
Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES
AND ALGORITHMS
Asymptotic Time Analysis

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Dr. Radi Jarrar – Birzeit University, 2021

Introduction
•Algorithm: a specified set of instructions to be followed to
solve a problem.
•Once an algorithm is determined to be true, it is important
to determine if the algorithm at hand is “good” enough or
not.
•This requires a formal method to analyze the algorithm.
•The main recourses to consider when running an
algorithm are the 1) time; & 2) space the algorithm will
require.

2

Dr. Radi Jarrar – Birzeit University, 2021

Introduction (2)
• In this chapter we will understand how to estimate the
time a program will take.
•General point: the running time of an algorithm increases
with the input size. We want to study the relation between
the input size and running time of an algorithm.
•We are interested in characterizing an algorithm’s running
time as a function of the input size. How to measure it?

3

Dr. Radi Jarrar – Birzeit University, 2021

Experimental Studies
• If an algorithm is implemented,
we can study its running time by
executing it on various test inputs
and recording the actual time spent
in each execution.

4

Dr. Radi Jarrar – Birzeit University, 2021

Experimental Studies (2)
•Experiments can be done on a limited set of input tests
•Difficult to compare two algorithms except if the
experiments were held on exactly the same hardware and
the same software environments.

5

Dr. Radi Jarrar – Birzeit University, 2021

Types of Time Analysis
•Best case analysis
•Optimistic/not realistic

•Average case analysis
• Is based on statistical methods

•Worst case analysis
• The program’s worse case cannot exceed this analysis

6

Dr. Radi Jarrar – Birzeit University, 2021

Primitive Operations
•We should determine how many steps the algorithm has to
perform as a function of the input size in the worst case.
•Primitive operations: basic computations performed by an
algorithm. Assumed to take a constant amount of time in
the computer memory.
•Counting primitive operations: this is done by inspecting
the pseudocode. We can determine the max number of
primitive operations executed by an algorithm as a
function of the input size.

8

Dr. Radi Jarrar – Birzeit University, 2021

Primitive Operations (2)
•Assigning a value to a variable
•Calling a function
•Returning from a function
•Performing an arithmetic operation (for example, adding
two numbers)
•Comparing two numbers
• Indexing into an array
•Following an object reference

9

Dr. Radi Jarrar – Birzeit University, 2021

Primitive Operations (2)
• Example 1:
Algorithm ArrayMax(A, n){ #operations

currentMax ß A[0] 2
for i ß 1 to n-1 do 2n

if A[i] > currentMax then 2(n-1)
currentMax ß A[i] 2(n-1)

increment i //i=i+1
2(n-1)
return currentMax 1

Total: 8n-3

11

Dr. Radi Jarrar – Birzeit University, 2021

Primitive Operations (2)
• Example 1:
Algorithm ArrayMax(A, n){ #operations
currentMax ß A[0] 2
for i ß 1 to n-1 do 2n

if A[i] > currentMax then 2(n-1)
currentMax ß A[i] 2(n-1)

increment i //i=i+1 2(n-1)
return currentMax 1

Total: 8n-3

12

Dr. Radi Jarrar – Birzeit University, 2021

Primitive Operations (3)
•Example 2: Algorithm a that takes an input of positive
integer n, which is a power of 2. Output: integer m such
that 2m=n

m ß 0 1
while (n>=2) log2(n)

n ß n/2 2 log2(n)
m++ 2 log2(n)

return m 1
Total: 5 log2(n)+2

13

Dr. Radi Jarrar – Birzeit University, 2021

Primitive Operations (3)
•Example 2: Algorithm a that takes an input of positive
integer n, which is a power of 2. Output: integer m such
that 2m=n

m ß 0 1
while (n>=2) log2(n)

n ß n/2 2 log2(n)
m++ 2 log2(n)

return m 1
Total: 5 log2(n)+2

14

Dr. Radi Jarrar – Birzeit University, 2021

Growth Rate of Functions
• Growth rate functions: there are 7 functions that appear in algorithm analysis.

• Ideally, we would like data structure
operations to run in times proportional
to the constant or logarithm function,
and we would like our algorithms to
run in linear or n-log-n time. Algorithms
with quadratic or cubic running times
are less practical, but algorithms with
exponential running times are infeasible
for all but the smallest sized inputs.

