
Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

Chapter 5Hashing

Data Structures

1

COMPUTER SCIENCE DEPARTMENT FACULTY

OF ENGINEERING AND TECHNOLOGY

COMP2321

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

Introduction
• Many applications deal with lots of data Search

engines and web pages

• Typical data structures like arrays, lists, and trees
may not be sufficient to handle efficient lookups

• In general: When look-ups need to occur in near
constant time i.e. O(1).

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

Why hashing?
• If data collection is sorted array, we can search for an item in

O(log n) time using the binary search algorithm.

• However with a sorted array, inserting and deleting items are
done in O(n) time.

• If data collection is balanced binary search tree, then inserting,
searching and deleting are done in O(log n) time.

• Is there a data structure where inserting, deleting and searching
for items are more efficient?

• The answer is “Yes”,

• Solution: Hashing

• In fact hashing is used in: Web searches, Spell checkers
Databases, Compilers, passwords, etc.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

Def. Of Hashing

• Hashing is a technique used for performing insertions,
deletions and finds in constant average time (i.e. O(1))

• A hash function is a function that can be used to

map data of arbitrary size onto data of a fixed
size.

• This data structure, however, is not efficient in
operations that require any ordering information
among the elements, such as findMin, findMax and
printing the entire table in sorted order.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

Basic definitions
• Problem definition:

Given a set of items (S) and a given item (i), define a data
structure that supports operations such as find/insert/delete i
in constant time.

• A solution:

A hashing function h maps a large data set into a small index set.

Typically the function involves the mod() operation.

5

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

Design of a hash function

• Two concerns:

a. The hash function should be simple enough.

b. The hash function should distribute the data items evenly over the
whole array.

• Why?

• For (a): efficiency

• For (b): to avoid collision, and to make good use of array space.

6

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

7

8
3

4
6

5

0

1

2

3

4

5

6

7

8

9

insert10 ??

Hash Function h(X) = (X % TableSize)

insert 13 ??

10

3

4

5

6

8

Collision

Simple hash function

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

8

Collision Resolution Techniques
• There are two broad ways of collision resolution:

1. Separate Chaining:: An array of linked list implementation.

2. Open Addressing: Array-based implementation.

(i) Linear probing (linear search)

(ii) Quadratic probing (nonlinear search)

(iii) Double hashing (uses two hash functions)

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

9

Separate Chaining (Closed Addressing)

The hash table is implemented as an array of linked lists.

Inserting an item, r, that hashes at index i is simply insertion

into the linked list at position i.

Synonyms are chained in the same linked list.

 Retrieval of an item, r, with hash address, i, is simply
retrieval from the linked list at position i.

 Deletion of an item, r, with hash address, i, is simply
deleting r from the linked list at position i.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

10

Example: Load the keys 23, 14, 13, 21, 8, 7, and 15 , in this order, in a
hash table of size 7 using separate chaining with the hash function:

h(key) =key % Table_Size

Time complexity > O(1)
but less than log(N)

Separate Chaining (Closed Addressing)

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

11

• Use the hash function hash to load the following items into a hash table of size 13 using
separate chaining:

onion 1 10.0

tomato 1 8.50

cabbage 3 3.50

carrot 1 5.50

okra 1 6.50

mellon 2 10.0

potato 2 7.50

Banana 3 4.00

olive 2 15.0

salt 2 2.50

cucumber 3 4.50

mushroom 3 5.50

orange 2 3.00

• Solution:

hash(onion) = (111 + 110 + 105 + 111 + 110) % 13 = 547 % 13 = 1

hash(salt) = (115 + 97 + 108 + 116) % 13 = 436 % 13 = 7

hash(orange) = (111 + 114 + 97 + 110 + 103 + 101)%13 = 636 %13 = 12

Separate Chaining (key is string)

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

12

0

1

2

3

4

5

6

7

8

9

10

11

12

onion

okra

mellon

banana

tomato olive

cucumber

mushroo

m

salt

cabbage

carrot

potato

orange

Item Qty Price h(key)

onion 1 10.0 1

tomato 1 8.50 10

cabbage 3 3.50 4

carrot 1 5.50 1

okra 1 6.50 0

mellon 2 10.0 10

potato 2 7.50 0

Banana 3 4.0 11

olive 2 15.0 10

salt 2 2.50 7

cucumber 3 4.50 9

mushroom 3 5.50 6

orange 2 3.00 12

Separate Chaining (key is string)

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

13

Open Addressing
• All items are stored in the hash table itself.

• In addition to the cell data (if any), each cell keeps one of the
three states: EMPTY, OCCUPIED, DELETED.

• While inserting, if a collision occurs, alternative cells are tried
until an empty cell is found.

