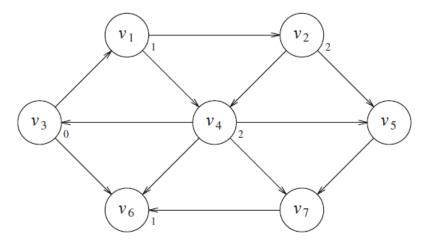


Figure 9.13 Graph after finding all vertices whose shortest path is 2

- Now all vertices have been calculated.
- This strategy of searching a graph is known as Breadth-First Search (BFS).
- It operates by processing vertices in layers: The vertices closest to the start are evaluated first, and the most distant vertices are evaluated last. v_3
- This is much the same as a level-order traversal for trees.

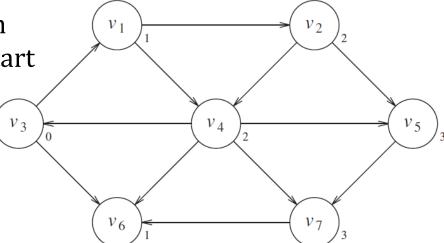


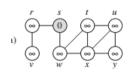
Figure 9.14 Final shortest paths

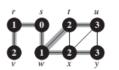
- The BFS can be implemented by adapting the following table
- First, for each vertex, keep its distance from s in the entry d_v (initially all vertices are unreachable except for s, whose path length is 0).
- Variable p_v is the bookkeeping variable, which will allow us to print the actual paths.

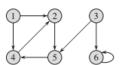
	allow us to print the actual paths.	v /
•	Variable known is set to true after a vertex is proces	ssed.

- Initially, all entries are not known, including the start vertex.
- When a vertex is marked known, we have a guarantee that no cheaper path will ever be found, and so processing for that vertex is essentially complete


```
BFS(G,s)
 1 for each vertex u \in G.V - \{s\}
         u.color = WHITE
         u.d = \infty
         u.\pi = NIL
 5 \quad s.color = GRAY
    s.d = 0
 7 s.\pi = NIL
    O = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
11
         u = \text{DEQUEUE}(Q)
12
         for each v \in G.Adi[u]
13
             if v.color == WHITE
                 v.color = GRAY
14
15
                 v.d = u.d + 1
16
                 v.\pi = u
17
                 ENQUEUE(O, v)
18
         u.color = BLACK
```





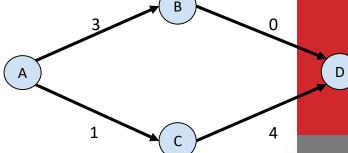


What is the time complexity for BFS?

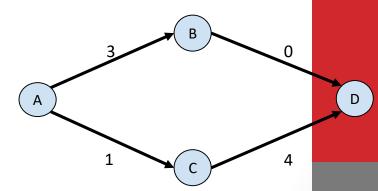
18

- If the graph is weighted, the problem becomes harder, but we can still use the ideas from the unweighted case.
- Dijkstra's algorithm solves the problem of finding the shortest path from a vertex (source) to another vertex (destination).

 For example, you want to get from one city to another in the fastest possible way?

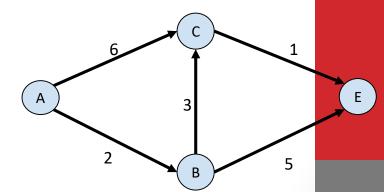


- BFS is to find the shortest path between two points.
- "Shortest path" means the path with the fewest segments.
- But in Dijkstra's algorithm, a weight is assigned to each edge.
- Then Dijkstra's algorithm finds the path with the smallest total weight.

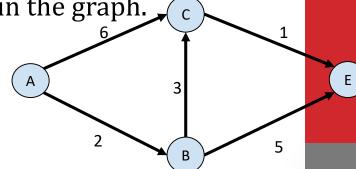


- Dijkstra's algorithm computes shortest paths for positive numbers.
- However, if one allows negative numbers, the algorithm will fail.
- Alternatively, the Bellman-Ford algorithm can be used.
- Dijkstra's algorithm is considered as a prime example of a greedysearch algorithm.
- Greedy algorithms generally solve a problem in stages by doing what appears to be the best thing at each stage.

