
Dr. Radi Jarrar – Birzeit University, 2020

COMP2421—DATA STRUCTURES
Hashing Strings

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (1)

• If the key is String, then the hash function can be chosen in
one of the following techniques:

1. Add up the ASCII values of the character in the String.
key = (ASCII(a0) + ASCII(a1) + ASCII(a2) + …) % (HashSize)

•Though this approach is simple to implement and quick, it
has the following problems:

a. Words may have the same ASCII sum (e.g., net, ten)

b. If the table size is large, the function will not distribute
keys well.

2

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (1)

int hash(char* key, int TableSize){

int hashValue = 0;

while(*key != ‘\0’){

hashValue += *key++;

return (hashValue % TableSize);

}

3

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (2)

•Another Hash function assumes that the key has at least
two characters plus the NULL terminator. The value 27
represents the number of letters in the English Alphabet,
plus the blank, and 729 = 272 . This function examines the
first three characters only. A problem with this approach is
that there is no random distribution of keys.

key1 = a0 * 270 + a1 * 271 + a2 * 272

key2 = a0 * 270 + a1 * 271 + a2 * 272

4

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (2)

return ((int)key[0] + (int)key[1] * 27 +

(int)key[2] * 729) % TableSize;

5

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (3)

Hash function that involves all characters in the key and
can generally be expected to distribute the keys well.
It computes as

which is a polynomial of 32 (a factor of 2) instead of 27
because it is faster to process than 27.

* 32 is bit shifting by 5

6

Key[KeySize- i-1]. 32i

i=0

KeySize-1

å

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (3)

int hash(char* key, int TableSize){

int hashValue = 0;

while(*key != ‘\0’){

hashValue = (hashValue << 5) +

*key++;

}

return (hashValue % TableSize);

}

7

Dr. Radi Jarrar – Birzeit University, 2020

Hashing Strings (3)

• << is left-shifting, which is equivalent to multiplying a
number by 2.

Example: 8 in Binary is 00001000. Shift ‘8’ two places to the
left will give:
8 << 2 00100000 (which is 32). It is the same as 8 * 22 = 32.
Everything is moved to the left and zeros are added as
paddings.

8

Dr. Radi Jarrar – Birzeit University, 2020

Hashing

9

