

Minimum Spanning Trees (MST)

 $\mathbf{\Omega}$

Minimum Spanning Trees

- Spanning Tree
	- A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph

b dec c and d

4

2

 $8 \bigcap 7$

i

- Minimum Spanning Tree
	- Spanning tree with the **minimum sum of weights**

a

4

 \cdot If a graph is not connected, then there is a spanning tree for each connected component of the $grap$ \mathfrak{g} for \mathfrak{g} $1 \bigvee 2$ 7 10 6

11

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

e

9

14

Applications of MST

• Find the least expensive way to connect a set of cities, terminals, computers, etc.

Problem

- A town has a set of houses and a set of roads
- A road connects 2 and only 2 houses

• A road connecting houses u and v has a repair cost $w(u, v)$

Goal: Repair enough (and no more) roads such that:

1. Everyone stays connected

i.e., can reach every house from all other houses

2. Total repair cost is minimum

Minimum Spanning Trees

- A connected, undirected graph:
	- Vertices = houses, Edges = roads
- A weight $w(u, v)$ on each edge $(u, v) \in E$
- Find $T \subseteq E$ such that:
- 1. T connects all vertices
- 2. $w(T) = \sum_{(u,v) \in T} w(u, v)$ is minimized

5

Properties of Minimum Spanning Trees

• Minimum spanning tree is **not** unique

- \bullet MST has \bullet
	- We can take out an edge of a cycle, and still have the vertices connected while reducing the cost
- # of edges in a MST:
	- $|V|-1$

Growing a MST – Generic Approach

- Grow a set A of edges (initially empty)
- Incrementally add edges to A such that they would belong

to a MST

Idea: add only "safe" edges

– An edge (u, v) is **safe** for A if and only if $A \cup \{(u, v)\}\)$ is also a subset of **some** MST

Generic MST algorithm

- 1. A $\leftarrow \varnothing$
- **2. while** A is not a spanning tree
- **3. do** find an edge (u, v) that is safe for A
- 4. $A \leftarrow A \cup \{(u, v)\}\$
- **5. return** A

• How do we find safe edges?

b c c c d

4

2

6

 $8 \bigcap 7$

i

7

- S

e

9

10

14

Finding Safe Edges

- Let's look at edge (h, q)
	- Is it safe for A initially?
- Later on:
	- i is in $\mathcal Y$ • Let $S \subset V$ be any set of vertices that includes $\frac{1}{2}$ but not g (so that g is in W - S) h $\frac{1}{4}$ g $\frac{1}{2}$ f fln $3/1$ sof

S

a

4

8

11

- In any MST, there has to be one edge (at least) that connects S with V S
- Why not choose the edge with **minimum weight** (h,g)?

MST

- Prim's Algorithm
- Kruskal Algorithm

Prim's Algorithm

- The edges in set A always form a single tree
- Starts from an arbitrary "root": $V_A = \{a\}$
- At each step:
	- Find a light edge crossing $(V_A, V V_A)$
	- Add this edge to A
	- Repeat until the tree spans all vertices

How to Find Light Edges Quickly? Use a priority queue Q: $8 \bigcap 7$

a

4

8

11

• Contains vertices not yet

included in the tree, i.e., $(V - V_A)$

- $V_A = \{a\}, Q = \{b, c, d, e, f, g, h, i\}$
- We associate a key with each vertex v:

 $key[v]$ = minimum weight of any edge (u, v) connecting v to V_{A}

12

e

9

10

14

b) (c) (d

2

6

h $\frac{1}{1}$ g $\frac{1}{2}$ f

 $1 \bigvee 2$

4

i

7

How to Find Light Edges Quickly? (cont.)