- Dijkstra's algorithm computes the cost of the shortest path from a starting vertex to all other vertices in the graph.
- Consider the following graph: Starting point 'A', destination 'E'.
- If we run this using the BFS, we will end-up with the cost of 7 (6+1)
- We aim at finding the destination is less time! (if exists)



- 4-basic steps for Dijkstra's algorithm:
- 1. Find the node with the minimal cost. This is the node you can get to in the least amount of time.
- 2. Update the costs of the neighbor nodes.
- Repeat until this is done for every node in the graph.
- 4. Calculate the final path.



- At each stage:
 - Select an unknown vertex v that has the smallest d_v
 - Declare that the shortest path from s to v is known.
 - For each vertex w adjacent to v:
 - Set its distance d_w to the d_v + cost_{v,w}
 - Set its path p_w to v.

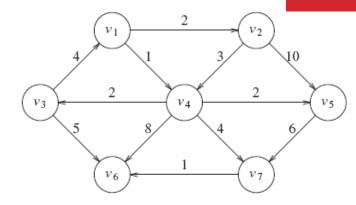
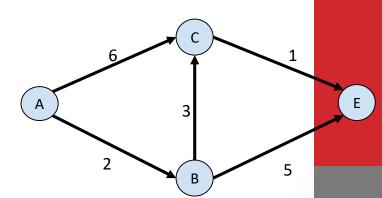


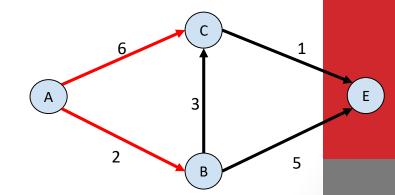
Figure 9.20 The directed graph G (again)

- Step 1: Find the node with the minimal cost.
- We are standing at the starting node 'A'. 'B' will take 6; and 'C' will take 2. We don't know the rest yet.
- As we don't know how long it will take to reach the destination, we will put it infinity.



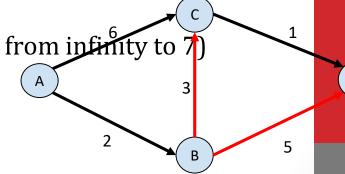
- Step 1: Find the node with the minimal cost.
- We are standing at the starting node 'A'. 'B' will take 6; and 'C' will take 2. We don't know the rest yet.
- As we don't know how long it will take to reach the destination, we will put it infinity.

Node	Cost to Node	
В	2	
С	6	
Destination	∞	



- **Step 2:** Calculate how long it takes to get to all of node B's neighbours by following an edge from B.
- Notice that there is a shorter path to C (2 + 3)
- When there is a shorter path for a neighbor of B, update its cost.
 In this Case
 - A shorter path to C (down from 6 to 5)
 - A shorter path to the destination (down from infinity to 7

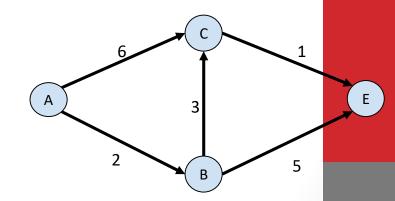
Node	Cost to Node	
В	2	
С	6 5	
Destination	∞ 7	



Dr. Radi Jarrar & Dr. Ahmad Abusnaina

- **Step 3:** Repeat the steps:
- Step 1 again: Find the node that takes the least cost to get to. We're
 done with node B, so node C has the next smallest estimate.

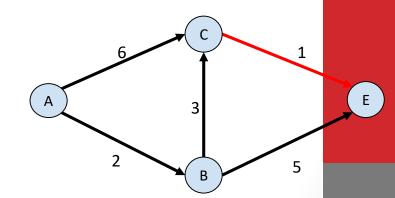
Node	Cost to Node	
В	2	
С	5	
Destination	7	



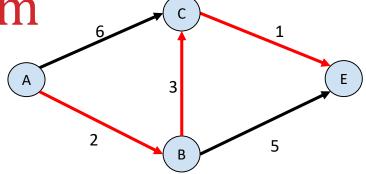
- Step 2 again: Update the cost of C's neighbours.
- We run Dijkstra's algorithm for every node (you don't need to run it
- for the finish node).
- At this point, you know
 - It takes 2 minutes to get to node B.
 - It takes 5 minutes to get to node C.