• Deletion: (lazy deletion): When a key is deleted the slot is
marked as DELETED rather than EMPTY otherwise subsequent
searches that hash at the deleted cell will fail.

• Probe sequence: A probe sequence is the sequence of array
indexes that is followed in searching for an empty cell during an
insertion, or in searching for a key during find or delete
operations.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

14

Open Addressing
• Probe sequence: A probe sequence is the sequence of array

indexes that is followed in searching for an empty cell during an
insertion, or in searching for a key during find or delete
operations.

• The most common probe sequences are of the form:

hi(key) = [h(key) + f(i)] % n, for i = 0, 1, …, n-1.

where h is a hash function and n is the size of the hash table
• The function f(i) is required to have the following two

properties:
Property 1: f(0) = 0
Property 2: The set of values {f(0) % n, f(1) % n, f(2) %

n, . . . ,f(n-1) % n} must contain every integer between 0 and n -
1 inclusive.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

15

Open Addressing
• The function f(i) is used to resolve collisions.

• To insert item r, we examine array location h0(r) = h(r). If there is a
collision, array locations h1(r), h2(r), ..., hn-1(r) are examined until an
empty slot is found.

• Similarly, to find item r, we examine the same sequence of locations in
the same order.

Note: For a given hash function h(key), the only difference in the open
addressing collision resolution techniques (linear probing, quadratic
probing and double hashing) is in the definition of the function f(i).

• Types of Open Addressing:

Collision resolution technique f(i)

Linear probing i

Quadratic probing i2

Double hashing i*hp(key) where hp(key) is another hash function.

hi(key) = [h(key) + f(i)] % n, for i = 0, 1, …, n-1.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

16

Open Addressing Facts
• In general, primes give the best table sizes.

• With any open addressing method of collision resolution,

as the table fills, there can be a severe degradation in the table performance.

• Load factors (𝜆) between 0.6 and 0.7 are common.

𝜆 =(Number of element/Table Size)

• Load factors > 0.7 are undesirable.

• The search time depends only on the load factor, not on the table size.

• We can use the desired load factor to determine appropriate table size:

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

17

Open Addressing: Linear Probing
• F(i) is a linear function in i of the form F(i) = i.

• Usually F(i) is chosen as:

f(i) = i for i = 0, 1, . . . , tableSize – 1

• The probe sequences are then given by:

hi(key) = [h(key) + i] % tableSize for i = 0, 1, . . . , tableSize – 1

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

18

Example: Perform the operations given below, in the given
order, on an initially empty hash table of size 13 using linear
probing.

The hash function: h(key) = key % 13:

insert(18), insert(26), insert(35), insert(9), find(15), insert(48),
delete(35), delete(40), find(9), insert(64), insert(47), find(35)

• The required probe sequences are given by:

hi(key) = (h(key) + i) % 13 i = 0, 1, 2, . . ., 12

= (key%13 + i) % 13

Solution At board

Open Addressing: Linear Probing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

19

Operation Probe
Sequence

comment

Insert(18) 5 success

Insert(26) 0 success

Insert(35) 9 success

Insert(9) 9 Collison

10 success

Find(15) 2 Failed /Empty status

Insert(48) 9 Collison

10 Collison

11 success

Delete(35) 9 Success, deleted but key not removed. Status
changed to D

Find(9) 9 The search continued, location 9 doesn’t contains
9

10 success

Insert(64) 12 success

Insert(47) 8 success

Find(35) 9 Failed, location 9 is their but status changed to D

Index Status Value

0 O 26

1 E

2 E

3 E

4 E

5 O 18

6 E

7 E

8 O 47

9 D 35

10 O 9

11 O 48

12 O 64

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

20

Disadvantage of Linear Probing: Primary Clustering

• Linear probing is subject to a primary clustering phenomenon.

• Elements tend to cluster around table locations that they originally hash to.

• Primary clusters can combine to form larger clusters. This leads to long probe

sequences and hence deterioration in hash table efficiency.

Example of a primary cluster: Insert keys: 18, 41, 22, 44, 59, 32, 31, 73,

in this order, in an originally empty hash table of size 13, using the hash

function h(key) = key % 13 and f(i) = i:

h(18) = 5

h(41) = 2

h(22) = 9

h(44) = 5+1

h(59) = 7

h(32) = 6+1+1

h(31) = 5+1+1+1+1+1

h(73) = 8+1+1+1

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

21

• Quadratic probing eliminates primary clusters.

