
Dr. Ahmad Abusnaina COMP2421|DS: Graphs

Minimum Spanning
Trees (MST)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2

Minimum Spanning Trees
• Spanning Tree
• A tree (i.e., connected, acyclic graph) which contains all the vertices of

the graph

• Minimum Spanning Tree
• Spanning tree with the minimum sum of weights

• Spanning forest
• If a graph is not connected, then there is a spanning tree for each

connected component of the graph

a

b c d

e

g g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3

Applications of MST

• Find the least expensive way to connect a set of cities, terminals,
computers, etc.

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

4

Example
Problem

• A town has a set of houses

and a set of roads

• A road connects 2 and only

2 houses

• A road connecting houses u and v has a repair

cost w(u, v)
Goal: Repair enough (and no more) roads such that:

1. Everyone stays connected
i.e., can reach every house from all other houses

2. Total repair cost is minimum

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

5

Minimum Spanning Trees

• A connected, undirected graph:

• Vertices = houses, Edges = roads

• A weight w(u, v) on each edge (u, v)  E

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Find T  E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)T w(u, v) is

minimized

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

6

Properties of Minimum Spanning Trees
• Minimum spanning tree is not unique

• MST has no cycles – see why:

• We can take out an edge of a cycle, and still have the vertices

connected while reducing the cost

• # of edges in a MST:

• |V| - 1

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

7

Growing a MST – Generic Approach

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

• Grow a set A of edges (initially

empty)

• Incrementally add edges to A

such that they would belong

to a MST

– An edge (u, v) is safe for A if and

only if A  {(u, v)} is also a subset

of some MST

Idea: add only “safe” edges

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

8

Generic MST algorithm

1. A ← 

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A  {(u, v)}

5. return A

• How do we find safe edges?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

9

S

V - S

Finding Safe Edges
• Let’s look at edge (h, g)

• Is it safe for A initially?

• Later on:

• Let S  V be any set of vertices that includes h but not g (so that g is in V

- S)

• In any MST, there has to be one edge (at least) that connects S with V - S

• Why not choose the edge with minimum weight (h,g)?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

MST

• Prim’s Algorithm

• Kruskal Algorithm

1
0

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
1

Prim’s Algorithm
• The edges in set A always form a single tree

• Starts from an arbitrary “root”: VA = {a}

• At each step:

• Find a light edge crossing (VA, V - VA)

• Add this edge to A

• Repeat until the tree spans all vertices

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
2

How to Find Light Edges Quickly?
Use a priority queue Q:

• Contains vertices not yet

included in the tree, i.e., (V – VA)

• VA = {a}, Q = {b, c, d, e, f, g, h, i}

• We associate a key with each vertex v:

key[v] = minimum weight of any edge (u, v)

connecting v to VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

w1

w2

Key[a]=min(w1,w2)

a

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
3

How to Find Light Edges Quickly? (cont.)
• After adding a new node to VA we update the weights of all the

nodes adjacent to it

e.g., after adding a to the tree, k[b]=4 and k[h]=8

• Key of v is  if v is not adjacent to any vertices in VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
4

Example
0        

Q = {a, b, c, d, e, f, g, h, i}

VA = 

Extract-MIN(Q)  a

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [b] = 4  [b] = a

key [h] = 8  [h] = a

4      8 

Q = {b, c, d, e, f, g, h, i} VA = {a}

Extract-MIN(Q)  b

  

 

  

 

 

 

