
02-Jun-21

1

Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES
AND ALGORITHMS
Graphs

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Dr. Radi Jarrar – Birzeit University, 2021

Graphs

• Graphs are mathematical concepts that have

many applications in computer science.

• They have many applications in real-life applications such

as social networks, locations and routers in GPS, …

• A graph consists of a finite set of vertices (i.e., nodes) and

a set of edges connecting these vertices.

• Two vertices are called adjacent if they are connected to

each other by the same edge.

2

A

B

F

C

ED

02-Jun-21

2

Dr. Radi Jarrar – Birzeit University, 2021

Graphs

•A graph G=(V, E), is a data structure that
consists of a finite set of vertices (or nodes) V,
and a set of edges, E.

•Each edge is a pair (v, w) where v and w are nodes from V.

3

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs

• If the pairs are ordered in the graph, then

the graph is called directed graph(diagraphs).

• Vertex w is adjacent to v if and only if (v, w) ∈ E. In an

undirected graph with edge (v, w), and hence (w, v), w is

adjacent to v and v is adjacent to w.

4

A

B

F

C

ED

02-Jun-21

3

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• Order: is the number of vertices in a graph

• Size: is the number of edges in a graph

• Vertex degree: is the number of edges that are connected
to a vertex

• Isolated vertex: is the vertex that is not connected to any
other vertex in the graph

• Self-loop: an edge from a vertex to itself

5

A

B

F

C

ED

G

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• Directed graph: is a graph where all
edges have directions indicating what
is the start vertex and what is the end vertex

• Undirected graph: is a graph with edges that have no
directions

6

A

B

F

C

ED

A

B

F

C

ED

02-Jun-21

4

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• Weighted graph: edges of a graph have weights

• Unweighted graph: edges of a graph have no weights

7

A

B

F

C

ED

0.5

1.5

0.71.4

0.1

0.2

1.0

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A path in a graph is a sequence of vertices w1, w2, w3, …,wN,

such that (wi,wi+1) ∈ E for 1 ≤ i < N. The length of such a path is the number

of edges on the path, which is equal to N – 1.

• A path from a vertex to itself is allowed. If it does not contain edges, then the

path length is 0. If edge (v,v), then the path v (which is also referred to as a

loop).

• Cycle: a path w1, w2, w3, …,wN for which N > 2, the first N - 1 vertices are all

different, and w1 = wN. For example, the sequence D, E, A, B, C, D is a cycle in

the graph above.

8

A

B

F

C

ED

02-Jun-21

5

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A simple path is a path such that all vertices are

distinct (except that the first and last might be the same).

• The path v, u, v is cyclic. However, it is not in undirected graph because

(v,u) and (u,v) is the same path.

9

A

B

F

C

ED

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A directed graph is called acyclic if it has no cycles (DAG)

- Acyclic directed graph.

• An undirected graph is called connected if there is a path from every

node to every other node. A directed graph with this property is called

strongly connected.

10

A

B

F

C

ED

02-Jun-21

6

Dr. Radi Jarrar – Birzeit University, 2021

Graphs - Definitions

• A complete graph is a graph in which there is an edge between every

pair of vertices.

BC

ED

11

Dr. Radi Jarrar – Birzeit University, 2021

Examples of using graphs

• Airport System

• Graphs are used to represent networks. The networks may include paths

in a city or telephone network or circuit network.

• Graphs are also used in social networks like LinkedIn, Facebook. For

example, in Facebook, each person is represented with a vertex(or node).

Each node is a structure and contains information like person id, name,

gender, and locale.

12

02-Jun-21

7

Dr. Radi Jarrar – Birzeit University, 2021

REPRESENTATION OF GRAPHS

13

Dr. Radi Jarrar – Birzeit University, 2021

Graph Representation

• A graph is a data structure that consists of two main components: a finite

set of vertices (i.e., nodes); and a finite set of ordered pairs called edges

• Graphs are most commonly represented using

• Adjacency matrix

• Adjacency list

14

02-Jun-21

8

Dr. Radi Jarrar – Birzeit University, 2021

Graph Representation

• Consider the following directed graph (the undirected graph is

represented the same way)

• Suppose that we can number the vertices starting at 1. This graph has 7

vertices and 12 edges.

