
Minimum Spanning Tree
By Jonathan Davis

&
George Bebis, Analysis of Algorithms,

Univeristy of Nevade, Reno

Greedy algorithm: makes locally best choice/decision

ignoring effect on future.

Tree: connected acyclic graph.

Spanning tree: a spanning tree of a graph G is a subset of

edges of G that form a tree and reach all vertices of G.

A tree (i.e., connected, acyclic graph) which contains all

the vertices of the graph.

A graph may have many spanning trees.

or or or

Some Spanning Trees from Graph AGraph A

Spanning Trees

•Minimum Spanning Tree

– Spanning tree with the minimum sum of weights.

•Spanning forest

– If a graph is not connected, then there is a spanning
tree for each connected component of the graph

Spanning Trees

a

b c d

e

g g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

– Find the least expensive way to connect a set of

cities, terminals, computers, etc.

Applications to MST

Problem
• A town has a set of houses

and a set of roads

• A road connects 2 and only

2 houses

• A road connecting houses u and v has a repair

cost w(u, v)

Goal: Repair enough (and no more) roads such
that:

1. Everyone stays connected

i.e., can reach every house from all other houses

2. Total repair cost is minimum

Example

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

• A connected, undirected graph:

– Vertices = houses, Edges = roads

• A weight w(u, v) on each edge (u, v) E

Minimum Spanning Trees

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Find a spanning tree T E such that:

1. T connects all vertices

2. w(T) = Σ(u,v)T w(u, v) is

minimized

• Minimum spanning tree is not unique

• MST has no cycles – why?

– We can take out an edge of a cycle, and still have

the vertices connected while reducing the cost

• # of edges in a MST is |V| - 1

Properties of Minimum Spanning Trees

All 16 of its Spanning TreesComplete Graph

Minimum Spanning Trees

A Minimum Spanning Tree (MST) is a subgraph of an undirected graph

such that the subgraph spans (includes) all nodes, is connected, is

acyclic, and has minimum total edge weight

5

7

2

1

3

4

2

1

3

Complete Graph Minimum Spanning Tree

Algorithms for Obtaining the Minimum Spanning Tree

• Prim's Algorithm

• Kruskal's Algorithm

Prim's Algorithm

This algorithm starts with one node. It then, one by one, adds a node that

is unconnected to the new graph to the new graph, each time selecting

the node whose connecting edge has the smallest weight out of the

available nodes’ connecting edges.

The steps are:

1. The new graph is constructed - with one node from the old graph.

2. While new graph has fewer than n nodes,

1. Find the node from the old graph with the smallest connecting

edge to the new graph,

2. Add it to the new graph

Every step will have joined one node, so that at the end we will have

one graph with all the nodes and it will be a minimum spanning tree of

the original graph.

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Complete Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Old Graph New Graph

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H

I

J

Complete Graph Minimum Spanning Tree

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Analysis of Prim's Algorithm

Running Time = O(e + v log v) (e = edges, v = nodes)

If a heap is not used, the run time will be O(n^2) instead of

O(e + v log v). However, using a heap complicates the code since

you’re complicating the data structure.

Unlike Kruskal’s, it doesn’t need to see all of the graph at once. It can

deal with it one piece at a time. It also doesn’t need to worry if adding

an edge will create a cycle since this algorithm deals primarily with the

nodes, and not the edges.

For this algorithm the number of nodes needs to be kept to a minimum

in addition to the number of edges. For small graphs, the edges matter

more, while for large graphs the number of nodes matters more.

Kruskal's Algorithm

This algorithm creates a forest of trees. Initially the forest consists of n

single node trees (and no edges). At each step, we add one edge (the

cheapest one) so that it joins two trees together. If it were to form a cycle,

it would simply link two nodes that were already part of a single

connected tree, so that this edge would not be needed.

The steps are:

1. The forest is constructed - with each node in a separate tree.

2. The edges are placed in a priority queue.

3. Until we've added n-1 edges,

1. Extract the cheapest edge from the queue,

2. If it forms a cycle, reject it,

3. Else add it to the forest. Adding it to the forest will join two

trees together.

Every step will have joined two trees in the forest together, so that at

the end, there will only be one tree in T.

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Complete Graph

1

4

2

5

2

5

4

3

4

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

A AB D

B B

B

C D

J C

C

E

F

D

D H

J E G

F FG I

G GI J

H J JI

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Sort Edges

(in reality they are placed in a priority

queue - not sorted - but sorting them

makes the algorithm easier to visualize)

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Cycle

Don’t Add Edge

2

5

2

5

4

3

4

4

10

1

6

3

3

2

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

B

B

D

J

C

C

E

F

D

D H

J

E G

F

F

G

I

G

G

I

J

H J

JI

1A D

4B C

4A B

Add Edge

4

1

2

2 1

3

32

4

A

B C

D

E F

G

H

I

J

4

1

2 3

2 1

3

5

3

4

2

5 6

4

4

10

A

B C

D

E F

G

H

I

J

Minimum Spanning Tree Complete Graph

Walk-Through
Consider an undirected, weight

graph

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10

Sort the edges by increasing edge

weight
edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Accepting edge (E,G) would create

a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G

2

3

3

3

edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Done

Total Cost = dv =

21

4

}not

considered

Analysis of Kruskal's Algorithm

Running Time = O(e log v) (e = edges, v = nodes)

Testing if an edge creates a cycle can be slow unless a complicated data

structure called a “union-find” structure is used.

It usually only has to check a small fraction of the edges, but in some

cases (like if there was a vertex connected to the graph by only one edge

and it was the longest edge) it would have to check all the edges.

This algorithm works best, of course, if the number of edges is kept to a

minimum.