• It takes 6 minutes to get to the destination.

Node	Cost to	
	Node	
В	2	
С	5	
Destination	76	

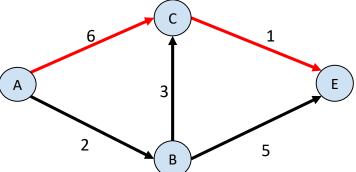


So the final path is



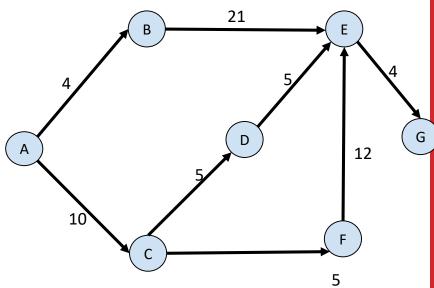
BFS wouldn't have found this as the shortest path, because it has three segments.

 And there's a way to get from the start to the destination in two segments.



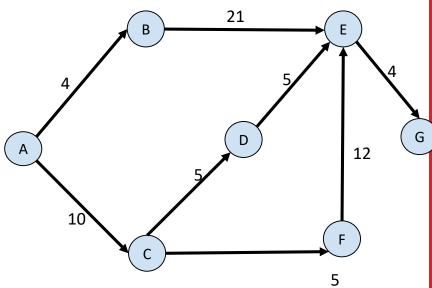
Dijkstra's Algorithm -Example

Node	Cost to Node	
A	0	
В	8	
С	8	
D	8	
Е	8	
F	8	
Destination	8	

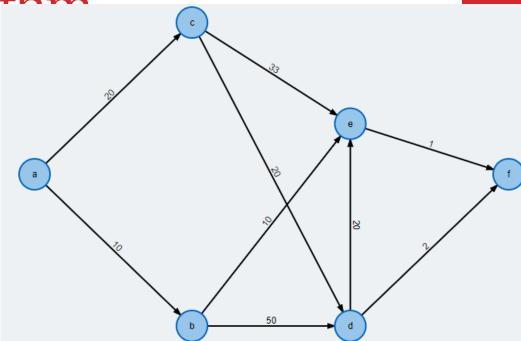


Dijkstra's Algorithm -Example

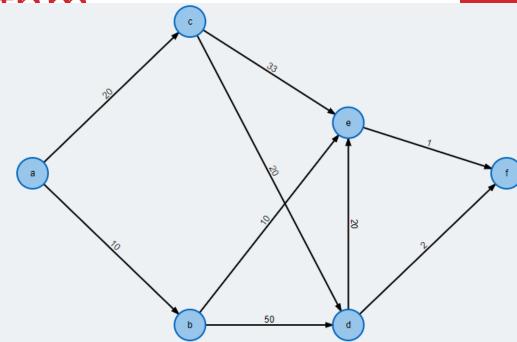
Node	Cost to Node	
A	0	
В	4	
С	10	
D	15	
Е	25 20	
F	18	
Destination	∞ 34 24	



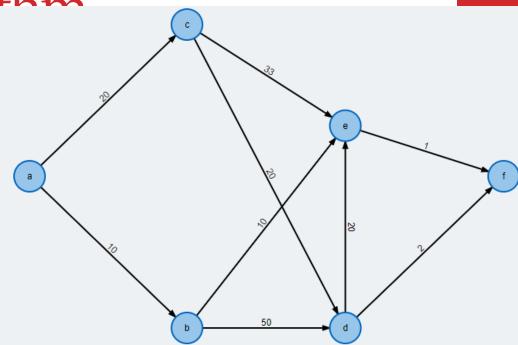
Node	Initial.	
A	0	
В	∞	
С	×	
D	∞	
E	∞	
Dest.	∞	