• One method is to represent a graph

using a 2D array (adjacency matrix)

15

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix

• Adjacency Matrix: maintain a 2D-Boolean array of size v * v where v is

the number of vertices in the graph.

• Let the adjacency matrix adj, each edge is represented with the value

true: adj[v][w] = true for the edge (v, w)

• The boolean value can be replaced with a weight to represent a weighted

graph

• For undirected graph, the adjacency matrix is symmetric

16

02-Jun-21

9

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix 1 2 3 4 5 6 7

1 1 1 1

2 1 1

3 1

4 1

5 1

6

7 1

17

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix

Advantages:

• Easy to implement and follow

• Removing and edge/checking if an edge exists in the graph takes O(1)

Disadvantages:

• Requires more space O(n2) if the graph has a few number of edges

between vertices

• Adding a vertex will consume O(n2)

• Very slow to iterate over all edges

18

02-Jun-21

10

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency Matrix

Advantages:

• Easy to implement and follow

• Removing and edge/checking if an edge exists in the graph takes O(1)

Disadvantages:

• Requires more space O(n2) if the graph has a few number of edges

between vertices

• Adding a vertex will consume O(n2)

• Very slow to iterate over all edges

19

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency List
• Is a better solution if the graph is sparse (not dense)

• For each vertex, we keep a list of all adjacent vertices

• The space requirement is then O(|E| + |V|), which is linear in the size

of the graph

2

4

1

3

6

7

5

32 4

4 5

6

73 6

4 7

6

20

02-Jun-21

11

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency List

• Adjacency lists are the standard way to represent graphs

• Undirected graphs can be similarly represented; each edge (u, v)

appears in two lists, so the space usage essentially are doubled

• A common requirement in graph algorithms is to find all vertices

adjacent to some given vertex v, and this can be done in time

proportional to the number of such vertices found, by a simple scan

down the appropriate adjacency list

21

Dr. Radi Jarrar – Birzeit University, 2021

Adjacency List
Advantages:

• Fast to iterate over all edges
• Fast to add/delete a node (vertix)
• Fast to add a new edge O(1)
• Memory depends more on the number of edges (and less on the

number of nodes), which saves more memory if the adjacency
matrix is sparse

Disadvantages:

• Finding a specific edge between any two nodes
is slightly slower than the matrix O(k); where k is the number of
neighbors nodes

22

02-Jun-21

12

Dr. Radi Jarrar – Birzeit University, 2021

SORTING GRAPHS

23

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort
• A linear order of the vertices in a directed graph
• A topological sort is an ordering of vertices in a directed acyclic graph, such

that if there is a path from vi to vj, then vj appears after vi in the ordering
• An example is the a directed

graph that represents the
prerequisite of courses in
the figure

24

02-Jun-21

13

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• A directed edge (v, w) indicates that course v must be completed before course
w may be attempted

• A topological ordering of these courses is any course sequence that does not
violate the prerequisite requirement

• Topological ordering is not possible if the graph has a cycle, since for two
vertices v and w on the cycle, v precedes w and w precedes v.

• The ordering is not necessarily unique; any
legal ordering will work.

• In this graph, v1, v2, v5, v4, v3, v7, v6

and v1, v2, v5, v4, v7, v3, v6

are both topological orderings.

25

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• Main idea: find a vertex with nothing going into it (i.e., Starting
point). Write it down. Remove it and go through the other vertices
and check for anyone with nothing coming into it. Repeat.

• scan all vertices to find the starting point

• * if edge (A, B) exists, A must precede B in the final order.