• After adding a new node to V_A we update the weights of all the nodes adjacent to it

e.g., after adding a to the tree, $k[b]=4$ and $k[h]=8$

• Key of **v** is ∞ if v is not adjacent to any vertices in V_A

 $key [b] = 4 \quad \pi [b] = a$ $key[h] = 8 \quad \pi[h] = a$

 $4 \, \circ \, 8 \, \circ \,$ $Q = \{b, c, d, e, f, g, h, i\}$ $V_A = \{a\}$ Extract-MIN(Q) \Rightarrow b

 $key [c] = 8$ $\pi [c] = b$ key $[h] = 11 \pi[h] = a$ - unchanged 8 ∞ ∞ ∞ ∞ 8 ∞ $Q = \{c, d, e, f, g, h, i\}$ $V_A = \{a, b\}$ Extract-MIN(Q) \Rightarrow c key $[d] = 7$ π $[d] = c$ key $[f] = 4$ π $[f] = c$ key $[i] = 2$ $\pi[i] = c$ $7 \times 4 \times 8$ 2 $Q = \{d, e, f, g, h, i\}$ $V_A = \{a, b, c\}$ Extract-MIN(Q) \Rightarrow i

key $[h] = 7$ $\pi[h] = i$ $key [g] = 6$ $\pi [g] = i$ 7×467 $Q = \{d, e, f, g, h\}$ $V_A = \{a, b, c, i\}$ Extract-MIN(Q) \Rightarrow f

key $[g] = 2$ $\pi[g] = f$ key $[d] = 7$ π $[d] = c$ unchanged key $[e] = 10 \pi [e] = f$ **7 10 2 7**

 $Q = \{d, e, g, h\}$ $V_A = \{a, b, c, i, f\}$ Extract-MIN(Q) \Rightarrow g

Example

key [h] = 1 π [h] = g **7 10 1** $Q = \{d, e, h\}$ $V_A = \{a, b, c, i, f, g\}$ Extract-MIN(Q) \Rightarrow h

7 10

 $Q = \{d, e\}$ $V_A = \{a, b, c, i, f, g, h\}$ Extract-MIN(Q) \Rightarrow d

 $key [e] = 9$ $\pi [e] = f$ $Q = \{e\}$ $V_A = \{a, b, c, i, f, g, h, c\}$ Extract-MIN(Q) \Rightarrow e $Q = \emptyset$ $V_A = \{a, b, c, i, f, g, h, d, e\}$

O(lgV)

PRIM(V, E, w, r) 1. $Q \leftarrow \varnothing$

- **2. for** each $u \in V$
- 3. **do** key[u] ← ∞
- 4. $\pi[u] \leftarrow \text{NIL}$
- 5. INSERT(Q, u)
- 6. DECREASE-KEY(Q, r, 0) \blacktriangleright key[r] \leftarrow 0

9. **for** each $v \in Adj[u]$

7. **while** $Q \neq \emptyset$

Total time: O(VlgV + ElgV) = O(ElgV)

O(V) if Q is implemented as a min-heap

- 8. **do u** ← EXTRACT-MIN(Q) + Takes O(lgV) Executed |V| times | Min-heap operations: O(VlgV)
	- ← Executed O(E) times total
- 10. **do if** $v \in Q$ and $w(u, v) \prec key[v]$ 11. **then** $\pi[v] \leftarrow u$ ← Constant Takes O(lgV)

12. DECREASE-KEY(Q, v, w(u, v))

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

O(ElgV)

Prim's Algorithm

- Prim's algorithm is a **"greedy"** algorithm
	- Greedy algorithms find solutions based on a sequence of choices which are **"locally"** optimal at each step.
- Nevertheless, Prim's greedy strategy produces a globally optimum solution!

A different instance of the generic approach S

(instance 1)

• A is a forest containing connected components

V - S

- Initially, each component is a single vertex
- Any safe edge merges two of these components into one

• Each component is a tree

Dr. Ahmad Abusnaina

COMP2421|DS: Graphs

u

v

Kruskal's Algorithm

- How is it different from Prim's algorithm?
	- Prim's algorithm grows one tree all the time
	- Kruskal's algorithm grows multiple trees (i.e., a forest) at the same time.
	- Trees are merged together using **safe** edges
	- Since an MST has exactly $|V| 1$ edges, after |V| - 1 merges, we would have only one component