15

Constant Logarithmic Linear n-log-n Quadratic Cubic Exponential

C or 1 Log n n n log n n2 n3 2n

Dr. Radi Jarrar – Birzeit University, 2021

Analysing Functions
•The general way of analyzing the running time of an
algorithm should:
1. Take into account all possible inputs;
2. Evaluate the relative efficiency of any two algorithms in
independently from the hardware and software
environment; and
3. Performed by studying a high-level description of the
algorithm without implementing it or running
experiments on it.

16

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis
•Asymptotic analysis: In the algorithm analysis, we focus
on the growth rate of the running time as a function of the
input size n.
•That is, we characterize the running times of algorithms by
using functions that map the size of the input, n, to values
that correspond to the main factor that determines the growth
rate in terms of n.
• This approach allows us to focus on the big picture aspects of
an algorithm's running time.

17

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis (2)
•The time functions will be represented as T(n) using the
"big-O" notation to express an algorithm runtime
complexity. For example, the following statement
T(n) = O(n2)

means that an algorithm has a quadratic time complexity.

18

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis (3)

19

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis (4)
•The idea of these definitions is to establish a relative order
among functions. Given two functions, there are usually
points where one function is smaller than the other
function, so it does not make sense to claim, for instance,
f(N) < g(N). Thus, we compare their relative rates of
growth.

20

Dr. Radi Jarrar – Birzeit University, 2021

Big-Oh Notation
•Def#1: Let T(N) and f(N) be functions mapping
nonnegative integers to real numbers. We say that T(N) is
O(f(N)) if there is a real constant c > 0 and an integer
constant n0 ≥ 1 such that T(N)<=c.f(N) for N≥N0.
•This definition is referred as Big-Oh notation, for it is
sometimes pronounced as “T(N) is a big-oh of f(N)”. We
can also say T(N) is order of f(N).
• It means that the function T(N) does not grow faster than
f(N). In other words, f(N) is the upper bound of T(N).

21

Dr. Radi Jarrar – Birzeit University, 2021

Big-Oh Notation (2)

22

Fig.	The	Big-Oh	notation.	The	function	T(N)	is	O(f(N)),	since	
T(N)≤c.f(N)	when	N≥N0

Dr. Radi Jarrar – Birzeit University, 2021

Big-Oh Notation (2)

23

Fig.	The	Big-Oh	notation.	The	function	T(N)	is	O(f(N)),	since	
T(N)≤c.f(N)	when	N≥N0

T(n)	is	O(f(n))	we	are	guaranteeing	that
the	function	T(n)	grows	at	a	rate	no	faster
than	f(n).	Thus,	f(n)	is	the	upper	bound	on	T(n).

Dr. Radi Jarrar – Birzeit University, 2021

Big-Oh Notation (3)
•Examples:
• 1 = O(n)
•n = O(n2)
• log(n) = O(n)
• 3n + 2 = O(n)

25

Dr. Radi Jarrar – Birzeit University, 2021

Big-Oh Notation (4)
•Example: Although 1,000N is larger than N2 for small
values of N, N2 grows at a faster rate, and thus N2 will
eventually be the larger function. The turning point is N =
1,000 in this case. The first definition says that eventually
there is some point n0 past which c · f (N) is always at least
as large as T(N), so that if constant factors are ignored,
f(N) is at least as big as T(N). In our case, we have T(N) =
1,000N, f(N) = N2, n0 = 1,000, and c=1. We could also use n0
= 10 and c = 100. Thus, we can say that 1,000N = O(N2)
(order N-squared).

26

Dr. Radi Jarrar – Birzeit University, 2021

Big-Oh Notation (5)
•The big-Oh notation allows us to say that a function T(N)
is “less than or equal to” another function F(N) up to a
constant factor and in the asymptotic sense as N grows
toward infinity. This ability comes from the fact that the
definition uses “≤”to compare T(N) to a f(N) times a
constant, c, for the asymptotic cases when N ≥ N0 .

27

Dr. Radi Jarrar – Birzeit University, 2021

Big-Omega Notation
•DEF#2 T(N) = Ω(g(N))
The second definition, T(N) = Ω(g(N)) (pronounced
“omega”), says that the growth rate of T(N) is greater than
or equal to (≥) that of g(N).
•Asymptotic lower bound.
•Think of it as the inverse
of O(n).