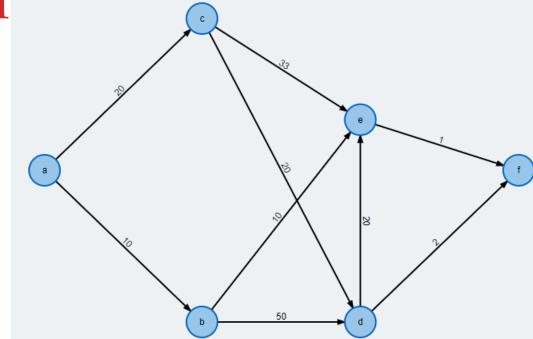
Node	Initial.	Step1	
A	0	0	
B ∞		10	
C ∞		20	
D ∞		8	
E	8	8	
Dest.	8	8	



Node	Initial.	Step1	Step2 (C)
A	0	0	0
В	8	10	10
С	8	20	20
D	8	8	40
E	8	8	53
Dest.	8	8	56



Node	Initi al.	Step 1	Step2 (C)	Step3 (B)
A	0	0	0	0
В	8	10	10	10
С	8	20	20	20
D	8	8	40	40
Е	8	8	53	20
Dest.	∞	∞	56	21



Dijkstra's Algorithm

Maintain 2 sets (arrays) of vertices:

S: a set of vertices whose shortest path from vertex s has been determined

Q: a set of vertices in V-S (uses Heaps)

*keys in Q are estimates of shortest path weights.

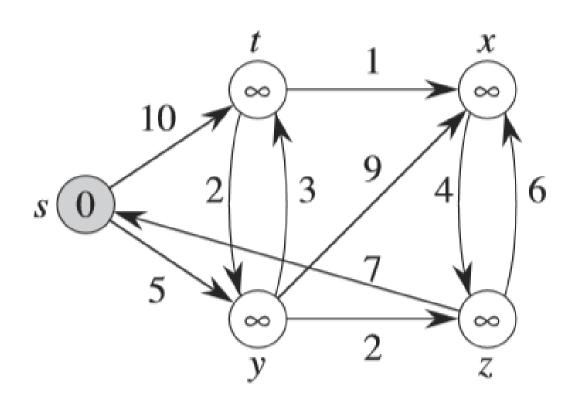
Dijkstra's Algorithm

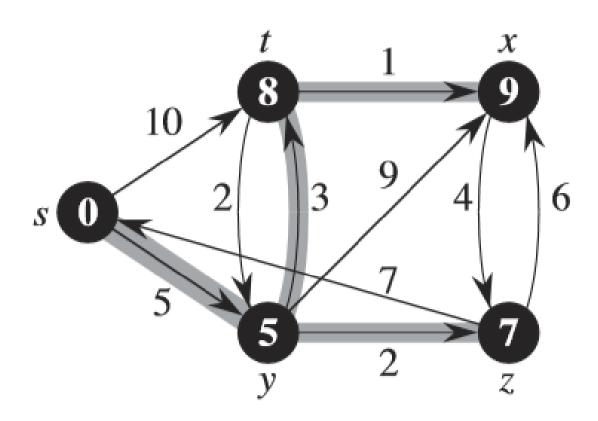
- 1. Store S in a heap with distance = 0
- 2. While there are vertices in the queue
 - 1. Delete Min a vertex v from queue
 - 2. For all adjacent vertices w:
 - 1. Compute new distance
 - 2. Update distance table
 - 3. Insert/update heap

Dijkstra's Algorithm

```
DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
S = \emptyset
Q = G.V
   while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(Q)
        S = S \cup \{u\}
        for each vertex v \in G.Adj[u]
            RELAX(u, v, w)
```


Extra Example





Dijkstra's Algorithm -

complexity

- 1. Each vertex is stored in the queue O(V)
- 2. Delete Min O(V log V)
- 3. Updating the queue (search and insert) O(log V)
 - 1. Performed at most for each edge O(E log V)
- 4. $O(E \log V + V \log V) = O((E + V) \log V)$

Edge Costs

- If the graph has negative edge costs, then Dijkstra's algorithm does not work.
- Bellman-Ford algorithm solves the single-source shortest path when there may be negative weights in the graph.
- It checks if there is a negative-weight cycle that is reachable from a source vertex
 - If exists; it indicates there is no solution exists
 - If no cycle; then the algorithm produces the shortest paths and their weights