Kruskal's Algorithm

- Start with each vertex being its own component
- Repeatedly merge two components into one by choosing the **light** edge that connects them
- Which components to consider at each iteration?
	- Scan the set of edges in increasing order by weight

1: (h, g) 2: (c, i), (g, f) 9: (d, e) 4: (a, b), (c, f) 10: (e, f) 6: (i, g) 7: (c, d), (i, h) 14: (d, f) 8: (a, h), (b, c) 11: (b, h)

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

 \mathbb{Z}

Implementation of Kruskal's Algorithm

• Uses a disjoint-set data structure (see **Chapter 21**) to determine whether an edge connects vertices in different components

Operations on Disjoint Data

SATS • Creates a new set whose only member is u

- FIND-SET(u) returns a representative element from the set that contains u
	- Any of the elements of the set that has a particular property
	- $E.g.: S_u = {r, s, t, u}$, the property is that the element be the first one alphabetically

 $FIND-SET(u) = r$ $FIND-SET(s) = r$

• FIND-SET has to return the same value for a given set

Operations on Disjoint Data

Sets UNION(u, v) – unites the dynamic sets that contain **u** and **v**, say S_u and S_{v}

•
$$
E.g.: S_u = \{r, s, t, u\}, S_v = \{v, x, y\}
$$

UNION $(u, v) = \{r, s, t, u, v, x, y\}$

- Running time for FIND-SET and UNION depends on implementation.
- Can be shown to be **α(n)=O(lgn)** where **α()** is a very slowly growing function (see **Chapter 21**)

27

O(ElgE)

O(E)

O(lgV)

KRUSKAL(V, E, w)

- $A \leftarrow \varnothing$
- **2. for** each vertex $v \in V$
- **3. do** MAKE-SET(v)
- 4. sort E into non-decreasing order by w
- **5. for** each (u, v) taken from the sorted list
- **6. do if** $FIND-SET(u) \neq FIND-SET(v)$
- **7. then** $A \leftarrow A \cup \{(u, v)\}$
- 8. UNION (u, v)

9. return A

Running time: $O(V+EIqE+EIqV)=O(EIqE)$ – dependent on the implementation of the disjoint-set data structure

O(V)

KRUSKAL(V, E, w) (cont.)

- $A \leftarrow \varnothing$
- **2. for** each vertex $v \in V$
- **3. do** MAKE-SET(v) **O(V)**
- 4. sort E into non-decreasing order by w
- **5. for** each (u, v) taken from the sorted list
- **6. do if** $FIND-SET(u) \neq FIND-SET(v)$
- **7. then** $A \leftarrow A \cup \{(u, v)\}$
- 8. UNION(u, v)
- **9. return** A
- Running time: O(V+ElgE+ElgV)=O(ElgE)
- Since E=O(V²), we have IgE=O(2IgV)=O(IgV)

Kruskal's Algorithm

- Kruskal's algorithm is a **"greedy"** algorithm
- Kruskal's greedy strategy produces a globally optimum solution
- Proof for generic approach applies to Kruskal's
	- algorithm too

Problem 1

- **(Exercise 23.2-3, page 573**) Compare Prim's algorithm with and Kruskal's algorithm assuming:
- (a) sparse graphs: In this case, E=O(V)

Kruskal:

O(ElgE)=O(VlgV)

Prim:

- binary heap: O(ElgV)=O(VlgV)
- Fibonacci heap: O(VlgV+E)=O(VlgV)

Problem 1 (cont.)

(b) dense graphs In this case, $E = O(V^2)$

Kruskal:

 $O(ElgE) = O(V^2lgV^2) = O(2V^2lgV) = O(V^2lgV)$

Prim:

- binary heap: O(ElgV)=O(V²lgV)
- Fibonacci heap: O(VlgV+E)=O(VlgV+V²)=O(V²)

Problem 2

33

(Exercise 23.2-4, page 574): Analyze the running time of Kruskal's algorithm when weights are in the range **[1 … V]**

O(ElgE)

O(E)

Problem 2 (cont.)