28

Dr. Radi Jarrar – Birzeit University, 2021

Big-Omega Notation (2)
•n = Ω(1)
•n2 = Ω(n)
•n2 = Ω(n log(n))
• 3n + 2 = O(n)

29

Dr. Radi Jarrar – Birzeit University, 2021

Big-Theta Notation
•DEF#3 T(N) = Θ(h(N))

The third definition, T(N) = Θ(h(N)) (pronounced “theta”), says
that the growth rate of T(N) equals (=) the growth rate of h(N).
•Asymptotic tight bound (the upper and lower bounds).
• Combines Big-Oh and Big-Omega.

30

Dr. Radi Jarrar – Birzeit University, 2021

Big-Theta Notation (2)
• 2n = Θ(n)
• n2 + 2 n + 1 = Θ(n2)
• 3n + 3 is O(n) and Θ(n)
• 3n + 3 is O(n2) BUT IS NOT Θ(n2)

31

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis - Examples
•As an example, N3 grows faster than N2, so we can say that
N2 = O(N3) or N3 = Ω(N2). f(N) = N2 and g(N) = 2N2 grow at
the same rate, so both f(N) = O(g(N)) and f(N) = Ω(g(N)) are
true. When two functions grow at the same rate, then the
decision of whether or not to signify this with Θ() can
depend on the particular context. Intuitively, if g(N) = 2N2,
then g(N) = O(N4), g(N) = O(N3), and g(N) = O(N2) are all
technically correct, but the last option is the best answer.
Writing g(N) = Θ(N2) says not only that g(N) = O(N2), but
also that the result is as good (tight) as possible.

32

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis - Examples
• Example: The function f(n) = 8n - 2 is O(n).
• Justification: By the big-Oh definition, we need to find a real

constant c > 0 and an integer constant n0 >= 1 such that 8n - 2
<= cn for every integer n >= n0. It is easy to see that a possible choice
is c = 8 and n0 = 1.

33

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis - Examples
• Example: The function f(n) = 8n - 2 is O(n).
•More examples: 2n + 10 is O(n), 7n - 2 is O(n), 3n3 + 20n2 + 5 is O(n3),

3log n + 5 is O(log n)
• Example: 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4).
• Justification: Note that 5n4 + 3n3 + 2n2 + 4n + 1 ≤ (5 + 3 + 2 + 4 + 1)n4 =

cn4, for c=15,when n ≥ n0 =1.
• In fact, we can characterize the growth rate of any polynomial

function.

35

Dr. Radi Jarrar – Birzeit University, 2021

Asymptotic Analysis
• Proposition 4.9: If f (n) is a polynomial of degree d, that is, f(n) = a0

+a1n+···+adnd, and ad > 0, then f(n) is O(nd).

36

Dr. Radi Jarrar – Birzeit University, 2021

Examples
• Example 4.10: 5n2 +3n log n+2n+5 is O(n2).

Justification: 5n2+3n log n+2n+5≤(5+3+2+5)n2 =cn2, for
c=15, when n≥n0 =2 (note that n.log.n is zero for n=1).
• Example 4.11: 20n3 + 10n log n + 5 is O(n3).

Justification: 20n3 +10n log n+5 ≤ 35n3, for n ≥ 1.
• Example 4.12: 3 log n + 2 is O(log n).

Justification: 3 log n+2 ≤ 5log n, for n ≥ 2. Note that log n is
zero for n = 1. That is why we use n≥n0 =2 in this case.
• Example 4.13: 2n+2 is O(2n).

Justification: 2n+2 = 2n2·2 = 4·2n; hence, we can take c = 4
and n0 = 1 in this case.

37

Dr. Radi Jarrar – Birzeit University, 2021

Rules
• Loops: the running time of a loop is at most the running time

inside the loop times the number of iterations
•Nested loops: the number of times the inner loop is executed times

the number of times the outer loop is executed
• Consecutive loops: add the number of times they run which results

in the max
• if/else: max of the alternative path (which is the worst case)
• if condition
• Sequence 1

• else
• Sequence 2

38

Dr. Radi Jarrar – Birzeit University, 2021

LOOPS AND BIG-O NOTATION

39

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation

O(1): Time complexity of a function (or set of
statements) is considered as O(1) if it doesn’t contain
loop, recursion and call to any other non-constant
time function.