• Algorithm:

• Assume indegree is sorted with each node

• Repeat until no nodes remain
• Choose a node of zero indegree and output it

• Remove the node and all its edges and update indegree

26

02-Jun-21

14

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

27

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 1 and then update:

28

5

76

21

43

5

76

2
1

43

02-Jun-21

15

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

29

5

76

2
1

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 2 and then update:

30

5

76

2
1

43

5

76

21

43

02-Jun-21

16

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

31

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 5 and then update:

32

5

76

21

43

5

76

21

43

02-Jun-21

17

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

33

5

76

21

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 4 and then update:

34

5

76

21 4

3

5

76

21

43

02-Jun-21

18

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

35

5

76

21 4

3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 3 and then update:

36

5

76

21 4

3

5

76

21 4 3

02-Jun-21

19

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

37

5

76

21 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 6 and then update:

38

5

7

621 4 3

5

76

21 4 3

02-Jun-21

20

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Indegree:

0:

1:

2:

3:

39

5

7

621 4 3

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

• Pick 7 and then update:

40

5

7

621 4 3

5 7621 4 3

02-Jun-21

21

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• First we find the nodes with no predecessors.

• Then, using a queue, we can keep the nodes with no predecessors
and on each dequeue we can remove the edges from the node to all
other nodes.

41

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• Pseudocode:

1. Represent the graph with two lists on each vertex (incoming edges
and outgoing edges)

2. Make an empty queue Q;

3. Make an empty topologically sorted list T;

4. Push all items with no predecessors in Q;

5. While Q is not empty
Dequeue from Q into u;
Push u in T;
Remove all outgoing edges from u;

6. Return T;

42

02-Jun-21

22

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort

• This approach will give us a running time complexity is O(|V| + |E|).

• The problem is that we need additional space and an operational
queue.

43

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

47

02-Jun-21

23

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

48

Dr. Radi Jarrar – Birzeit University, 2021

Topological Sort - Example

49

02-Jun-21

24

Dr. Radi Jarrar – Birzeit University, 2021

SEARCH ALGORITHMS

50

Dr. Radi Jarrar – Birzeit University, 2021

Shortest-Path Algorithms

• Shortest-path algorithms aim at finding the shortest path between
nodes in a graph

• The input is a weighted graph: associated with each edge (vi, vj) is a
cost ci,j to traverse the edge

• The cost of a path v1v2 . . . vN is 𝑖=1
𝑁−1 ci, i+1

• This is referred to as the weighted path length

• The unweighted path length is the number of edges on the path,
namely, N − 1

51

02-Jun-21

25

Dr. Radi Jarrar – Birzeit University, 2021

Shortest-Path Algorithms

• Single-Source shortest path: find the shortest path from a source
vertex s to all vertices in a graph

• Single-Destination shortest path: find a shorter path to a given
destination vertex d from all vertices in a graph

• Single-Pair shortest path: find the shortest path from a source
vertex u to a destination vertex v

• All-Pairs shortest path: find the shortest path from a source vertex u
to a destination vertex v for all vertices u and v in the graph

52

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Given as input a weighted graph, G = (V, E), and a distinguished
vertex, s, find the shortest weighted path from s to every other
vertex in G.

• For example, the shortest weighted
path from v1 to v6 has a cost of 6
and goes from v1 to v4 to v7 to v6

• The shortest unweighted path
between these vertices is 2

53

02-Jun-21

26

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• The shortest unweighted path

between these vertices is 2

• Generally, when it is not specified

whether we are referring to a weighted

or an unweighted path, the path is

weighted if the graph is.

54

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Having negative weights in the graph
may cause some problems.

• The path from v5 to v4 has cost 1,
but a shorter path exists by
following the loop v5, v4, v2, v5, v4,
which has a cost of −5

• This path is still not the shortest,
because we could stay in the loop
arbitrarily long.

• Thus, the shortest path between these two points is undefined.

55

02-Jun-21

27

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Another example, the shortest path

• from v1 to v6 is undefined, because

we can get into the same loop.

• This loop is known as a

negative-cost cycle; when one is

present in the graph, the shortest paths

are not defined.

56

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Negative-cost edges are not necessarily bad, as the cycles are, but

their presence seems to make the problem harder.

