23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 1

COMP2321 —DATA STRUCTURES

Linked Lists %
2247 bt 4
Dr. Radi Jarrar Wﬂvﬁ\‘?ﬂ

Department of Computer Science BIRZEIT UNIVERSITY

Birzeit University

Dr. Radi Jarrar - Birzeit University, 2020 2

Data structure and Arrays

- A data structure is a way of storing data in a computer so
that they can be retrieved and used efficiently

* An array is a very simple data structure for holding a
sequence of data

contiguous memory locations
200 204 208 212 216 220 224 228 232 236 240 244

|11 |9 |17|e9|1 |9o|19|5|3|23|43|99|
o 1 2 3 4 5 6 7 8 9 10 1

Index

23/3/2020

Data structure and Arrays (2)

*Pros of Arrays
- Access to an array element is fast since we can compute its
location quickly
Cons
- Fixed size

- When we want to insert or delete an element, we have to shift
subsequent elements (slow)

- We need a large enough block of memory to hold an array

Linked Lists

- Another data structure that is used to store sequence of
data

+ A linked list consists of a series of structures called nodes

*Data values do not have to be stored in adjacent memory
cells

« Each node contains two fields: a "data" field and a "next"
field, which is a pointer used to link one node to the next
node

- To use a linked list, we only need to know where the first
data value is stored

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 5

Linked Lists (2)

o) B o] sz e

iy

ls

* Dynamic size

- Advantages of Linked Lists

« No shift of elements on deletion/insertion

« Drawbacks of Linked Lists

- Random access isn't allowed
- Extra memory is needed for the next pointer

Dr. Radi Jarrar - Birzeit University, 2020 6

Linked Lists (3)

« When to use Linked Lists

* No need for random access

- Insertion in the middle of the list is frequent

« The number of data items to be stored in the list is unknown

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 7

Linked Lists vs. Array

Operation

Array

Linked List

Print list

Print Element

Search

Insert

Delete

Find Index

Dr. Radi Jarrar - Birzeit University, 2020 8

Operations on Linked

to the first element in the

the malloc call.

Lists

list.

- Header node: a node that is kept at position zero. It points

» Creation (MakeEmpty): the process of creating the head
node. Returns a pointer to the first node.

- Insertion: obtaining a new cell from the system by using

* Deletion: delete a given node after find.
- Find: search for a node. If exists, return a pointer to it.

23/3/2020

Struct Node

*Node is the main building block of the list.

- In this example, each node contains a single data element
and a pointer to the next node in the list.

struct node
{
int Data;
struct node* Next;

s

Dr. Radi Jarrar - Birzeit University, 2020 10

MakeEmpty

« Creates a Linked List
struct node* MakeEmpty (struct node* L) {
if (L != NULL)
Deletelist (L);

L = (struct node*)malloc(sizeof (struct node));

if (L == NULL)
printf (“Out of memory!\n”);

L->Next = NULL;
return L;

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 11

IsEmpty

» Checks if the list is empty
int IsEmpty (struct node* L) {
return L->Next == NULL;

Dr. Radi Jarrar - Birzeit University, 2020 12
IsLast

» Checks if a given node is the last node in the linked list
int IsLast(struct node* P, struct node* L) {

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 13
Find

+ Looks for a node in the Linked List. Returns a pointer to the node if exists.
struct node* Find(int X, struct node* L) {

struct node* P;

P = L->Next;

while (P != NULL && P->Data != X)
X = X->Next;

return P;

Dr. Radi Jarrar - Birzeit University, 2020 14

FindPrevious

« Similar to previous but return a pointer to the node previous to the one you
are looking for. If X is not found, then Next field of returned value is NULL.

struct node* FindPrevious (int X, struct node* L) {
struct node* P;
P =1,

P->Next != NULL && P->Next->Data != X)

while (
X = X->Next;

return P;

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 15

Delete

+ Delete the first occurrence in the list. We find P, which is the cell pointer to the one
containing X, via FindPrevious

void Delete (int X, struct node* L) {
struct node* P, temp;

P = FindPrevious (X, L);

if(!IsLast(P, L)){
temp = P->Next;

P->Next = temp->Next; //bypass delete cell
free (temp) ;

Dr. Radi Jarrar - Birzeit University, 2020 16

Insert

- Pass an element to be inserted, a list L, and position P. Insert
an element after the position implied by P.

void Insert (int X, struct node* L, struct node*

P) {
struct node* temp;

temp = (struct node*)malloc(sizeof (struct
node)) ;

temp->Data = X;
temp->Next = P->Next;
P->Next = temp;

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 17
PrintList

- Given a list, print its elements.
void PrintList (struct node* L) {
struct node* P = L;
if(IsEmpty (L))
printf (“Empty list\n”);
else
do{
P=P->Next;
printf (“$d\t”, P->Data);
}while(!IsLast (P, L));
printf (“\n”);

Dr. Radi Jarrar - Birzeit University, 2020 18

Deletel.ist

- Given a list, delete all its elements.

void Deletelist (struct node* L) {
struct node* P, temp;
P = L->Next;
L->Next = NULL;

while (P != NULL) {
temp = P->Next;
free (P);

P=temp;

23/3/2020

Size of Linked List

« Write a routine to find the size of a linked list.