// set of non-recursive and non-loop statements

40

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation
O(n): Time Complexity of a loop is considered as O(n) if the loop
variables is incremented / decremented by a constant amount. For
example following functions have O(n) time complexity.

// Here c is a positive integer constant
for (int i = 1; i <= n; i += c) {

// some O(1) expressions
}

for (int i = n; i > 0; i -= c) {
// some O(1) expressions

}

41

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation
O(nc): Time complexity of nested loops is equal to the number of
times the innermost statement is executed. For example the
following sample loops have O(n2) time complexity

for (int i = 1; i <= n; i += c)
{

for (int j = 1; j <= n; j += c)
{

// some O(1) expressions
}

}

42

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation
O(nc): Time complexity of nested loops is equal to the number of
times the innermost statement is executed. For example the
following sample loops have O(n2) time complexity

for (int i = n; i > 0; i += c)
{

for (int j = i+1; j <=n; j += c)
{

// some O(1) expressions
}

}

43

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation
O(Log n): Time Complexity of a loop is considered as O(Log n) if
the loop variables is divided / multiplied by a constant amount.
for (int i = 1; i <=n; i *= c) {

// some O(1) expressions
}

for (int i = n; i > 0; i /= c) {
// some O(1) expressions

}
For example Binary Search has O(Log n) time complexity.

44

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation
O(Log Log n): Time Complexity of a loop is considered as
O(Log Log n) if the loop variables is reduced/increased
exponentially by a constant amount.

// Here c is a constant greater than 1
for (int i = 2; i <=n; i = pow(i, c)) {

// some O(1) expressions
}

//Here fun is sqrt or cuberoot or any other constant root
for (int i = n; i > 0; i = fun(i)) {
// some O(1) expressions
}

45

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Examples
Two loops in a row:

for(i = 0; i < N; i++){ … sequence of statements …}
for(j = 0; j < M; j++){ … sequence of statements …}

The first loop is O(N) and the second loops is O(M). Since we don’t know which one is bigger,

we can write it as O(N + M), which is also written as O(max(N,M)). Assume that case in which

N is greater than N, then the second loop goes to N instead of M it becomes O(N). O(N+M)

becomes O(2N) and when you drop the constant it is O(N). O(max(N,M)) becomes

O(max(N,N)) which is O(N).

46

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Examples
What is the time complexity of the following code fragment:

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {

sequence of statements
}

}

for (k = 0; k < N; k++) { sequence of statements }

47

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Examples
What is the time complexity of the following code fragment:

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {

sequence of statements
}

}

for (k = 0; k < N; k++) { sequence of statements }

The first loop is O(N2) and the second loop is O(N). This is
O(max(N2, N)) which is O(N2).
T(N) = O(N2)

48

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
for (i = 0; i < N; i++) {

for (j = N; j > i; j--)
{ sequence of statements }

}

49

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
for (i = 0; i < N; i++) {

for (j = N; j > i; j--)
{ sequence of statements }

}

- The number of iterations of the inner loop depends on the value of the index
of the outer loop.

- The inner loop executes N times, then N-1, then N-2, etc, so the total number
of times the innermost "sequence of statements" executes is O(N2).

50

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int x=0; //constant

for(int i=5*n; i>=1; i--) //runs n times, disregard the
constant

x=x+3*i;

51

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
for (i = 0; i < N; i++) {

for (j = i+1; j < N; j++) {
sequence of statements

}
}

52

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
for (i = 0; i < N; i++) {

for (j = i+1; j < N; j++) {
sequence of statements

}
}

The outer will execute N number of times
The inner will execute N, then (N-1), then (N-2), …, 1.
T(N) = O(N2)

53

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int b=0;
for(int i=n; i>0; i--)

for(int j=0; j<i; j++)
b=b+5;

54

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int y=1, j=0;

for(j=1; j<=2*n; j=j+2)
y=y+i;

int s=0;
for(i=1; i<=j; i++)

s++;

55

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int b=0;
for(int i=0; i<n; i++)

for(int j=0; j<i*n; j++)
b=b+5;

56

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int b=0;
for(int i=0; i<n; i++)

for(int j=0; j<i*n; j++)
b=b+5;