• For convenience, in the absence of a negative-cost cycle, the

shortest path from s to s is zero.

57

02-Jun-21

28

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• There are many examples where we might want to solve the
shortest-path problem.

• If the vertices represent computers; the edges represent a link
between computers; and the costs represent communication costs
(phone bill per megabyte of data), delay costs (number of seconds
required to transmit a megabyte), or a combination of these and
other factors, then we can use the shortest-path algorithm to find
the cheapest way to send electronic
news from one computer to a set of
other computers.

58

Dr. Radi Jarrar – Birzeit University, 2021

Single-Source Shortest-Path Algorithms

• Another example is to model an airplane (or transportation routes)
by graphs and use a shortest path algorithm to compute the best
route between two points.

• In this and many practical applications, we might want to find the
shortest path from one vertex, s, to only one other vertex, t.

• Currently there are no algorithms in which finding the path from s
to one vertex is any faster (by more than a constant factor) than
finding the path from s to all vertices.

• We will solve 4 variations of this problem

59

02-Jun-21

29

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Given an unweighted graph, G. Using

some vertex, s, which is an input parameter,

we want to find the shortest path from s

to all other vertices.

• We are only interested in the number of edges contained on the

path (because there are no weights).

• This is clearly a special case of the weighted shortest-path problem,

since we could assign all edges a weight of 1.

60

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Suppose we are interested in the length
of the shortest path not in the
actual paths themselves. Keeping track of
the actual paths will turn out to be a
matter of simple bookkeeping.

• Suppose we choose s to be v3.

• Immediately, we can tell that the shortest path from s to v3 is then a
path of length 0.

• We can mark this information and then obtain the following graph

61

02-Jun-21

30

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Now look for vertices that are distant by 1 from s (v3), which are the
adjacent vertices of s.

• v1 and v6 are the adjacent vertices to s.

62

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Now find vertices whose shortest path from s is exactly 2, by finding
all the vertices adjacent to v1 and v6 (the vertices at distance 1).

• v2 and v4 are the adjacent vertices to s.

63

02-Jun-21

31

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Finally we can find, by examining vertices adjacent to the recently
evaluated v2 and v4, that v5 and v7 have a shortest path of three
edges.

64

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths

• Now all vertices have been calculated.

• This strategy of searching a graph is known as
Breadth-First Search (BFS).

• It operates by processing vertices in
layers: The vertices closest to the start
are evaluated first, and the most
distant vertices are evaluated last.

• This is much the same as a
level-order traversal for trees.

65

02-Jun-21

32

Dr. Radi Jarrar – Birzeit University, 2021

Unweighted Shortest Paths
• The BFS can be implemented by adapting the

following table

• First, for each vertex, keep its distance from s in
the entry dv (initially all vertices are unreachable
except for s, whose path length is 0).

• Variable pv is the bookkeeping variable, which will
allow us to print the actual paths.

• Variable known is set to true after a vertex is processed.

• Initially, all entries are not known, including the start vertex.

• When a vertex is marked known, we have a guarantee that no
cheaper path will ever be found, and so processing for that vertex is
essentially complete

66

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

68

02-Jun-21

33

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• If the graph is weighted, the problem becomes harder, but we can
still use the ideas from the unweighted case.

• Dijkstra’s algorithm solves the problem of finding the shortest path
from a vertex (source) to another vertex (destination).

• For example, you want to get from one city to another in the fastest
possible way?

69

D

C

B

A

3

1

0

4

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• BFS is to find the shortest path between two points.

• “Shortest path” means the path with the fewest segments.

• But in Dijkstra’s algorithm, a weight is assigned to each edge.

• Then Dijkstra’s algorithm finds the path with the smallest total
weight.

70

D

C

B

A

3

1

0

4

02-Jun-21

34

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Dijkstra's algorithm computes shortest paths for positive numbers.

• However, if one allows negative numbers, the algorithm will fail.

• Alternatively, the Bellman-Ford algorithm can be used.

• Dijkstra's algorithm is considered as a prime example of a greedy-
search algorithm.