• f(i) is a quadratic function in i of the form

f(i) = i2 for i = 0, 1, . . . , tableSize – 1

• The probe sequences are then given by:

hi(key) = [h(key) + i2] % tableSize , for i = 0, 1, . . . , tableSize – 1

Open Addressing: Quadratic Probing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

22

• Example: Load the keys 23, 13, 21, 14, 7, 815,34 , and 47 in
this order, in a hash table of size 13 using quadratic probing
with

• f(i) = i2 and the hash function: h(key) = key % 13
• The required probe sequences are given by:

hi(key) = (h(key) + i2) % 13 i = 0, 1, 2, 3

Solution in class At board

Open Addressing: Quadratic Probing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

23

Secondary Clusters

• Quadratic probing is better than linear probing because it eliminates primary

clustering.

• However, it may result in secondary clustering: if h(k1) = h(k2) the probing

sequences for k1 and k2 are exactly the same.

This sequence of locations is called a secondary cluster.

• Secondary clustering is less harmful than primary clustering because secondary

clusters do not combine to form large clusters.

• Example of Secondary Clustering: Suppose keys k0, k1, k2, k3, and k4 are

inserted in the given order in an originally empty hash table using quadratic

probing with f(i) = i2. Assuming that each of the keys hashes to the same array

index x. A secondary cluster will develop and grow in size:

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

24

• To eliminate secondary clustering, synonyms must have different probe sequences.

• Double hashing achieves this by having two hash functions that both depend on the hash key.

• f(i) = i * hp(key) for i = 0, 1, . . . , tableSize – 1
where h2 is another hash function.

• The probing sequence is:

hi(key) = [h(key) + i*hp(key)]% tableSize for i = 0, 1, . . . , tableSize – 1

• The function f(i) = i*hp(r) satisfies Property 2 provided hp(r) and tableSize are relatively prime.

• To guarantee Property 2, tableSize must be a prime number.

• Common definitions for hp are :
 hp(key) = 1 + key % (tableSize - 1)
 hp(key) = q - (key % q) where q is a prime less than tableSize
 hp(key) = q*(key % q) where q is a prime less than tableSize

Open Addressing: Double Hashing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

25

Performance of Double hashing:

• Much better than linear or quadratic probing because it eliminates both
primary and secondary clustering.

• BUT requires a computation of a second hash function hp.

Example: Load the keys 18, 26, 35, 9, 26, 47, 96, 36, and 70 in this order, in
an empty hash table of size 13

hi(key) = [h(key) + i*hp(key)]% tableSize

(a) using double hashing with the first hash function: h(key) = key % 13
and the second hash function: hp(key) = 1 + key % 12

(b) using double hashing with the first hash function: h(key) =
key % 13 and the second hash function: hp(key) = 7 - key % 7

Show all computations.

Solution in class At board

Open Addressing: Double Hashing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

26

Example: Load the keys 18, 26, 35, 9, 26, 47, 96, 36, and 70 in this order, in
an empty hash table of size 13

hi(key) = [h(key) + i*hp(key)]% tableSize

(a) using double hashing with the first hash function: h(key) = key % 13
and the second hash function: hp(key) = 1 + key % 12

Open Addressing: Double Hashing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

27

h0(18) = (18%13)%13 = 5
h0(26) = (26%13)%13 = 0
h0(35) = (35%13)%13 = 9
h0(9) = (9%13)%13 = 9 collision

hp(9) = 1 + 9%12 = 10
h1(9) = (9 + 1*10)%13 = 6
h0(64) = (64%13)%13 = 12
h0(47) = (47%13)%13 = 8
h0(96) = (96%13)%13 = 5 collision

hp(96) = 1 + 96%12 = 1
h1(96) = (5 + 1*1)%13 = 6 collision
h2(96) = (5 + 2*1)%13 = 7
h0(36) = (36%13)%13 = 10
h0(70) = (70%13)%13 = 5 collision

hp(70) = 1 + 70%12 = 11
h1(70) = (5 + 1*11)%13 = 3

hi(key) = [h(key) + i*hp(key)]% 13

h(key) = key % 13

hp(key) = 1 + key % 12

Load the keys 18, 26, 35, 9, 64, 47, 96,36,and 70 , in this order, in a hash table of size 13
using double hashing with h(x) = 1+x%tablesize-1 and the hash function

Open Addressing: Double Hashing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

28

h0(18) = (18%13)%13 = 5
h0(26) = (26%13)%13 = 0
h0(35) = (35%13)%13 = 9
h0(9) = (9%13)%13 = 9 collision

hp(9) = 7 - 9%7 = 5
h1(9) = (9 + 1*5)%13 = 1

h0(64) = (64%13)%13 = 12
h0(47) = (47%13)%13 = 8
h0(96) = (96%13)%13 = 5 collision

hp(96) = 7 - 96%7 = 2
h1(96) = (5 + 1*2)%13 = 7

h0(36) = (36%13)%13 = 10
h0(70) = (70%13)%13 = 5 collision

hp(70) = 7 - 70%7 = 7
h1(70) = (5 + 1*7)%13 = 12 collision
h2(70) = (5 + 2*7)%13 = 6

hi(key) = [h(key) + i*hp(key)]% 13

h(key) = key % 13

hp(key) = 7 - key % 7

Open Addressing: Double Hashing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

29

6

15

37

25

29

13

Solution in class, At
board

a. Insert 29?
b. Is there a problem(s) is hashing table? If there is

state it and give a solution (s)

Exercise: If the hash table after using linear probing is as shown below?