The inner loops will run 0 + n + 2n + 3n + 4n +…+ n(n-1) = n(0 + 1 + 2
+ 3 + 4 + … + n-1) = O(N3)

57

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int z=0;
for(int i=1; i<=n; i=i*3){

z = z + 5;
z++;
x = 2 * x;

}

58

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int a = 0;
int k = n*n;

while(k > 1) //runs n^2 {
for (int j=0; j<n*n; j++) //runs n^2
{ a++; }

k = k/2;
}

59

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int a = 0;
int k = n*n;

while(k > 1) //runs n^2 {
for (int j=0; j<n*n; j++) //runs n^2
{ a++; }

k = k/2;
}

T(N) = O(n2 log n).

60

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
for (int i = n; i > 0; i = i / 2){

for (int j = n; j > 0; j = j / 2){
for (int k = n; k > 0; k = k / 2){

count++;
}

}
}

61

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
for (int i = n; i > 0; i = i / 2){

for (int j = n; j > 0; j = j / 2){
for (int k = n; k > 0; k = k / 2){

count++;
}

}
}

T(N) = O((log n)3)

62

Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
bool isPrime(int n) {

if(n == 2)
return true;

if(n < 2)
return false;

for (int i = 2; i <= sqrt(n); i ++)
if (n%i == 0) return false;

return true;
}

63

Dr. Radi Jarrar – Birzeit University, 2021

RECURSION ANALYSIS

64

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis
•Analysing the running time T of a recursive algorithm is
more challenging than a non-recursive one.
•The most common strategy is to write the run time as a
function of N: T(N) which indicates the time needed to
process N items.

65

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis
• By tracing carefully through the recursion, we can write a recurrence relation

for the algorithm. For example
T(N) = T(N-1) + 1
• Then we can repeat the recurrence
T(N) = (T(N-2) + 1) + 1 = T(N-2) + 2
T(N) = (T(N-3) + 1) + 2 = T(N-3) + 3
• In which we can observe the pattern: T(N) = T(N-k) + k
• By tracing the pattern all the way to the base case T(1), we can determine the

running time of the algorithm T(N) = O(N).

66

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
int factorial (int n) {

if (n == 0)
return 1;

else
return n * factorial (n – 1);

}

67

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example

• 𝑇 𝑁 = $𝑑, 𝑁 = 0
𝑇(𝑁 − 1) + 𝑐, 𝑁 > 0

• T(N) = T(N-1) + c
• T(N-1) = T(N-2) + c
• T(N) = T(N-2) + 2c
• T(N-2) = T(N-3) + c
• T(N) = T(N-3) + 3c

. .

. .

. .

• The pattern is T(N) = T(N-k) + k.c
• To solve this pattern (generalization),

we have to find a value for k
• à notice that T(d) = T(1) = 0
• So N-k = 0 à N =k
• So let k = Nà

• T(N) = T(0) + c = d + c.N
• T(N) = O(N)

68

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
int power(int x, int n) {

if (n == 0)
return 1;

if (n == 1)
return x;

if(n % 2 == 0)
return power(x * x, n / 2);

else
return power(x * x, n / 2) * x;

}

69

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example

• 𝑇 𝑁 = /
𝑑, 𝑁 ≤ 1
𝑇 !

" + 𝑐, 𝑁 > 1

• T(N) = T(N/2) + c
• T(N/2) = T(N/4) + c
• T(N) = T(N/22) + 2c
• T(N/4) = T(N/8) + c
• T(N) = T(N/23) + 3c
• T(N/8) = T(N/16) + c
• T(N) = T(N/24) + 4c

. .

. .
The pattern is T(N) = T(N/2k) + k.c

• We want to get rid of the T(N/2k). We
can solve it when we reach T(1) à

• T(d) = T(1) = 1 = !"!
• à 2k = N à k = log N
• T(N) = T(1) + c log N
• T(N) = d + c log N
• T(N) = O(log N)

70

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
What is the worst-case running time for the following code
fragment? Show the recurrence relation.

for(j = 1; j <= n; j *= 2){
// some O(1) operations

}

71

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example

• 𝑇 𝑁 = /
𝑑, 𝑁 ≤ 1
𝑇 !