- 1. A $\leftarrow \varnothing$
- **2. for** each vertex $v \in V$
- **3. do** MAKE-SET(v)
- 4. sort E into non-decreasing order by w
- **5. for** each (u, v) taken from the sorted list
- **6. do if** $FIND-SET(u) \neq FIND-SET(v)$
- **7. then** $A \leftarrow A \cup \{(u, v)\}$
- 8. UNION (u, v)
- **9. return** A **C(lgV)**

- Sorting can be done in O(E) time (e.g., using counting sort)

O(V)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs - However, overall running time will not change, i.e, O(ElgV)

Problem 3

- Suppose that some of the weights in a connected graph G are negative. Will Prim's algorithm still work? What about Kruskal's algorithm? Justify your answers.
	- Yes, both algorithms will work with negative weights. Review the proof of the generic approach; there is no assumption in the proof about the weights being positive.

Problem 4

- **(Exercise 23.2-2, page 573)** Analyze Prim's algorithm assuming:
- (a) an adjacency-list representation of G O(ElgV)
- (b) an adjacency-matrix representation of G $O(ElgV + V^2)$

O(lgV)

PRIM(V, E, w, r) 1. $Q \leftarrow \varnothing$

- **2. for** each $u \in V$
- 3. **do** key[u] ← ∞
- 4. $\pi[u] \leftarrow \text{NIL}$
- 5. INSERT(Q, u)
- 6. DECREASE-KEY(Q, r, 0) \blacktriangleright key[r] \leftarrow 0

9. **for** each $v \in Adj[u]$

7. **while** $Q \neq \emptyset$

Total time: O(VlgV + ElgV) = O(ElgV)

O(V) if Q is implemented as a min-heap

- **Executed |V| times** Min-heap operations:
- 8. **do u** ← EXTRACT-MIN(Q) + Takes O(lgV) O(VlgV)
	- ← Executed O(E) times
- 10. **do if** $v \in Q$ and $w(u, v) \prec key[v]$ 11. **then** $\pi[v] \leftarrow u$ 12. DECREASE-KEY(Q, v, w(u, v)) ← Constant Takes O(lgV)

O(ElgV)

PRIM(V, E, w, r) 1. $\mathsf{Q} \leftarrow \varnothing$ **2. for** each $u \in V$ 3. **do** key[u] ← ∞ 4. $\pi[u] \leftarrow \text{NIL}$ 5. INSERT(Q, u) 6. DECREASE-KEY(Q, r, 0) \blacktriangleright key[r] \leftarrow 0 7. **while** $Q \neq \emptyset$ 8. **do u** ← EXTRACT-MIN(Q) + Takes O(lgV) 9. **for** (j=0; j<|V|; j++) 10. **if (A[u][j]=1)** 11. **if** $v \in Q$ and $w(u, v) \prec key[v]$ 12. **then** $\pi[v] \leftarrow u$ 13. DECREASE-KEY(Q, v, w(u, v)) O(V) if Q is implemented as a min-heap Executed |V| times Min-heap operations: O(VlgV) Executed $O(V^2)$ times total ← Constant Takes O(lgV) | O(ElgV) Total time: $O(VIqV + EIqV+V^2) = O(EIqV+V^2)$ O(lgV)

Problem 5

- Find an algorithm for the "maximum" spanning tree. That is, given an undirected weighted graph G, find a spanning tree of G of maximum cost. Prove the correctness of your algorithm.
	- Consider choosing the "heaviest" edge (i.e., the edge associated with the largest weight) in a cut. The generic proof can be modified easily to show that this approach will work.
	- Alternatively, multiply the weights by -1 and apply either Prim's or Kruskal's algorithms without any modification at all!

Problem 6

• **(Exercise 23.1-8, page 567)** Let T be a MST of a graph G, and let L be the sorted list of the edge weights of T. Show that for any other MST T' of G, the list L is also the sorted list of the edge weights of T'

• Special thanks to Dr. George Bebis, University of Nevada Reno