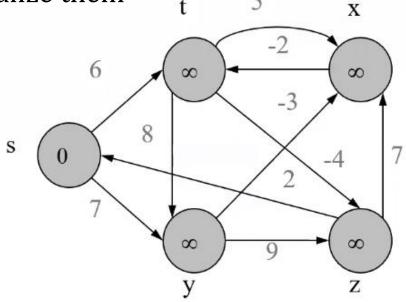
- Edge Costs
 N-Piterations should ensure that the shortest path is reached.
- The run-time is O(V.E)

Edge Costs

We will visit all vertices and initialize them

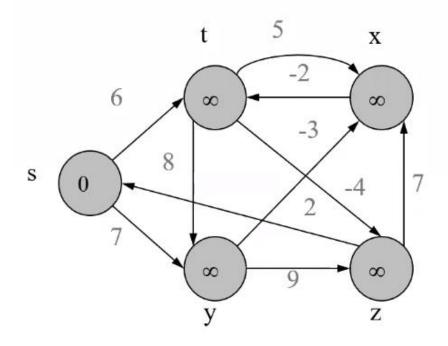
s is the source node

Node	Initial.
S	0
t	∞
у	8
X	8
Z	∞



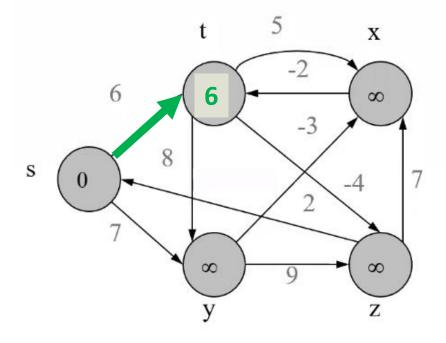
Edge Costs
• The adjacent of s are y and t.

Node	Initial.	Iter. 1
S	0	
t	∞	
у	∞	
X	8	
Z	8	



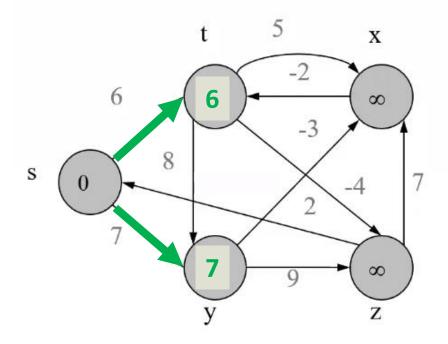
Edge Costs
• The adjacent of s are y and t.

Node	Initial.	Iter. 1
S	0	
t	8	6
у	∞	
X	∞	
Z	8	



Edge Costs
• The adjacent of s are y and t.

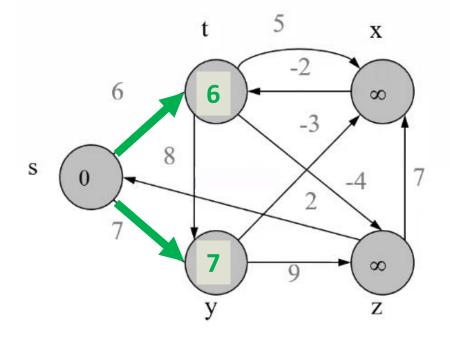
Node	Initial.	Iter. 1
S	0	
t	∞	6
у	∞	7
X	∞	
Z	8	



Edge Costs
Now we can reach x & z.

- We will check for all edges.
- Check for X

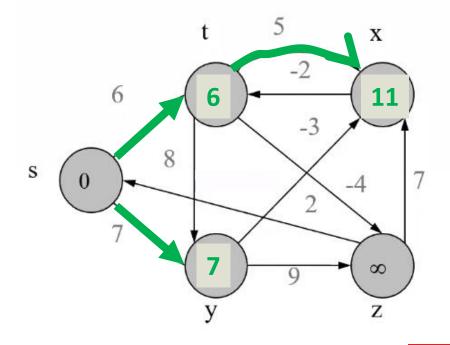
Node	Initial.	Iter. 1	Iter. 2
	0	0	
S	U	O	
t	∞	6	
у	∞	7	
X	8	8	
Z	8	8	



Edge Costs
Now we can reach x & z.

