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Minimum Spanning 
Trees (MST)
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Minimum Spanning Trees
• Spanning Tree
• A tree (i.e., connected, acyclic graph) which contains all the vertices of 

the graph

• Minimum Spanning Tree
• Spanning tree with the minimum sum of weights

• Spanning forest
• If a graph is not connected, then there is a spanning tree for each 

connected component of the graph
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Applications of MST

• Find the least expensive way to connect a set of cities, terminals, 
computers, etc.



Dr. Ahmad Abusnaina                                                                                             COMP2421|DS: Graphs

4

Example
Problem

• A town has a set of houses 

and a set of roads

• A road connects 2 and only 

2 houses

• A road connecting houses u and v has a repair 

cost w(u, v)
Goal: Repair enough (and no more) roads such that:

1. Everyone stays connected 
i.e., can reach every house from all other houses

2.   Total repair cost is minimum
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Minimum Spanning Trees

• A connected, undirected graph:

• Vertices = houses,       Edges = roads

• A weight w(u, v) on each edge (u, v)  E
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Find T  E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)T w(u, v) is 

minimized
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Properties of Minimum Spanning Trees
• Minimum spanning tree is not unique

• MST has no cycles – see why:

• We can take out an edge of a cycle, and still have the  vertices 

connected while reducing the cost

• # of edges in a MST:

• |V| - 1 
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Growing a MST – Generic Approach
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• Grow a set A of edges (initially 

empty)

• Incrementally add edges to A 

such that they would belong 

to a MST

– An edge (u, v) is safe for A if and 

only if A  {(u, v)} is also a subset 

of some MST

Idea: add only “safe” edges
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Generic MST algorithm

1. A ←  

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A  {(u, v)} 

5. return A

• How do we find safe edges?
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S

V - S

Finding Safe Edges
• Let’s look at edge (h, g)

• Is it safe for A initially?

• Later on:

• Let S  V be any set of vertices that includes h but not g (so that g is in V 

- S)

• In any MST, there has to be one edge (at least) that connects S with V - S 

• Why not choose the edge with minimum weight (h,g)? 
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MST

• Prim’s Algorithm

• Kruskal Algorithm

1
0
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Prim’s Algorithm
• The edges in set A always form a single tree

• Starts from an arbitrary “root”: VA = {a}

• At each step:

• Find a light edge crossing (VA, V - VA)

• Add this edge to A

• Repeat until the tree spans all vertices
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How to Find Light Edges Quickly?
Use a priority queue Q:

• Contains vertices not yet 

included in the tree, i.e., (V – VA)

• VA = {a}, Q = {b, c, d, e, f, g, h, i}

• We associate a key with each vertex v:

key[v] = minimum weight of any edge (u, v)

connecting v to VA
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w1

w2

Key[a]=min(w1,w2)

a
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How to Find Light Edges Quickly? (cont.)
• After adding a new node to VA we update the weights of all the 

nodes adjacent to it

e.g., after adding a to the tree, k[b]=4 and k[h]=8

• Key of v is  if v is not adjacent to any vertices in VA
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Example
0         

Q = {a, b, c, d, e, f, g, h, i} 

VA = 

Extract-MIN(Q)  a
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key [b] = 4  [b] = a

key [h] = 8  [h] = a

4       8 

Q = {b, c, d, e, f, g, h, i}  VA = {a}

Extract-MIN(Q)  b

  

 

  

 

 

 

4

8
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4 



8  

8



Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [c] = 8  [c] = b

key [h] = 11  [h] = a - unchanged

8      8 

Q = {c, d, e, f, g, h, i}  VA = {a, b}

Extract-MIN(Q)  c
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key [d] = 7  [d] = c

key [f] = 4  [f] = c

key [i] = 2  [i] = c

7  4  8  2

Q = {d, e, f, g, h, i}  VA = {a, b, c}

Extract-MIN(Q)  i
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Example
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key [h] = 7  [h] = i

key [g] = 6  [g] = i

7  4 6  7

Q = {d, e, f, g, h}  VA = {a, b, c, i}

Extract-MIN(Q)  f
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key [g] = 2  [g] = f

key [d] = 7  [d] = c unchanged

key [e] = 10  [e] = f

7 10 2 7

Q = {d, e, g, h}  VA = {a, b, c, i, f}

Extract-MIN(Q)  g
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Example
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key [h] = 1  [h] = g

7 10 1

Q = {d, e, h}  VA = {a, b, c, i, f, g}

Extract-MIN(Q)  h
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Example
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key [e] = 9  [e] = f

9

Q = {e}  VA = {a, b, c, i, f, g, h, d}

Extract-MIN(Q)  e

Q =  VA = {a, b, c, i, f, g, h, d, e}
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PRIM(V, E, w, r)
1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0)         ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for each v  Adj[u]

10. do if v  Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 

operations:

O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)
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Prim’s Algorithm 
• Prim’s algorithm is a “greedy” algorithm

• Greedy algorithms find solutions based on a sequence of choices which 

are “locally” optimal at each step.

• Nevertheless, Prim’s greedy strategy produces a globally optimum 

solution!
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A different instance of the
generic approach

• A is a forest containing connected 
components
• Initially, each component is a single 

vertex

• Any safe edge merges two of these 
components into one
• Each component is a tree

u
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S

V - S

u

v

tree1

tree2

(instance 1)

(instance 2)
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Kruskal’s Algorithm
• How is it different from Prim’s algorithm?

• Prim’s algorithm grows one 

tree all the time

• Kruskal’s algorithm grows 

multiple trees  (i.e., a forest) 

at the same time.

