
Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES 
AND ALGORITHMS
Asymptotic Time Analysis

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1



Dr. Radi Jarrar – Birzeit University, 2021

Introduction
•Algorithm: a specified set of instructions to be followed to 
solve a problem.
•Once an algorithm is determined to be true, it is important 
to determine if the algorithm at hand is “good” enough or 
not.
•This requires a formal method to analyze the algorithm.
•The main recourses to consider when running an 
algorithm are the 1) time; & 2) space the algorithm will 
require.
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Introduction (2)
• In this chapter we will understand how to estimate the 
time a program will take.
•General point: the running time of an algorithm increases 
with the input size. We want to study the relation between 
the input size and running time of an algorithm.
•We are interested in characterizing an algorithm’s running 
time as a function of the input size. How to measure it?
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Experimental Studies
• If an algorithm is implemented, 
we can study its running time by 
executing it on various test inputs 
and recording the actual time spent 
in each execution.
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Experimental Studies (2)
•Experiments can be done on a limited set of input tests
•Difficult to compare two algorithms except if the 
experiments were held on exactly the same hardware and 
the same software environments.
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Types of Time Analysis
•Best case analysis
•Optimistic/not realistic

•Average case analysis
• Is based on statistical methods

•Worst case analysis
• The program’s worse case cannot exceed this analysis
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Primitive Operations
•We should determine how many steps the algorithm has to 
perform as a function of the input size in the worst case.
•Primitive operations: basic computations performed by an 
algorithm. Assumed to take a constant amount of time in 
the computer memory.
•Counting primitive operations: this is done by inspecting 
the pseudocode. We can determine the max number of 
primitive operations executed by an algorithm as a 
function of the input size.
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Primitive Operations (2)
•Assigning a value to a variable
•Calling a function
•Returning from a function
•Performing an arithmetic operation (for example, adding 
two numbers) 
•Comparing two numbers
• Indexing into an array
•Following an object reference
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Primitive Operations (2)
• Example 1: 
Algorithm  ArrayMax(A, n){ #operations

currentMax ß A[0] 2
for i ß 1 to n-1 do 2n

if A[i] > currentMax then 2(n-1)
currentMax ß A[i] 2(n-1)

increment i //i=i+1
2(n-1)
return currentMax 1

Total: 8n-3
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Primitive Operations (2)
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Primitive Operations (3)
•Example 2: Algorithm a that takes an input of positive 
integer n, which is a power of 2. Output: integer m such 
that 2m=n

m ß 0 1
while (n>=2) log2(n)

n ß n/2 2 log2(n)
m++ 2 log2(n)

return m 1
Total: 5 log2(n)+2
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Primitive Operations (3)
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Growth Rate of Functions
• Growth rate functions: there are 7 functions that appear in algorithm analysis.

• Ideally, we would like data structure 
operations to run in times proportional
to the constant or logarithm function, 
and we would like our algorithms to 
run in linear or n-log-n time. Algorithms 
with quadratic or cubic running times 
are less practical, but algorithms with 
exponential running times are infeasible
for all but the smallest sized inputs.
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Analysing Functions
•The general way of analyzing the running time of an 
algorithm should:
1. Take into account all possible inputs;
2. Evaluate the relative efficiency of any two algorithms in 
independently from the hardware and software 
environment; and
3. Performed by studying a high-level description of the 
algorithm without implementing it or running 
experiments on it.
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Asymptotic Analysis
•Asymptotic analysis: In the algorithm analysis, we focus 
on the growth rate of the running time as a function of the 
input size n.
•That is, we characterize the running times of algorithms by 
using functions that map the size of the input, n, to values 
that correspond to the main factor that determines the growth 
rate in terms of n. 
• This approach allows us to focus on the big picture aspects of 
an algorithm's running time.
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Asymptotic Analysis (2)
•The time functions will be represented as T(n) using the 
"big-O" notation to express an algorithm runtime 
complexity. For example, the following statement 
T(n) = O(n2) 