- We will check for all edges.
- Check for X

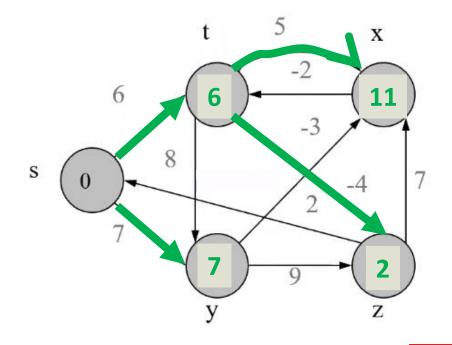
Node	Node Initial. Iter. 1		Iter. 2
S	0	0	
	U	U	
t	∞	6	6
у	8	7	7
X	8	8	11
Z	8	8	



Edge Costs
Now we can reach x & z.

- We will check for all edges.
- Check for X

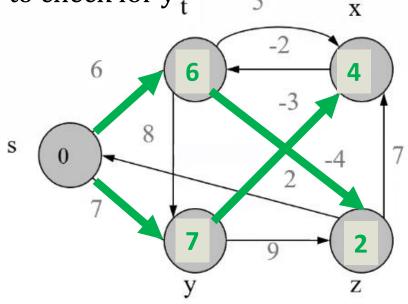
Node	Initial.	Iter. 1	Iter. 2
S	0	0	0
t	∞	6	6
у	∞	7	7
X	∞	8	11
Z	8	8	2



Edge Costs
Now we are done with t, we have to check for y_t

y to z = 16. y to x = 4.

Node	Initial.	Iter. 1	Iter. 2
S	0	0	0
t	∞	6	6
у	∞	7	7
X	×	8	11 4
Z	∞	8	2



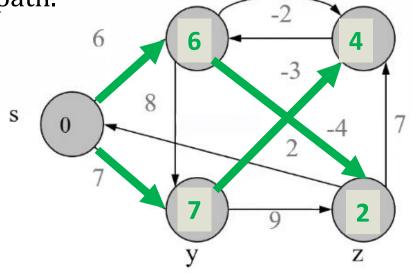
X

Graphs with Negative

Edge Costs
• After the new update on the edge, we have to check 5 for all edges if there is a shorter path.

We can find x->t

Node	Initial.	Iter. 1	Iter. 2	Iter. 2
S	0	0	0	
t	∞	6	6	
У	_∞	7	7	
X	∞	∞	4	
Z	∞	∞	2	



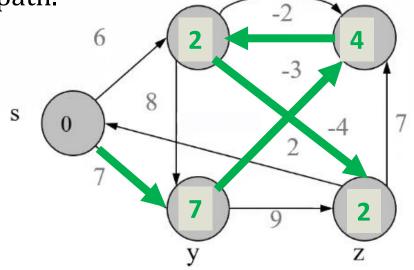
X

Graphs with Negative

Edge Costs
• After the new update on the edge, we have to check 5 for all edges if there is a shorter path.

We can find x->t

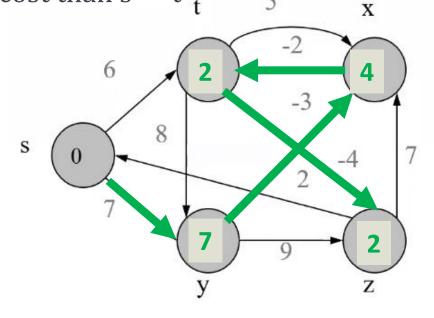
Node	Initial.	Iter. 1	Iter. 2	Iter. 3
S	0	0	0	0
t	∞	6	6	6 2
у	∞	7	7	7
Х	∞	∞	4	4
Z	_∞	8	2	2



Graphs with Negative Edge Costs

from $s \rightarrow y \rightarrow x \rightarrow t$ gives a shorter cost than $s \rightarrow t$

Node	Initial.	Iter. 1	Iter. 2	Iter. 3
	0	0	0	0
S	0	0	0	0
t	∞	6	6	2
у	8	7	7	7
х	8	8	4	4
Z	8	8	2	2