" + 𝑐, 𝑁 > 1

• T(N) = T(N/2) + c
• T(N/2) = T(N/4) + c
• T(N) = T(N/22) + 2c
• T(N/4) = T(N/8) + c
• T(N) = T(N/23) + 3c
• T(N/8) = T(N/16) + c
• T(N) = T(N/24) + 4c

. .

. .
The pattern is T(N) = T(N/2k) + k.c

• We want tol get rid of the T(N/2k). We
can solve it when we reach T(1) à

• T(d) = T(1) = 1 = !"!
• à 2k = N à k = log N
• T(N) = T(1) + c log N
• T(N) = d + c log N
• T(N) = O(log N)

72

Dr. Radi Jarrar – Birzeit University, 2021

MERGE SORT

73

Dr. Radi Jarrar – Birzeit University, 2021

Merge Sort
• Divide and conquer technique
• Divide an array into two halves
• Recursively sort each half
• Merge two halves to make a sorted one

• Algorithm: to sort A[1 .. n] call Merge-Sort(A, a, n)
• Merge-Sort(A, p, r):
• //Input: A[p .. r]
• //Output: A[p .. r] with sorted numbers
• if p < r then
• q = ⌊ (p + r) / 2 ⌋
• Merge-Sort(A, p, q)
• Merge-Sort(A, q + 1, r)
• Merge(A, p, q, r)

74

Dr. Radi Jarrar – Birzeit University, 2021

Merge Sort

75

1. Divide the array into two parts
2. Divide the array again until elements

cannot be further broken
3. Sort the elements from smallest to

largest
4. Merge the divided sorted arrays

together
5. The array is now sorted

1

2

3

4 5

6

7

8 9

10

11

12

13

14 15

16

17

18

19

20

Dr. Radi Jarrar – Birzeit University, 2021

Merge Sort
• To solve Merge sort, we have to write a recurrence relation for the running

time.
• Assume N is a power of 2 so that we always split in half
• For N=1, the time for merge sort is constant.
• Otherwise, time to merge sort N number of elements equals to the time to do 2

recursive merge sorts of size N/2 plus the time to merge which is linear.

76

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis – Merge Sort

• 𝑇 𝑁 = /
𝑑, 𝑁 = 0,𝑁 = 1
2𝑇 !

" +𝑁, 𝑁 > 1

• T(N) = 2T(N/2) + N
• T(N/2) = 2T(N/4) + N/2
• T(N) = 2(2T(N/4) + N/2) + N

= 4T(N/4) + 2N
• T(N/4) = 2T(N/8) + N/4
• T(N) = 4(2T(N/8) + N/4)+ 2N

= 8T(N/8) + 3N
• T(N/16) = 2T(N/16) + N/16

• T(N) = 16T(N/16) + 4N

• The pattern is T(N) = 2k.T(N/2k) + k.N

• We want to reduce this in terms of T(1)
which is what we know, in this case
N/2k = 1 à 2k = N à k = log2N
• So now we can substitute the terms such

that à 2log
2
N T(1) + log2N . N

• We know that alog
b

c = clog
b

a à

• = N + log N . N à O(N log N)

77

Dr. Radi Jarrar – Birzeit University, 2021

BINARY SEARCH

78

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Search for an element in a sorted array.
int BinarySearch(int A[], int lower, int upper, int key){

if(lower <= upper){
int mid = (lower + upper) / 2;

if(A[mid] == key)
return mid;

else
if(A[mid] < key)

return BinarySearch(A, mid+i, upper, key);
else

return BinarySearch(A, lower, mid-1, key);
}
else

return -1;
}

79

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)

80

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)

81

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

L=0 M=4 U=9

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)

82

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

L=0 M=4 U=9
23 > 16
Look in the 2nd half

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)

83

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

L=5 M=7 U=9

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)

84

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

L=5 M=7 U=9
23 < 56
Look in the 1st half

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)

85

0 1 2 3 4 5 6 7 8 9

2 5 8 12 16 23 38 56 72 91

L=5 M=5 U=6

Dr. Radi Jarrar – Birzeit University, 2021

Binary Search – Recurrence Relation

• 𝑇 𝑁 = /
𝑑, 𝑁 = 1
𝑇 !

" + 𝑐, 𝑁 > 1

• T(N) = T(N/2) + c
• T(N/2) = T(N/4) + c
• T(N) = T(N/22) + 2c
• T(N/4) = T(N/8) + c
• T(N) = T(N/23) + 3c
• T(N/8) = T(N/16) + c
• T(N) = T(N/24) + 4c

. .