0

1

2

3

4

5

6
*.problems Collision and load factor

more than 70%
*. Solutions is Rehashing (done at board)

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

30

Rehashing
• As noted before, with open addressing, if the hash

tables become too full, performance can suffer a lot.

• So, what can we do?

• We can double the hash table size, modify the hash
function, and re-insert the data.

• More specifically, the new size of the table will be the
first prime that is more than twice as large as the old
table size.

When to Rehash?
• When first insertion failed

• The table is half full load factor 50%

• Load factor = 75%

newTable= prime>2*oldSize

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

31

Open Addressing : pros and cons

• Advantages of Open addressing:

1. All items are stored in the hash table itself. There is
no need for another data structure.

2. Open addressing is more efficient storage-wise.

• Disadvantages of Open Addressing:

1) The keys of the objects to be hashed must be distinct.

2) Dependent on choosing a proper table size.

3) Requires the use of a three-state (Occupied, Empty,
or Deleted) flag in each cell.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

32

Separate Chaining : pros and cons

Advantages:
1. Collision resolution is simple and efficient.
2. The hash table can hold more elements without the large

performance deterioration of open addressing (The load factor can
be 1 or greater)

3. Deletion is easy - no special flag values are necessary.
4. Table size need not be a prime number.

Disadvantages:
1. It requires the implementation of a separate data structure for

chains, and code to manage it.
2. The main cost of chaining is the extra space required for the linked

lists.
3. For some languages, creating new nodes (for linked lists) is

expensive and slows down the system.

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

33

Separate Chaining Open Addressing

1. Chaining is Simpler to implement.
Open Addressing requires more
computation.

2.
In chaining, Hash table never fills up, we
can always add more elements to chain.

In open addressing, table may become full.

3.
Chaining is Less sensitive to the hash
function or load factors.

Open addressing requires extra care for to
avoid clustering and load factor.

4.
Chaining is mostly used when it is
unknown how many and how frequently
keys may be inserted or deleted.

Open addressing is used when the
frequency and number of keys is known.

5.
Cache performance of chaining is not
good as keys are stored using linked list.

Open addressing provides better cache
performance as everything is stored in the
same table.

6.
Wastage of Space (Some Parts of hash
table in chaining are never used).

In Open addressing, a slot can be used
even if an input doesn’t map to it.

7. Chaining uses extra space for links. No links in Open addressing

Separate Chaining vs. Open-addressing

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

34

Separate Chaining with String Keys
• Recall that search keys can be numbers, strings or some other object.

• A hash function for a string s = c0,c1,c2,…cn-1 can be defined as:

hash = (c0 + c1 + c2 + … + cn-1) % tableSize

this can be implemented as:

typedef unsigned int INDEX

INDEX hash (char *key, unsigned int H_SIZE)

{

unsigned int hash_val = 0;

while (*key != ‘\0’)

hash_val += *key++;

return (hash_val % H_SIZE);

}

tea,ate

(TableSize =10,007 prime) ASCII code at most

127char

with one word has 8 char lenght =127 ∗ 8=
{0,…,1016}

 This not equitable distribution

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

35

• Alternative hash functions for a string

s = c0c1c2…cn-1

exist, some are:

INDEX hash (char *key, unsigned int Table_SIZE)

{

return ((key[0] + 27 * key[1] + 729 * key[2]) % Table_SIZE);

}

tea, ate, fashion , fashionable

TableSize =10,007 prime, examine first 3

characters, (26 char + NULL=27)

 This not equitable distribution, since the

letters are not random distributed

hash = (c0 + 27 * c1 + 729 * c2) % tableSize

Separate Chaining with String Keys

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

36

tea

INDEX hash (char *key, unsigned int TableSIZE)

{

unsigned int hash_val = 0;

while (*key != ‘\0’)

hash_val = (hash_val << 5) + *key++;
if(hashVal < 0)

hashVal += tableSize;
return (hash_val % H_SIZE);

}

00000011, 00000110 , 00001100, 00011000, 00110000

hash = . 32ⅈ
𝑖=0

KeySize i−1
Key[KeySize − i − 1]

Mr. Murad Njoum & Dr. Ahmad Abusnaina COMP2321|Hashing

THANK YOU

37