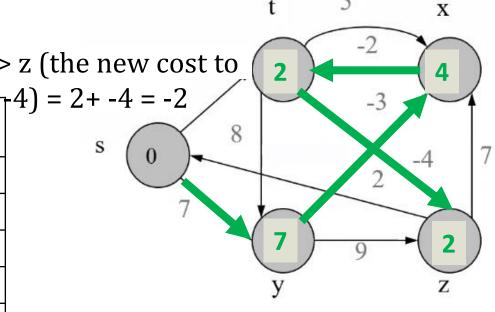
Graphs with Negative Edge Costs

Iteration 4

We check for all vertices

We can notice a change in t -> z (the new cost to

Node	ach t Initial	is 2, a Iter. 1	nd fro	o m t - Iter. 3	Z = Iter. 4
	-				
S	0	0	0	0	
t	∞	6	6	2	
у	∞	7	7	7	
X	∞	∞	4	4	
Z	∞	∞	2	2	



X

Graphs with Negative Edge Costs

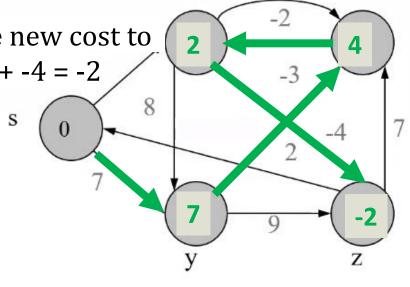
Iteration 4

We check for all vertices

We can notice a change in t -> z (the new cost to

reach t is 2, and from t -> z = -4) = 2 + -4 = -2

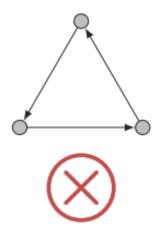
Node	Initial	Iter. 1	Iter. 2	Iter. 3	Iter. 4
	•				
S	0	0	0	0	0
t	8	6	6	2	2
у	8	7	7	7	7
X	8	8	4	4	4
Z	∞	8	2	2	-2

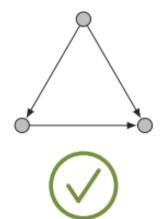


Bellman-Ford Algorithm

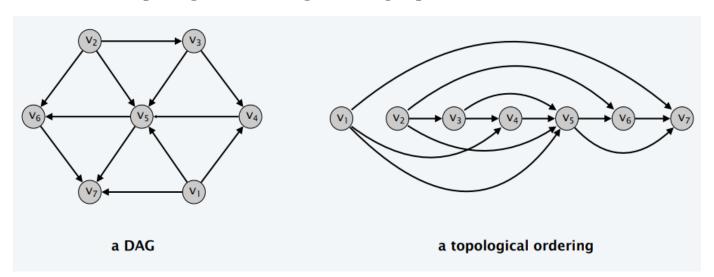
```
BELLMAN-FORD(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
  for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           RELAX(u, v, w)
   for each edge (u, v) \in G.E
                                       O(VE)
       if v.d > u.d + w(u, v)
            return FALSE
   return TRUE
```


- We want to find the shortest path in acyclic graph (Directed Acyclic Graph)
- DAG contains no cycles



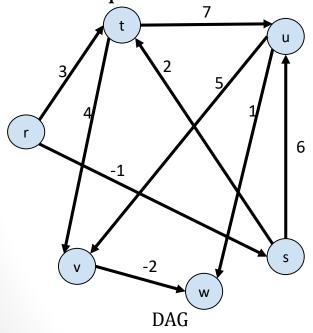


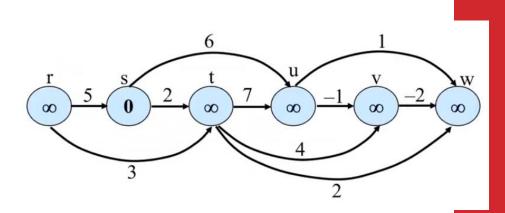
- If the graph is acyclic, we can use Bellman-Ford, but it takes O(VE)
- A better solution is to use Topological sort:
 - Initialize distances to all vertices as infinite and distance to source as 0
 - Then find a topological sorting of the graph



