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Greedy algorithm: makes locally best choice/decision 

ignoring effect on future.

Tree: connected acyclic graph.

Spanning tree: a spanning tree of a graph G is a subset of 

edges of G that form a tree and reach all vertices of G.

A tree (i.e., connected, acyclic graph) which contains all 

the vertices of the graph.

A graph may have many spanning trees.

or or or

Some Spanning Trees from Graph AGraph A

Spanning Trees



•Minimum Spanning Tree

– Spanning tree with the minimum sum of weights.

•Spanning forest

– If a graph is not connected, then there is a spanning 
tree for each connected component of the graph

Spanning Trees
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– Find the least expensive way to connect a set of 

cities, terminals, computers, etc.

Applications to MST



Problem
• A town has a set of houses 

and a set of roads

• A road connects 2 and only 

2 houses

• A road connecting houses u and v has a repair 

cost w(u, v)

Goal: Repair enough (and no more) roads such 
that:

1. Everyone stays connected 

i.e., can reach every house from all other houses

2.   Total repair cost is minimum

Example
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• A connected, undirected graph:

– Vertices = houses,       Edges = roads

• A weight w(u, v) on each edge (u, v)  E

Minimum Spanning Trees
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Find a spanning tree T  E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)T w(u, v) is 

minimized



• Minimum spanning tree is not unique

• MST has no cycles – why?

– We can take out an edge of a cycle, and still have 

the vertices connected while reducing the cost

• # of edges in a MST is |V| - 1 

Properties of Minimum Spanning Trees



All 16 of its Spanning TreesComplete Graph



Minimum Spanning Trees

A Minimum Spanning Tree (MST) is a subgraph of an undirected graph 

such that the subgraph spans (includes) all nodes, is connected, is 

acyclic, and has minimum total edge weight
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Algorithms for Obtaining the Minimum Spanning Tree

• Prim's Algorithm

• Kruskal's Algorithm



Prim's Algorithm

This algorithm starts with one node. It then, one by one, adds a node that 

is unconnected to the new graph to the new graph, each time selecting 

the node whose connecting edge has the smallest weight out of the 

available nodes’ connecting edges.



The steps are:

1. The new graph is constructed - with one node from the old graph.

2. While new graph has fewer than n nodes,

1. Find the node from the old graph with the smallest connecting 

edge to the new graph,

2. Add it to the new graph

Every step will have joined one node, so that at the end we will have 

one graph with all the nodes and it will be a minimum spanning tree of 

the original graph.
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Analysis of Prim's Algorithm

Running Time =  O(e + v log v)             (e = edges, v = nodes)

If a heap is not used, the run time will be O(n^2) instead of 

O(e + v log v).  However, using a heap complicates the code since 

you’re complicating the data structure. 

Unlike Kruskal’s, it doesn’t need to see all of the graph at once.  It can 

deal with it one piece at a time.  It also doesn’t need to worry if adding 

an edge will create a cycle since this algorithm deals primarily with the 

nodes, and not the edges.

For this algorithm the number of nodes needs to be kept to a minimum 

in addition to the number of edges. For small graphs, the edges matter 

more, while for large graphs the number of nodes matters more.



Kruskal's Algorithm

This algorithm creates a forest of trees. Initially the forest consists of n 

single node trees (and no edges). At each step, we add one edge (the 

cheapest one) so that it joins two trees together. If it were to form a cycle, 

it would simply link two nodes that were already part of a single 

connected tree, so that this edge would not be needed.



The steps are:

1. The forest is constructed - with each node in a separate tree.

2. The edges are placed in a priority queue.

3. Until we've added n-1 edges,

1. Extract the cheapest edge from the queue,

2. If it forms a cycle, reject it,

3. Else add it to the forest. Adding it to the forest will join two 

trees together.

Every step will have joined two trees in the forest together, so that at 

the end, there will only be one tree in T.



4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Complete Graph



1

4

2

5

2

5

4

3

4

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

A AB D

B B

B

C D

J C

C

E

F

D

D H

J E G

F FG I

G GI J

H J JI



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Sort Edges 

(in reality they are placed in a priority 

queue - not sorted - but sorting them 

makes the algorithm  easier to visualize)



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge



2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge



4

1

2

2 1

3

32

4

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Minimum Spanning Tree Complete Graph



Walk-Through
Consider an undirected, weight 

graph
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Sort the edges by increasing edge 

weight
edge dv
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(D,F) 6

(A,B) 8

(A,F) 10



edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G

2

3

3

3

edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5 

(D,F) 6

(A,B) 8

(A,F) 10

Done

Total Cost =  dv = 

21

4

}not 

considered



Analysis of Kruskal's Algorithm

Running Time =  O(e log v)             (e = edges, v = nodes)

Testing if an edge creates a cycle can be slow unless a complicated data 

structure called a “union-find” structure is used.

It usually only has to check a small fraction of the edges, but in some 

cases (like if there was a vertex connected to the graph by only one edge 

and it was the longest edge) it would have to check all the edges.

This algorithm works best, of course, if the number of edges is kept to a 

minimum.