• Greedy algorithms generally solve a problem in stages by doing
what appears to be the best thing at each stage.

71

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Dijkstra’s algorithm computes the cost of the shortest path from a
starting vertex to all other vertices in the graph.

• Consider the following graph: Starting point ‘A’, destination ‘E’.

• If we run this using the BFS, we will end-up with the cost of 7 (6+1)

• We aim at finding the destination is less time! (if exists)

72

E

B

C

A

6

2

1

5

3

02-Jun-21

35

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• 4-basic steps for Dijkstra’s algorithm:

1. Find the node with the minimal cost. This is the node you can get
to in the least amount of time.

2. Update the costs of the neighbor nodes.

3. Repeat until this is done for every node in the graph.

4. Calculate the final path.

73

E

B

C

A

6

2

1

5

3

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• At each stage:
• Select an unknown vertex v that has the smallest dv

• Declare that the shortest path from s to v is known.

• For each vertex w adjacent to v:
• Set its distance dw to the dv + costv,w

• Set its path pw to v.

74

E

B

C

A

6

2

1

5

3

02-Jun-21

36

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Step 1: Find the node with the minimal cost.

• We are standing at the starting node ‘A’. ‘B’ will take 6; and ‘C’ will
take 2. We don’t know the rest yet.

• As we don’t know how long it will take to reach the destination, we
will put it infinity.

75

E

B

C

A

6

2

1

5

3

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Step 1: Find the node with the minimal cost.

• We are standing at the starting node ‘A’. ‘B’ will take 6; and ‘C’ will
take 2. We don’t know the rest yet.

• As we don’t know how long it will take to reach the destination, we
will put it infinity.

76

Node Cost to
Node

B 2

C 6

E ∞

E

B

C

A

6

2

1

5

3

02-Jun-21

37

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Step 2: Calculate how long it takes to get to all of node B’s neighbours by
following an edge from B.

• Notice that there is a shorter path to C (2 + 3)

• When there is a shorter path for a neighbor of B, update its cost. In this

• Case
• A shorter path to C (down from 6 to 5)

• A shorter path to the destination (down from infinity to 7)

77

Node Cost to
Node

B 2

C 6 5

E ∞ 7

E

B

C

A

6

2

1

5

3

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Step 3: Repeat the steps:

• Step 1 again: Find the node that takes the least cost to get to. We’re
done with node B, so node C has the next smallest estimate.

78

E

B

C

A

6

2

1

5

3

Node Cost to
Node

B 2

C 5

E 7

02-Jun-21

38

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• Step 2 again: Update the cost of C’s neighbours.

• We run Dijkstra’s algorithm for every node (you don’t need to run it

• for the finish node).

• At this point, you know
• It takes 2 minutes to get to node B.

• It takes 5 minutes to get to node C.

• It takes 6 minutes to get to the destination.

79

E

B

C

A

6

2

1

5

3

Node Cost to
Node

B 2

C 5

E 7 6

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

• So the final path is

• BFS wouldn’t have found this as the shortest path, because it has three
segments.

• And there’s a way to get from the
start to the destination in two
segments.

80

E

B

C

A

6

2

1

5

3

E

B

C

A

6

2

1

5

3

02-Jun-21

39

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm - Example

81

F
C

B

A

4

10

12

3

5

D

E

G

21

5
4

Node Cost to
Node

A 0

B ∞

C ∞

D ∞

E ∞

F ∞

G ∞

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm - Example

82

F
C

B

A

4

10

12

5

5

D

E

G

21

5
4

Node Cost to
Node

A 0

B 4

C 10

D 15

E 25 20

F 18

G ∞ 34 24

02-Jun-21

40

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

83

Node Initial.

A 0

B ∞

C ∞

D ∞

E ∞

F. ∞

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

84

Node Initial. Step1

A 0 0

B ∞ 10

C ∞ 20

D ∞ ∞

E ∞ ∞

F ∞ ∞

02-Jun-21

41

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

85

Node Initial. Step1 Step2 (C)

A 0 0 0

B ∞ 10 10

C ∞ 20 20

D ∞ ∞ 40

E ∞ ∞ 53

F ∞ ∞ 56

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

86

Node Initi
al.