means that an algorithm has a quadratic time complexity. 
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Asymptotic Analysis (3)
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Asymptotic Analysis (4)
•The idea of these definitions is to establish a relative order 
among functions. Given two functions, there are usually 
points where one function is smaller than the other 
function, so it does not make sense to claim, for instance, 
f(N) < g(N). Thus, we compare their relative rates of 
growth.
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Big-Oh Notation
•Def#1: Let T(N) and f(N) be functions mapping 
nonnegative integers to real numbers. We say that T(N) is 
O(f(N)) if there is a real constant c > 0 and an integer 
constant n0 ≥ 1 such that T(N)<=c.f(N) for N≥N0.
•This definition is referred as Big-Oh notation, for it is 
sometimes pronounced as “T(N) is a big-oh of f(N)”. We 
can also say T(N) is order of f(N).
• It means that the function T(N) does not grow faster than 
f(N). In other words, f(N) is the upper bound of T(N).
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Big-Oh Notation (2)
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Fig.	The	Big-Oh	notation.	The	function	T(N)	is	O(f(N)),	since	
T(N)≤c.f(N)	when	N≥N0
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Big-Oh Notation (2)
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Fig.	The	Big-Oh	notation.	The	function	T(N)	is	O(f(N)),	since	
T(N)≤c.f(N)	when	N≥N0

T(n)	is	O(f(n))	we	are	guaranteeing	that
the	function	T(n)	grows	at	a	rate	no	faster
than	f(n).	Thus,	f(n)	is	the	upper	bound	on	T(n).
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Big-Oh Notation (3)
•Examples: 
• 1 = O(n) 
•n = O(n2) 
• log(n) = O(n) 
• 3n + 2 = O(n) 
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Big-Oh Notation (4)
•Example: Although 1,000N is larger than N2 for small 
values of N, N2 grows at a faster rate, and thus N2 will 
eventually be the larger function. The turning point is N = 
1,000 in this case. The first definition says that eventually 
there is some point n0 past which c · f (N) is always at least 
as large as T(N), so that if constant factors are ignored, 
f(N) is at least as big as T(N). In our case, we have T(N) = 
1,000N, f(N) = N2, n0 = 1,000, and c=1. We could also use n0 
= 10 and c = 100. Thus, we can say that 1,000N = O(N2) 
(order N-squared). 
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Big-Oh Notation (5)
•The big-Oh notation allows us to say that a function T(N) 
is “less than or equal to” another function F(N) up to a 
constant factor and in the asymptotic sense as N grows 
toward infinity. This ability comes from the fact that the 
definition uses “≤”to compare T(N) to a f(N) times a 
constant, c, for the asymptotic cases when N ≥ N0 .
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Big-Omega Notation 
•DEF#2 T(N) = Ω(g(N))
The second definition, T(N) = Ω(g(N)) (pronounced 
“omega”), says that the growth rate of T(N) is greater than 
or equal to (≥) that of g(N).
•Asymptotic lower bound.
•Think of it as the inverse
of O(n).
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Big-Omega Notation (2) 
•n = Ω(1)
•n2 = Ω(n)
•n2 = Ω(n log(n))
• 3n + 2 = O(n)
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Big-Theta Notation
•DEF#3 T(N) = Θ(h(N))

The third definition, T(N) = Θ(h(N)) (pronounced “theta”), says 
that the growth rate of T(N) equals (=) the growth rate of h(N).
•Asymptotic tight bound (the upper and lower bounds).
• Combines Big-Oh and Big-Omega.
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Big-Theta Notation (2)
• 2n = Θ(n)
• n2 + 2 n + 1 = Θ(n2)
• 3n + 3 is O(n) and Θ(n)
• 3n + 3 is O(n2) BUT IS NOT Θ(n2)
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Asymptotic Analysis - Examples
•As an example, N3 grows faster than N2, so we can say that 
N2 = O(N3) or N3 = Ω(N2). f(N) = N2 and g(N) = 2N2 grow at 
the same rate, so both f(N) = O(g(N)) and f(N) = Ω(g(N)) are 
true. When two functions grow at the same rate, then the 
decision of whether or not to signify this with Θ() can 
depend on the particular context. Intuitively, if g(N) = 2N2, 
then g(N) = O(N4), g(N) = O(N3), and g(N) = O(N2) are all 
technically correct, but the last option is the best answer. 
Writing g(N) = Θ(N2) says not only that g(N) = O(N2), but 
also that the result is as good (tight) as possible.
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Asymptotic Analysis - Examples
• Example: The function f(n) = 8n - 2 is O(n).
• Justification: By the big-Oh definition, we need to find a real 

constant c > 0 and an integer constant n0 >= 1 such that 8n - 2 
<= cn for every integer n >= n0. It is easy to see that a possible choice 
is c = 8 and n0 = 1.
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Asymptotic Analysis - Examples
• Example: The function f(n) = 8n - 2 is O(n).
•More examples: 2n + 10 is O(n), 7n - 2 is O(n), 3n3 + 20n2 + 5 is O(n3), 