4

8

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
5

4 



8  

8



Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [c] = 8  [c] = b

key [h] = 11  [h] = a - unchanged

8     8 

Q = {c, d, e, f, g, h, i} VA = {a, b}

Extract-MIN(Q)  c

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [d] = 7  [d] = c

key [f] = 4  [f] = c

key [i] = 2  [i] = c

7  4  8 2

Q = {d, e, f, g, h, i} VA = {a, b, c}

Extract-MIN(Q)  i





4 



8  

8

7

4

2

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
6

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [h] = 7  [h] = i

key [g] = 6  [g] = i

7  4 6 7

Q = {d, e, f, g, h} VA = {a, b, c, i}

Extract-MIN(Q)  f

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [g] = 2  [g] = f

key [d] = 7  [d] = c unchanged

key [e] = 10  [e] = f

7 10 2 7

Q = {d, e, g, h} VA = {a, b, c, i, f}

Extract-MIN(Q)  g

4 7



8  4

8

2

7 6

4 7



7 6 4

8

2

2

10

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
7

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [h] = 1  [h] = g

7 10 1

Q = {d, e, h} VA = {a, b, c, i, f, g}

Extract-MIN(Q)  h

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

7 10

Q = {d, e} VA = {a, b, c, i, f, g, h}

Extract-MIN(Q)  d

4 7

10

7 2 4

8

2

1

4 7

10

1 2 4

8

2

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
8

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

key [e] = 9  [e] = f

9

Q = {e} VA = {a, b, c, i, f, g, h, d}

Extract-MIN(Q)  e

Q =  VA = {a, b, c, i, f, g, h, d, e}

4 7

10

1 2 4

8

2 9

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

1
9

PRIM(V, E, w, r)
1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for each v  Adj[u]

10. do if v  Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap

operations:

O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
0

Prim’s Algorithm
• Prim’s algorithm is a “greedy” algorithm

• Greedy algorithms find solutions based on a sequence of choices which

are “locally” optimal at each step.

• Nevertheless, Prim’s greedy strategy produces a globally optimum

solution!

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
1

A different instance of the
generic approach

• A is a forest containing connected
components
• Initially, each component is a single

vertex

• Any safe edge merges two of these
components into one
• Each component is a tree

u

v

S

V - S

u

v

tree1

tree2

(instance 1)

(instance 2)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
2

Kruskal’s Algorithm
• How is it different from Prim’s algorithm?

• Prim’s algorithm grows one

tree all the time

• Kruskal’s algorithm grows

multiple trees (i.e., a forest)

at the same time.

• Trees are merged together

using safe edges

• Since an MST has exactly |V| - 1

edges, after |V| - 1 merges,

we would have only one component

u

v

tree1

tree2

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
3

Kruskal’s Algorithm

• Start with each vertex being its own component

• Repeatedly merge two components into one by choosing

the light edge that connects them

• Which components to consider at each iteration?

• Scan the set of edges in increasing order by weight

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
4

Example
1. Add (h, g)

2. Add (c, i)

3. Add (g, f)

4. Add (a, b)

5. Add (c, f)

6. Ignore (i, g)

7. Add (c, d)

8. Ignore (i, h)

9. Add (a, h)

10. Ignore (b, c)

11. Add (d, e)

12. Ignore (e, f)

13. Ignore (b, h)

14. Ignore (d, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

1: (h, g)

2: (c, i), (g, f)

4: (a, b), (c, f)

6: (i, g)

7: (c, d), (i, h)

8: (a, h), (b, c)

9: (d, e)

10: (e, f)

11: (b, h)

14: (d, f)

{g, h}, {a}, {b}, {c}, {d}, {e}, {f}, {i}

{g, h}, {c, i}, {a}, {b}, {d}, {e}, {f}

{g, h, f}, {c, i}, {a}, {b}, {d}, {e}

{g, h, f}, {c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i}, {a, b}, {d}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d}, {a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b}, {e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{g, h, f, c, i, d, a, b, e}

{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}, {i}

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
5

We would add

edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Implementation of Kruskal’s Algorithm

• Uses a disjoint-set data

structure (see Chapter

21) to determine whether

an edge connects

vertices in different

components

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
6

Operations on Disjoint Data
Sets• MAKE-SET(u) – creates a new set whose only member is u

• FIND-SET(u) – returns a representative element from the set that

contains u

• Any of the elements of the set that has a particular property

• E.g.: Su = {r, s, t, u}, the property is that the element be the first one

alphabetically

FIND-SET(u) = r FIND-SET(s) = r

• FIND-SET has to return the same value for a given set

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
7

Operations on Disjoint Data
Sets
• UNION(u, v) – unites the dynamic sets that contain u and v, say Su

and Sv

• E.g.: Su = {r, s, t, u}, Sv = {v, x, y}

UNION (u, v) = {r, s, t, u, v, x, y}

• Running time for FIND-SET and UNION depends on implementation.