• Trees are merged together 

using safe edges

• Since an MST has exactly |V| - 1 

edges, after |V| - 1 merges, 

we would have only one component

u

v

tree1

tree2
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Kruskal’s Algorithm

• Start with each vertex being its own component

• Repeatedly merge two components into one by choosing 

the light edge that connects them

• Which components to consider at each iteration?

• Scan the set of edges in increasing order by weight
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Example
1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10. Ignore (b, c)

11. Add (d, e)

12. Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)
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1: (h, g)

2: (c, i), (g, f)

4: (a, b), (c, f)

6: (i, g)

7: (c, d), (i, h)

8: (a, h), (b, c) 

9: (d, e)

10: (e, f)

11: (b, h)

14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}
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We would add

edge (c, f)
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Implementation of Kruskal’s Algorithm

• Uses a disjoint-set data 

structure (see Chapter 

21) to determine whether 

an edge connects 

vertices in different 

components
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Operations on Disjoint Data 
Sets• MAKE-SET(u) – creates a new set whose only member is u

• FIND-SET(u) – returns a representative element from the set that 

contains u

• Any of the elements of the set that has a particular property

• E.g.: Su = {r, s, t, u}, the property is that the element be the first one 

alphabetically

FIND-SET(u) = r   FIND-SET(s) = r

• FIND-SET has to return the same value for a given set
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Operations on Disjoint Data 
Sets
• UNION(u, v) – unites the dynamic sets that contain u and v, say Su

and Sv

• E.g.: Su =  {r, s, t, u},  Sv = {v, x, y} 

UNION (u, v) = {r, s, t, u, v, x, y}

• Running time for FIND-SET and UNION depends on implementation.

• Can be shown to be α(n)=O(lgn) where α() is a very slowly growing 

function (see Chapter 21)
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1. A ←  

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)} 

8. UNION(u, v)

9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on the 
implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)
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1. A ←  

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)} 

8. UNION(u, v)

9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)

- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w) (cont.)

O(V)

O(ElgE)

O(E)

O(lgV)

O(ElgV)
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Kruskal’s Algorithm

• Kruskal’s algorithm is a “greedy” algorithm

• Kruskal’s greedy strategy produces a globally optimum 

solution

• Proof for generic approach 

applies to Kruskal’s 

algorithm too
u

v

S

V - S

x

y
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Problem 1
• (Exercise 23.2-3, page 573) Compare Prim’s algorithm with and 

Kruskal’s algorithm assuming:

(a) sparse graphs: 
In this case, E=O(V)

Kruskal: 

O(ElgE)=O(VlgV)

Prim:

- binary heap: O(ElgV)=O(VlgV)

- Fibonacci heap: O(VlgV+E)=O(VlgV)
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Problem 1 (cont.)

(b) dense graphs

In this case, E=O(V2) 

Kruskal: 

O(ElgE)=O(V2lgV2)=O(2V2lgV)=O(V2lgV)

Prim:

- binary heap: O(ElgV)=O(V2lgV)

- Fibonacci heap: O(VlgV+E)=O(VlgV+V2)=O(V2)
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(Exercise 23.2-4, page 574): Analyze the running 
time of Kruskal’s algorithm when weights are in the 
range [1 … V] 

Problem 2
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1. A ←  

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)} 

8. UNION(u, v)

9. return A O(lgV)

O(V)

O(ElgE)

O(E)

- Sorting can be done in O(E) time (e.g., using counting sort)

- However, overall running time will not change, i.e, O(ElgV)

Problem 2 (cont.)
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Problem 3
• Suppose that some of the weights in a connected graph G are 

negative. Will Prim’s algorithm still work? What about Kruskal’s 
algorithm? Justify your answers.

• Yes, both algorithms will work with negative weights. Review the proof of 
the generic approach; there is no assumption in the proof about the 
weights being positive.
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Problem 4

• (Exercise 23.2-2, page 573) Analyze Prim’s algorithm 
assuming:

(a) an adjacency-list representation of G

O(ElgV)

(b) an adjacency-matrix representation of G

O(ElgV+V2)



Dr. Ahmad Abusnaina                                                                                             COMP2421|DS: Graphs

3
7

PRIM(V, E, w, r)
1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0)         ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for each v  Adj[u]

10. do if v  Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 

operations:

O(VlgV)

Executed O(E) times

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)
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PRIM(V, E, w, r)
1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0)         ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for (j=0; j<|V|; j++)

10. if (A[u][j]=1)

11. if v  Q and w(u, v) < key[v]

12. then π[v] ← u

13. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented 

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap 

operations:

O(VlgV)

Executed O(V2) times total

Constant

Takes O(lgV) O(ElgV)

Total time: O(VlgV + ElgV+V2) = O(ElgV+V2)

O(lgV)
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Problem 5

• Find an algorithm for the “maximum” spanning tree. That is, 
given an undirected weighted graph G, find a spanning tree of 
G of maximum cost. Prove the correctness of your algorithm.

• Consider choosing the “heaviest” edge (i.e., the edge associated 
with the largest weight) in a cut. The generic proof can be 
modified easily to show that this approach will work. 

• Alternatively, multiply the weights by -1 and apply either Prim’s 
or Kruskal’s algorithms without any modification at all!
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Problem 6

• (Exercise 23.1-8, page 567) Let T be a MST of a graph G, and 
let L be the sorted list of the edge weights of T. Show that for 
any other MST T’ of G, the list L is also the sorted list of the 
edge weights of T’

T, L={1,2} T’, L={1,2}
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