. .
The pattern is T(N) = T(N/2k) + k.c

• We want tol get rid of the T(N/2k). We
can solve it when we reach T(1) à

• T(d) = T(1) = 1 = !"!
• à 2k = N à k = log N
• T(N) = T(1) + c log N
• T(N) = d + c log N
• T(N) = O(log N)

86

Dr. Radi Jarrar – Birzeit University, 2021

INSERTION SORT

87

Dr. Radi Jarrar – Birzeit University, 2021

Insertion Sort
• Insertion Sort is a simple sorting algorithm.
• Good for small lists.
• Good for partially sorted lists.

• The time analysis of Insertion Sort depends on the nature of the input data
• Best case
• Average case
• Worst case

88

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

89

1 2 3 4 5 6

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

90

n

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

91

n

(n-1)

(n-1)

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

92

n

(n-1)

(n-1)

Number of times the while loop
is executed
for that value of i. When i=1,
it will execute
1, when i=2 à 2, … so it
becomes
2+3+4+5+…+n = ∑!"#$ 𝑡%

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

93

n

(n-1)

(n-1)

Number of times the while loop
is executed
for that value of i. When i=1,
it will execute
1, when i=2 à 2, … so it
becomes
2+3+4+5+…+n = ∑!"#$ 𝑡%!

!"#

$

(𝑡%−1)

!
!"#

$

(𝑡%−1)

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

94

n

(n-1)

(n-1)

Number of times the while loop
is executed
for that value of i. When i=1,
it will execute
1, when i=2 à 2, … so it
becomes
2+3+4+5+…+n = ∑!"#$ 𝑡!!

!"#

$

(𝑡!−1)

!
!"#

$

(𝑡!−1)

(n-1)

Dr. Radi Jarrar – Birzeit University, 2021

Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

95

n

(n-1)

(n-1)

Number of times the while loop
is executed
for that value of i. When i=1,
it will execute
1, when i=2 à 2, … so it
becomes
2+3+4+5+…+n = ∑!"#$ 𝑡!!

!"#

$

(𝑡!−1)

!
!"#

$

(𝑡!−1)

(n-1)

C1

C2

C3

C4

C5

C6

C7

Dr. Radi Jarrar – Birzeit University, 2021

Insertion Sort
• Assumption: constant amount of time is required for each line of the pseudo code
à ith line needs ci time.
• T(N) = C1N + C2(N-1) + C3(N-1) + C4∑'(") 𝑡* + C5∑'(") (𝑡*−1)+C6∑'(") (𝑡*−1)+ C7(N-1)
• The total time equals the cost of each line times the number of times executed for

each line.
• Best Case: the array is already sorted. For each i, there will be 1 comparison in the

while loop. So ti equals 1 for each i
• C5 and C6 times zero
• C4∑'(") 𝑡* = ∑'(") 1=1+1+1+…+1 [(n-1) times]
• So T(N) = C1N + C2(N-1) + C3(N-1) + C4(N-1)+ C5(0)+C6(0)+ C7(N-1)

= N(C1 + C2 + C3 + C4 + C5 + C6 + C7) - (C2 + C3 + C4 + C7)
= O(N)

96

Dr. Radi Jarrar – Birzeit University, 2021

Insertion Sort
• Worst Case (same for Average Case): the array is reverse sorted. For each i, the

while loop will execute i number of times, so ti = i.
• T(N) = C1N + C2(N-1) + C3(N-1) + C4∑'(") 𝑡* + C5∑'(") (𝑡*−1)+C6∑'(") (𝑡*−1)+ C7(N-1)

à 1 + 2 + 3 +⋯+𝑁 = ! !+,
"

but ∑'(") 𝑖 = ! !+,
" − 1 because we started at 2

• Similarly ∑'(") (𝑖 − 1) = ! !-,
"

• So T(N) = C1N + C2(N-1) + C3(N-1) + C4(
! !+,

" − 1) + C5(
! !-,

") + C6(
! !-,

") +
C7(N-1)

= N2(C4
" + C5

" + C6
") + N(C1 + C2 + C3 + C4

" − C5
" − C6

" + C7) - (C2 + C3 + C4 + C7)
= O(N2)

97