Step
1

Step2
(C)

Step3
(B)

A 0 0 0 0

B ∞ 10 10 10

C ∞ 20 20 20

D ∞ ∞ 40 40

E ∞ ∞ 53 20

F ∞ ∞ 56 21

02-Jun-21

42

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

Maintain 2 sets (arrays) of vertices:

S: a set of vertices whose shortest path from vertex s has been
determined

Q: a set of vertices in V-S (uses Heaps)

*keys in Q are estimates of shortest path weights.

87

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm

1. Store S in a heap with distance = 0

2. While there are vertices in the queue

1. Delete Min a vertex v from queue

2. For all adjacent vertices w:

1. Compute new distance

2. Update distance table

3. Insert/update heap

88

02-Jun-21

43

Dr. Radi Jarrar – Birzeit University, 2021

Dijkstra’s Algorithm - complexity

1. Each vertex is stored in the queue O(V)

2. Delete Min O(V log V)

3. Updating the queue (search and insert) O(log V)

1. Performed at most for each edge O(E log V)

4. O(E log V + V log V) = O((E + V) log V)

89

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• If the graph has negative edge costs, then Dijkstra’s algorithm does
not work.

• Bellman-Ford algorithm solves the single-source shortest path
when there may be negative weights in the graph.

• It checks if there is a negative-weight cycle that is reachable from a
source vertex

• If exists; it indicates there is no solution exists

• If no cycle; then the algorithm produces the shortest paths and their
weights

90

02-Jun-21

44

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• N-1 iterations should ensure that the shortest path is reached.

• The run-time is O(V.E)

91

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• We will visit all vertices and initialize them

• s is the source node

92

Node Initial.

s 0

t ∞

y ∞

x ∞

z ∞

02-Jun-21

45

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• The adjacent of s are y and t.

93

Node Initial. Iter. 1

s 0

t ∞

y ∞

x ∞

z ∞

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• The adjacent of s are y and t.

94

Node Initial. Iter. 1

s 0

t ∞ 6

y ∞

x ∞

z ∞

6

02-Jun-21

46

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• The adjacent of s are y and t.

95

Node Initial. Iter. 1

s 0

t ∞ 6

y ∞ 7

x ∞

z ∞

6

7

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• Now we can reach x & z.

• We will check for all edges.

• Check for X

96

Node Initial. Iter. 1 Iter. 2

s 0 0

t ∞ 6

y ∞ 7

x ∞ ∞

z ∞ ∞

6

7

02-Jun-21

47

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• Now we can reach x & z.

• We will check for all edges.

• Check for X

97

Node Initial. Iter. 1 Iter. 2

s 0 0

t ∞ 6 6

y ∞ 7 7

x ∞ ∞ 11

z ∞ ∞

6

7

11

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• Now we can reach x & z.

• We will check for all edges.

• Check for X

98

Node Initial. Iter. 1 Iter. 2

s 0 0 0

t ∞ 6 6

y ∞ 7 7

x ∞ ∞ 11

z ∞ ∞ 2

6

7

11

2

02-Jun-21

48

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• Now we are done with t, we have to check for y

• y to z = 16. y to x = 4.

99

Node Initial. Iter. 1 Iter. 2

s 0 0 0

t ∞ 6 6

y ∞ 7 7

x ∞ ∞ 11 4

z ∞ ∞ 2

6

7

4

2

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• After the new update on the edge, we have to check
for all edges if there is a shorter path.

• We can find x->t

100

Node Initial. Iter. 1 Iter. 2 Iter. 2

s 0 0 0

t ∞ 6 6

y ∞ 7 7

x ∞ ∞ 4

z ∞ ∞ 2

6

7

4

2

02-Jun-21

49

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

• After the new update on the edge, we have to check
for all edges if there is a shorter path.