3log n + 5 is O(log n)
• Example: 5n4 + 3n3 + 2n2 + 4n + 1 is O(n4).
• Justification: Note that 5n4 + 3n3 + 2n2 + 4n + 1 ≤ (5 + 3 + 2 + 4 + 1)n4 = 

cn4, for c=15,when n ≥ n0 =1.
• In fact, we can characterize the growth rate of any polynomial 

function.
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Asymptotic Analysis
• Proposition 4.9: If f (n) is a polynomial of degree d, that is, f(n) = a0

+a1n+···+adnd, and ad > 0, then f(n) is O(nd).
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Examples
• Example 4.10: 5n2 +3n log n+2n+5 is O(n2).

Justification: 5n2+3n log n+2n+5≤(5+3+2+5)n2 =cn2, for 
c=15, when n≥n0 =2 (note that n.log.n is zero for n=1). 
• Example 4.11: 20n3 + 10n log n + 5 is O(n3 ).

Justification: 20n3 +10n log n+5 ≤ 35n3, for n ≥ 1. 
• Example 4.12: 3 log n + 2 is O(log n).

Justification: 3 log n+2 ≤ 5log n, for n ≥ 2. Note that log n is 
zero for n = 1. That is why we use n≥n0 =2 in this case.
• Example 4.13: 2n+2 is O(2n).

Justification: 2n+2 = 2n2·2 = 4·2n; hence, we can take c = 4 
and n0 = 1 in this case.
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Rules
• Loops: the running time of a loop is at most the running time 

inside the loop times the number of iterations
•Nested loops: the number of times the inner loop is executed times 

the number of times the outer loop is executed
• Consecutive loops: add the number of times they run which results 

in the max
• if/else: max of the alternative path (which is the worst case)
• if condition
• Sequence 1

• else
• Sequence 2
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LOOPS AND BIG-O NOTATION
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Loops and Big-O Notation

O(1): Time complexity of a function (or set of 
statements) is considered as O(1) if it doesn’t contain 
loop, recursion and call to any other non-constant 
time function.

// set of non-recursive and non-loop statements

40



Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation
O(n): Time Complexity of a loop is considered as O(n) if the loop 
variables is incremented / decremented by a constant amount. For 
example following functions have O(n) time complexity.

// Here c is a positive integer constant       
for (int i = 1; i <= n; i += c) {           

// some O(1) expressions    
}     

for (int i = n; i > 0; i -= c) {         
// some O(1) expressions  

}  
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Loops and Big-O Notation
O(nc): Time complexity of nested loops is equal to the number of 
times the innermost statement is executed. For example the 
following sample loops have O(n2) time complexity

for (int i = 1; i <= n; i += c) 
{        

for (int j = 1; j <= n; j += c) 
{                    

// some O(1) expressions        
}

}
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Loops and Big-O Notation
O(nc): Time complexity of nested loops is equal to the number of 
times the innermost statement is executed. For example the 
following sample loops have O(n2) time complexity

for (int i = n; i > 0; i += c) 
{        

for (int j = i+1; j <=n; j += c) 
{

// some O(1) expressions        
}

}
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Loops and Big-O Notation
O(Log n): Time Complexity of a loop is considered as O(Log n) if 
the loop variables is divided / multiplied by a constant amount.
for (int i = 1; i <=n; i *= c) {        

// some O(1) expressions    
}   

for (int i = n; i > 0; i /= c) {            
// some O(1) expressions    

}
For example Binary Search has O(Log n) time complexity.
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Loops and Big-O Notation
O(Log Log n): Time Complexity of a loop is considered as 
O(Log Log n) if the loop variables is reduced/increased 
exponentially by a constant amount.