• Can be shown to be α(n)=O(lgn) where α() is a very slowly growing

function (see Chapter 21)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
8

1. A ← 

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)}

8. UNION(u, v)

9. return A

Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on the
implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

2
9

1. A ← 

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)}

8. UNION(u, v)

9. return A

- Running time: O(V+ElgE+ElgV)=O(ElgE)

- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w) (cont.)

O(V)

O(ElgE)

O(E)

O(lgV)

O(ElgV)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
0

Kruskal’s Algorithm

• Kruskal’s algorithm is a “greedy” algorithm

• Kruskal’s greedy strategy produces a globally optimum

solution

• Proof for generic approach

applies to Kruskal’s

algorithm too
u

v

S

V - S

x

y

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
1

Problem 1
• (Exercise 23.2-3, page 573) Compare Prim’s algorithm with and

Kruskal’s algorithm assuming:

(a) sparse graphs:
In this case, E=O(V)

Kruskal:

O(ElgE)=O(VlgV)

Prim:

- binary heap: O(ElgV)=O(VlgV)

- Fibonacci heap: O(VlgV+E)=O(VlgV)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
2

Problem 1 (cont.)

(b) dense graphs

In this case, E=O(V2)

Kruskal:

O(ElgE)=O(V2lgV2)=O(2V2lgV)=O(V2lgV)

Prim:

- binary heap: O(ElgV)=O(V2lgV)

- Fibonacci heap: O(VlgV+E)=O(VlgV+V2)=O(V2)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
3

(Exercise 23.2-4, page 574): Analyze the running
time of Kruskal’s algorithm when weights are in the
range [1 … V]

Problem 2

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
4

1. A ← 

2. for each vertex v  V

3. do MAKE-SET(v)

4. sort E into non-decreasing order by w

5. for each (u, v) taken from the sorted list

6. do if FIND-SET(u)  FIND-SET(v)

7. then A ← A  {(u, v)}

8. UNION(u, v)

9. return A O(lgV)

O(V)

O(ElgE)

O(E)

- Sorting can be done in O(E) time (e.g., using counting sort)

- However, overall running time will not change, i.e, O(ElgV)

Problem 2 (cont.)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
5

Problem 3
• Suppose that some of the weights in a connected graph G are

negative. Will Prim’s algorithm still work? What about Kruskal’s
algorithm? Justify your answers.

• Yes, both algorithms will work with negative weights. Review the proof of
the generic approach; there is no assumption in the proof about the
weights being positive.

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
6

Problem 4

• (Exercise 23.2-2, page 573) Analyze Prim’s algorithm
assuming:

(a) an adjacency-list representation of G

O(ElgV)

(b) an adjacency-matrix representation of G

O(ElgV+V2)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
7

PRIM(V, E, w, r)
1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for each v  Adj[u]

10. do if v  Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap

operations:

O(VlgV)

Executed O(E) times

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
8

PRIM(V, E, w, r)
1. Q ← 

2. for each u  V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q  

8. do u ← EXTRACT-MIN(Q)

9. for (j=0; j<|V|; j++)

10. if (A[u][j]=1)

11. if v  Q and w(u, v) < key[v]

12. then π[v] ← u

13. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented

as a min-heap

Executed |V| times

Takes O(lgV)

Min-heap

operations:

O(VlgV)

Executed O(V2) times total

Constant

Takes O(lgV) O(ElgV)

Total time: O(VlgV + ElgV+V2) = O(ElgV+V2)

O(lgV)

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

3
9

Problem 5

• Find an algorithm for the “maximum” spanning tree. That is,
given an undirected weighted graph G, find a spanning tree of
G of maximum cost. Prove the correctness of your algorithm.

• Consider choosing the “heaviest” edge (i.e., the edge associated
with the largest weight) in a cut. The generic proof can be
modified easily to show that this approach will work.

• Alternatively, multiply the weights by -1 and apply either Prim’s
or Kruskal’s algorithms without any modification at all!

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

4
0

Problem 6

• (Exercise 23.1-8, page 567) Let T be a MST of a graph G, and
let L be the sorted list of the edge weights of T. Show that for
any other MST T’ of G, the list L is also the sorted list of the
edge weights of T’

T, L={1,2} T’, L={1,2}

Dr. Ahmad Abusnaina COMP2421|DS: Graphs

• Special thanks to Dr. George Bebis, University of Nevada Reno

