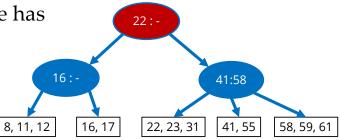
COMP2321—DATA STRUCTURES

B-Tree

Dr. Radi Jarrar Department of Computer Science Birzeit University

Dr. Radi Jarrar - Birzeit University, 2020 2

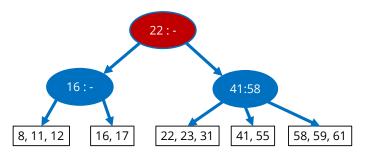
B-Tree


- A B-Tree of order m is a tree with the following structural properties.
 - The root is either a leaf or has between 2 & m children.
 - All non-leaf nodes (except the root) have between [m/2] & m child nodes.
 - All leaves are at the same depth and have at most m data items.
 - All data is stored at the leaves.
- B-Tree is NOT a Binary Search Tree.

B-Tree (2)

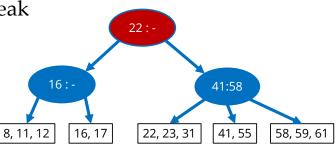
- A B-tree order 4 is more popularly known as a 2-3-4 tree, and a B-tree of order 3 is known as a 2-3 tree.
- The leaves contain the actual data, which can be the keys themselves or pointers to records containing the keys.

 'Dash' means this node has only 2-children.


 Keys in leaves are ordered.

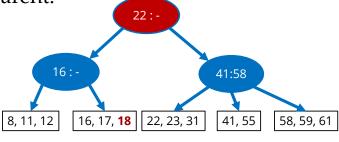
Dr. Radi Jarrar - Birzeit University, 2020 4

Find Operation

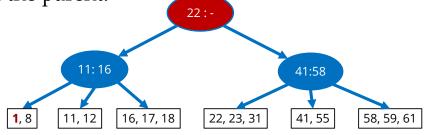

•Start at the root & branch in one of at most 3-directions depending on the relationship of the key we are looking for to the two (possible one) values stored at the node.

Insert Operation

• Follow the path as in Find. When reaching the leaf node, insert key X at the right position without violating the rules of the tree.

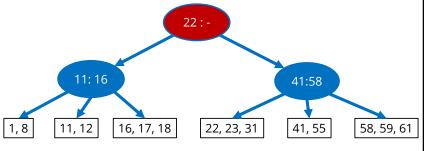

• E.g., Insert 18 won't break the rules of the 2-3 tree priority.

Dr. Radi Jarrar - Birzeit University, 2020 6

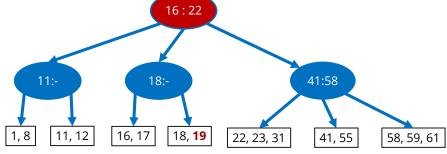

Insert Operation (2)

- E.g., Insert 1.
- •We find where 1 belongs. It will violate the rule (a leaf node with 4 keys). Thus, create a 2-nodes of 2-keys & adjust the info at the parent.

Insert Operation (2)

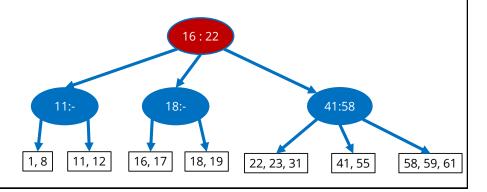

- E.g., Insert 1.
- We find where 1 belongs. It will violate the rule (a leaf node with 4 keys). Thus, create a 2-nodes of 2-keys & adjust the info at the parent.

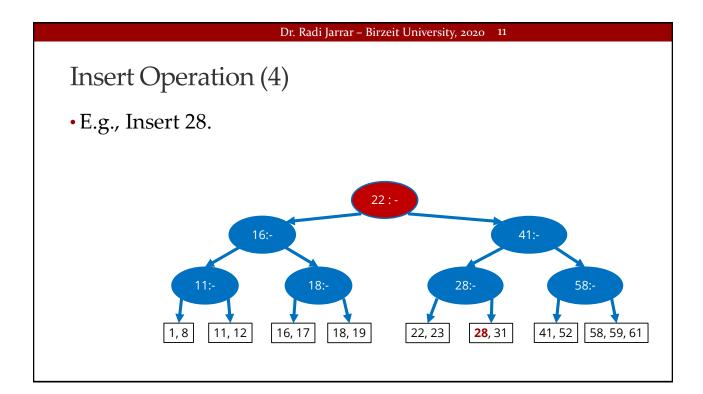
Dr. Radi Jarrar - Birzeit University, 2020 8


Insert Operation (3)

- E.g., Insert 19.
- Will break the rules as it causes 11:16 to have 4 leaf nodes which isn't allowed. Only 3 leaf nodes per internal nodes are allowed. So split that internal node into 2.

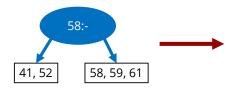
Insert Operation (3)

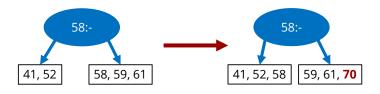

- E.g., Insert 19.
- Will break the rules as it causes 11:16 to have 4 leaf nodes which isn't allowed. Only 3 leaf nodes per internal nodes are allowed. So split that internal node into 2.



Dr. Radi Jarrar - Birzeit University, 2020

Insert Operation (4)


- E.g., Insert 28.
- Will break the rules as it causes the same to the right part of the tree.


Insert Operation (5)

- Another way to handle the insertion at the leaf node without splitting the internal node is by searching for a sibling with 2 keys.
- E.g., Insert (70)
 - Move 58 to the leaf node on the left & then insert 70 there

Insert Operation (5)

- Another way to handle the insertion at the leaf node without splitting the internal node is by searching for a sibling with 2 keys.
- E.g., Insert (70)
 - Move 58 to the leaf node on the left & then insert 70 there

Dr. Radi Jarrar - Birzeit University, 2020 14

Delete

- Find & Delete.
- If it was one of the 2-keys, then combine the remaining key with a sibling node. If the sibling has 3-keys, steal one & have both keys to make a new node.

Applications

- Database systems.
 - The tree is kept on a physical disk instead of main memory.
- Accessing disk is typically several order of magnitude slower than any main memory operation. If we use a B-tree of order m, then the number of disk accesses is $O(\log_m n)$.

Dr. Radi Jarrar - Birzeit University, 2020 16

Applications

- Database systems.
 - The tree is kept on a physical disk instead of main memory.
- Accessing disk is typically several order of magnitude slower than any main memory operation. If we use a B-tree of order m, then the number of disk accesses is $O(\log_m n)$.

Algorithm	Average	Worst case
Space	O(<i>n</i>)	O(n)
Search	$O(\log n)$	$O(\log n)$
Insert	$O(\log n)$	$O(\log n)$
Delete	$O(\log n)$	$O(\log n)$