// Here c is a constant greater than 1       
for (int i = 2; i <=n; i = pow(i, c)) {             

// some O(1) expressions    
}    

//Here fun is sqrt or cuberoot or any other constant root    
for (int i = n; i > 0; i = fun(i)) {             
// some O(1) expressions    
}
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Loops and Big-O Notation - Examples
Two loops in a row:

for(i = 0; i < N; i++){ … sequence of statements …}
for(j = 0; j < M; j++){ … sequence of statements …}

The first loop is O(N) and the second loops is O(M). Since we don’t know which one is bigger, 

we can write it as O(N + M), which is also written as O(max(N,M)). Assume that case in which 

N is greater than N, then the second loop goes to N instead of M it becomes O(N). O(N+M) 

becomes O(2N) and when you drop the constant it is O(N). O(max(N,M)) becomes 

O(max(N,N)) which is O(N).
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Loops and Big-O Notation - Examples
What is the time complexity of the following code fragment:

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) { 

sequence of statements 
} 

} 

for (k = 0; k < N; k++) { sequence of statements }
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Loops and Big-O Notation - Examples
What is the time complexity of the following code fragment:

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) { 

sequence of statements 
} 

} 

for (k = 0; k < N; k++) { sequence of statements }

The first loop is O(N2) and the second loop is O(N). This is 
O(max(N2, N)) which is O(N2).
T(N) = O(N2)
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Loops and Big-O Notation - Example
for (i = 0; i < N; i++) { 

for (j = N; j > i; j--) 
{ sequence of statements } 

}
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Loops and Big-O Notation - Example
for (i = 0; i < N; i++) { 

for (j = N; j > i; j--) 
{ sequence of statements } 

}

- The number of iterations of the inner loop depends on the value of the index 
of the outer loop.

- The inner loop executes N times, then N-1, then N-2, etc, so the total number 
of times the innermost "sequence of statements" executes is O(N2).
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Loops and Big-O Notation - Example
int x=0; //constant  

for(int i=5*n; i>=1; i--) //runs n times, disregard the 
constant      

x=x+3*i;
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Loops and Big-O Notation - Example
for (i = 0; i < N; i++) {     

for (j = i+1; j < N; j++) {         
sequence of statements     

} 
}
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Loops and Big-O Notation - Example
for (i = 0; i < N; i++) {     

for (j = i+1; j < N; j++) {         
sequence of statements     

} 
}

The outer will execute N number of times
The inner will execute N, then (N-1), then (N-2), …, 1.
T(N) = O(N2)
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Loops and Big-O Notation - Example
int b=0; 
for(int i=n; i>0; i--) 

for(int j=0; j<i; j++) 
b=b+5;
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Loops and Big-O Notation - Example
int y=1, j=0; 

for(j=1; j<=2*n; j=j+2) 
y=y+i;  

int s=0; 
for(i=1; i<=j; i++) 

s++;

55



Dr. Radi Jarrar – Birzeit University, 2021

Loops and Big-O Notation - Example
int b=0; 
for(int i=0; i<n; i++) 

for(int j=0; j<i*n; j++) 
b=b+5;
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Loops and Big-O Notation - Example
int b=0; 
for(int i=0; i<n; i++) 

for(int j=0; j<i*n; j++) 
b=b+5;

The inner loops will run 0 + n + 2n + 3n + 4n +…+ n(n-1) = n(0 + 1 + 2 
+ 3 + 4 + … + n-1) = O(N3)
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Loops and Big-O Notation - Example
int z=0;
for(int i=1; i<=n; i=i*3){ 

z = z + 5;    
z++;    
x = 2 * x; 

}
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Loops and Big-O Notation - Example
int a = 0; 
int k = n*n; 

while(k > 1) //runs n^2 {     
for (int j=0; j<n*n; j++) //runs n^2        
{ a++; }      

k = k/2; 
}
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Loops and Big-O Notation - Example
int a = 0; 
int k = n*n; 

while(k > 1) //runs n^2 {     
for (int j=0; j<n*n; j++) //runs n^2        
{ a++; }      

k = k/2; 
}

T(N) = O(n2 log n).
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Loops and Big-O Notation - Example
for (int i = n; i > 0; i = i / 2){         

for (int j = n; j > 0; j = j / 2){            
for (int k = n; k > 0; k = k / 2){               

count++;            
}         

}      
}
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Loops and Big-O Notation - Example
for (int i = n; i > 0; i = i / 2){         

for (int j = n; j > 0; j = j / 2){            
for (int k = n; k > 0; k = k / 2){               

count++;            
}         

}      
}

T(N) = O((log n)3)
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Loops and Big-O Notation - Example
bool isPrime(int n) {

if(n == 2) 
return true; 

if(n < 2) 
return false;

for (int i = 2; i <= sqrt(n); i ++) 
if (n%i == 0) return false; 