- Precedence constraints: Edge (v_i , v_j) means task v_i must occur before v_i
- Examples of DAG
- Course prerequisite graph: course v_i must be taken before v_j
- Compilation: module v_i must be compiled before v_i
- Pipeline of computing jobs: output of job v_i needed to determine input of job v_i

- Topological sort represents a linear ordering of a graph
- Example

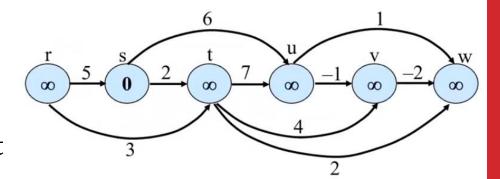




Topologically sorted

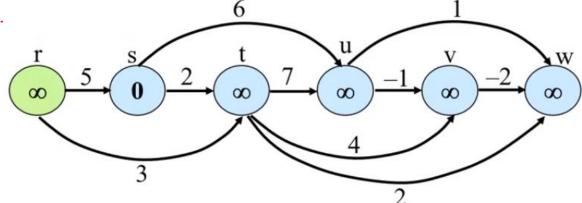
- The idea: process vertices on each shortest path from left to right
- Every path in DAG is a subsequence of topologically sorted vertex order. So processing vertices in that order will do each path in forward order
- Just one pass.
- Time complexity O(V + E)

- Topologically sorted graph
- Now we have vertex s as the source
- We want to find the shortest path from s to all vertices



- Start with r, what is the path from s to r?
 - There is no path (infinity)

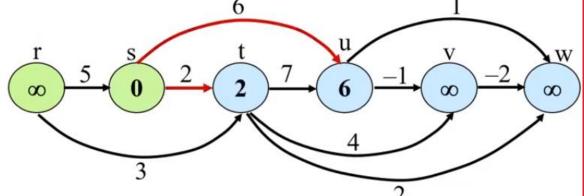
So the first iteration,
 r = ∞



- Now the second pass
- Take the adjacent of s. From s to t = 2, which is less than ∞, so update t and the predecessor is s
- From s to u is the same, 6 is less than ∞ , so update u and the predecessor is s

Acyclic Grapł

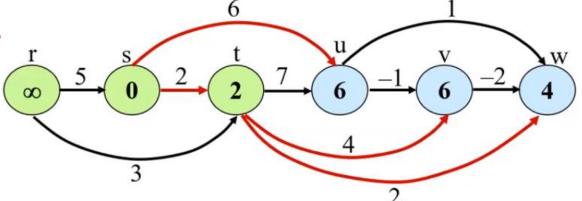
 Next iteration, check the adjacents of t



- From t to v is 2+4 = 6 which is less than ∞ , so update v and the predecessor is t
- From t to w is 2+2 = 4 which is less than ∞ , so update w and the predecessor is t

Acyclic Grapł

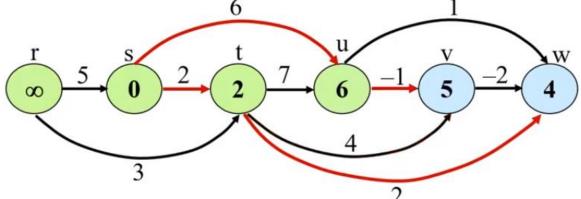
 Next iteration, check the adjacents of u



- From u to v is 6 + -1 = 5 which is less than 6, so update v and the predecessor is u
- From u to w is 6 + 1 = 7 which is more than 4, so no updates

Acyclic Grapl

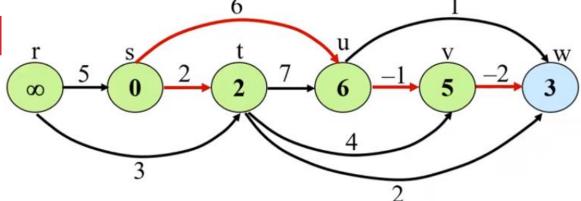
 Next iteration, check the adjacents of v



• From v to w is 5 + -2 = 3 which is less than 4, so update w and the predecessor is v instead of t

Acyclic Grapl

We are left with 1 iteration for w



- Notice that w has no adjacents
- Thus we reached the shortest path from the source s