• We can find x->t

101

Node Initial. Iter. 1 Iter. 2 Iter. 3

s 0 0 0 0

t ∞ 6 6 6 2

y ∞ 7 7 7

x ∞ ∞ 4 4

z ∞ ∞ 2 2

2

7

4

2

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

from s -> y -> x -> t gives a shorter cost than s -> t

102

Node Initial. Iter. 1 Iter. 2 Iter. 3

s 0 0 0 0

t ∞ 6 6 2

y ∞ 7 7 7

x ∞ ∞ 4 4

z ∞ ∞ 2 2

2

7

4

2

02-Jun-21

50

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

Iteration 4
We check for all vertices
We can notice a change in t -> z (the new cost to
reach t is 2, and from t -> z = -4) = 2+ -4 = -2

103

Node Initial
.

Iter. 1 Iter. 2 Iter. 3 Iter. 4

s 0 0 0 0

t ∞ 6 6 2

y ∞ 7 7 7

x ∞ ∞ 4 4

z ∞ ∞ 2 2

2

7

4

2

Dr. Radi Jarrar – Birzeit University, 2021

Graphs with Negative Edge Costs

Iteration 4
We check for all vertices
We can notice a change in t -> z (the new cost to
reach t is 2, and from t -> z = -4) = 2+ -4 = -2

104

Node Initial
.

Iter. 1 Iter. 2 Iter. 3 Iter. 4

s 0 0 0 0 0

t ∞ 6 6 2 2

y ∞ 7 7 7 7

x ∞ ∞ 4 4 4

z ∞ ∞ 2 2 -2

2

7

4

-2

02-Jun-21

51

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• We want to find the shortest path in acyclic graph (Directed Acyclic
Graph)

• DAG contains no cycles

105

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• If the graph is acyclic, we can use Bellman-Ford, but it takes O(VE)

• A better solution is to use Topological sort:

• Initialize distances to all vertices as infinite and distance to source as 0

• Then find a topological sorting of the graph

106

02-Jun-21

52

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• Precedence constraints: Edge (vi , vj) means task vi must occur
before vj

• Examples of DAG

• Course prerequisite graph: course vi must be taken before vj

• Compilation: module vi must be compiled before vj

• Pipeline of computing jobs: output of job vi needed to determine
input of job vj

107

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• Topological sort represents a linear ordering of a graph

• Example

108

u

v

t

r

3

-1

7

6

5

s

w

14

-2

2

DAG Topologically sorted

02-Jun-21

53

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• The idea: process vertices on each shortest path from left to right

• Every path in DAG is a subsequence of topologically sorted vertex
order. So processing vertices in that order will do each path in
forward order

• Just one pass.

• Time complexity O(V + E)

109

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• Topologically sorted graph

• Now we have vertex s as the
source

• We want to find the shortest
path from s to all vertices

• Start with r, what is the path from s to r?

• There is no path (infinity)

110

02-Jun-21

54

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• So the first iteration,
r = ∞

• Now the second pass

• Take the adjacent of s. From s to t =2, which is less than ∞, so
update t and the predecessor is s

• From s to u is the same, 7 is less than ∞, so update u and the
predecessor is s

111

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• Next iteration, check
the adjacents of t

• From t to v is 2+4 = 6 which is less than ∞, so update v and the
predecessor is t

• From t to w is 2+2 = 4 which is less than ∞, so update w and the
predecessor is t

112

02-Jun-21

55

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• Next iteration, check
the adjacents of u

• From u to v is 6 + -1 = 5 which is less than 6, so update v and the
predecessor is u

• From u to w is 6 + 1 = 7 which is more than 4, so no updates

113

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• Next iteration, check
the adjacents of v

• From v to w is 5 + -2 = 3 which is less than 4, so update w and the
predecessor is v instead of t

114

02-Jun-21

56

Dr. Radi Jarrar – Birzeit University, 2021

Acyclic Graphs

• We are left with 1
iteration for w

• Notice that w has no adjacents

• Thus we reached the shortest path from the source s

115