Types of Linked Lists

» Linear singly-linked list
*Doubly linked list

- Single circular linked list
*Doubly circular linked list

10

23/3/2020

Circular Linked List

- The last node keeps a pointer to the first node

Doubly Linked List

- Each node points to its next and previous node
+ Add an extra pointer to the previous node

» Adds more space requirements and doubles the cost of insertion &
deletion because more pointers to fix

- Simplifies deletion-no need for FindPrevious

11

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 23

last

Doubly Circular Linked List

- Each node points to its next and previous node

» The last node’s next is the first; and the previous of the first is the

oy

ds

¥

‘.J_.
i

Dr. Radi Jarrar - Birzeit University, 2020 24

APPLICATIONS TO LINKED LISTS

12

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 25
Radix Sort

- Is a non-comparative sorting algorithm. We are not comparing
elements (in a list for instance) with each other.

1. Takes the least significant digits (LSD) of the values to be
sorted.

2. Sorts the list of elements based on the digit

https://youtu.be/7pwwgxmMHnc

Radix Sort (2)

-E.g., 9, 169, 739, 538, 10, 5, 36 -> array size 7

» Solution: consider 0 to 9 linked lists. 10 lists. Each one
represent a digit which each significant digit can be. We are
going to sort each number into one of these lists as we are
going along.
- Total of 10 lists

+ 0-9 refers to actual numbers

13

Dr. Radi Jarrar - Birzeit University, 2020 27

23/3/2020

RadixSQrt(3) 9 [169[739[538] 10 | 5

36

- STEP 1: take the least significant digit (the one’s column).
Extract using the mod 10 (int m=10, n=1;) (mis the
modulus; divide the whole number, then divide the
number by n).

Dr. Radi Jarrar - Birzeit University, 2020 28

RadixSort(4) 9 [169]739538] 10 | 5

36

« So after the first round:

L]

i I@'I'IH c
I I

14

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 29

RadeSQrt(4) 9 | 169|739 |538| 10 | 5 | 36

« So after the first round:

o [[
¢]

N

!

= 36

~ @ [} s w

e e [

2 [l e [|

Dr. Radi Jarrar - Birzeit University, 2020 30

RadixSort(S) 10 | 5 | 36 |538| 9 | 169|739

*Once we reached the end of the list, we make a new array
and put the values by removing from head of each list.

* Then the sorted new arrayis: 10, 5, 36, 538, 9,
169, 739

*Now we look at the second significant digit in the new
array and we re-arrange the numbers based on that digit.

 Implementation (m=m*10 (which is the mod); n=n*10
which is 10 now)

15

23/3/2020

Dr. Radi Jarrar - Birzeit University, 2020 31

RadixSort(6) 10| 5 | 36 |538] 9 | 169|739

- Again, we take the mod of each number with m then we
divide by n and put it in the list.

e

T

Dr. Radi Jarrar - Birzeit University, 2020 32

RadixSort(7) 5 9 | 19 | 36 | 538|739 169

 So the list becomes 5, 9, 10, 36, 538, 739, 169
- Now we look at the third digit:

NENUNEENEN

16

23/3/2020

Radix Sort (8)

« So the FINAL list becomes 5, 9, 10, 36, 169, 538, 739
- Notes

» The mod value m and the divisor value n go as big as the largest
number of digits inside the array.

- In other words, it increases one digit every time until array is
sorted.

- In this example, significant digit increase each time.

Radix Sort (9)

- Time complexity

+ O(kN) where N is the number of elements to sort, k is the number
of digits (or it can be said for n keys which have d or fewer
digits). Generally, k cannot be considered as a constant so it is not
removed.

- Best case: kN; average case: kN; worst case: kN

17

23/3/2020

Radix Sort (10)

- Radix sort for strings?
 List of words: dab, add, fee, bee, ace, eba

Extra exercises on linked lists

«Question 1) Write a function that takes two sorted linked
lists and return true if the lists are disjoin lists (meaning
they have no common elements). Use iterations to solve
this question.

- Question 2) Write a recursive function that takes two
sorted linked lists and return true if the lists are disjoin
lists (meaning they have no common elements). Your
algorithm should be O(n).

*Question 3) Write a function to reverse a given doubly
linked list.

18

23/3/2020

Extra exercises on linked lists

 Question 4) Write a function called concat() that receives
two lists and append the first one to the second.

*Question 5) Given a singly linked list, write a function to
swap elements pairwise.

For example, if the linked list is 1->2->3->4->5 then the
function should change it to 2->1->4->3->5, and if the linked
list is 1->2->3->4->5->6 then the function should change it to
2->1->4->3->6->5.

Extra exercises on linked lists

*Question 6) Write a function called RemoveDuplicates()
that takes a list sorted in increasing order and deletes any
duplicate nodes from the list.

- Question 7) Write an iterative Reverse() function that
reverses a list by rearranging all the .next pointers and the
head pointer.

19