return true;
}
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RECURSION ANALYSIS
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Recursion Analysis
•Analysing the running time T of a recursive algorithm is 
more challenging than a non-recursive one.
•The most common strategy is to write the run time as a 
function of N: T(N) which indicates the time needed to 
process N items.
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Recursion Analysis
• By tracing carefully through the recursion, we can write a recurrence relation 

for the algorithm. For example
T(N) = T(N-1) + 1
• Then we can repeat the recurrence 
T(N) = (T(N-2) + 1) + 1 = T(N-2) + 2
T(N) = (T(N-3) + 1) + 2 = T(N-3) + 3
• In which we can observe the pattern: T(N) = T(N-k) + k
• By tracing the pattern all the way to the base case T(1), we can determine the 

running time of the algorithm T(N) = O(N).
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Recursion Analysis - Example
int factorial (int n) { 

if (n == 0) 
return 1; 

else 
return n * factorial (n – 1); 

} 
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Recursion Analysis - Example

• 𝑇 𝑁 = $𝑑, 𝑁 = 0
𝑇(𝑁 − 1) + 𝑐, 𝑁 > 0

• T(N) = T(N-1) + c
• T(N-1) = T(N-2) + c
• T(N) = T(N-2) + 2c
• T(N-2) = T(N-3) + c
• T(N) = T(N-3) + 3c

. .

. .

. .

• The pattern is T(N) = T(N-k) + k.c
• To solve this pattern (generalization), 

we have to find a value for k
• à notice that T(d) = T(1) = 0
• So N-k = 0 à N =k 
• So let k = Nà

• T(N) = T(0) + c = d + c.N
• T(N) = O(N)
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Recursion Analysis - Example
int power(int x, int n) { 

if (n == 0) 
return 1; 

if (n == 1) 
return x; 

if(n % 2 == 0)
return power(x * x, n / 2);

else 
return power(x * x, n / 2) * x;

} 
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Recursion Analysis - Example

• 𝑇 𝑁 = /
𝑑, 𝑁 ≤ 1
𝑇 !

" + 𝑐, 𝑁 > 1

• T(N) = T(N/2) + c
• T(N/2) = T(N/4) + c
• T(N) = T(N/22) + 2c
• T(N/4) = T(N/8) + c
• T(N) = T(N/23) + 3c
• T(N/8) = T(N/16) + c
• T(N) = T(N/24) + 4c

. .

. .
The pattern is T(N) = T(N/2k) + k.c

• We want to get rid of the T(N/2k). We 
can solve it when we reach T(1) à

• T(d) = T(1) = 1 = !"!
• à 2k =  N à k = log N
• T(N) = T(1) + c log N 
• T(N) = d + c log N
• T(N) = O(log N)
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Recursion Analysis - Example
What is the worst-case running time for the following code 
fragment? Show the recurrence relation.

for(j = 1; j <= n; j *= 2){
// some O(1) operations

}
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Recursion Analysis - Example

• 𝑇 𝑁 = /
𝑑, 𝑁 ≤ 1
𝑇 !

" + 𝑐, 𝑁 > 1

• T(N) = T(N/2) + c
• T(N/2) = T(N/4) + c
• T(N) = T(N/22) + 2c
• T(N/4) = T(N/8) + c
• T(N) = T(N/23) + 3c
• T(N/8) = T(N/16) + c
• T(N) = T(N/24) + 4c

. .

. .
The pattern is T(N) = T(N/2k) + k.c

• We want tol get rid of the T(N/2k). We 
can solve it when we reach T(1) à

• T(d) = T(1) = 1 = !"!
• à 2k =  N à k = log N
• T(N) = T(1) + c log N 
• T(N) = d + c log N
• T(N) = O(log N)
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MERGE SORT
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Merge Sort
• Divide and conquer technique
• Divide an array into two halves
• Recursively sort each half
• Merge two halves to make a sorted one 

• Algorithm: to sort A[1 .. n] call Merge-Sort(A, a, n)
• Merge-Sort(A, p, r):
• //Input: A[p .. r]
• //Output: A[p .. r] with sorted numbers
• if p < r then
• q = ⌊ (p + r) / 2 ⌋
• Merge-Sort(A, p, q)
• Merge-Sort(A, q + 1, r)
• Merge(A, p, q, r)
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Merge Sort

75

1. Divide the array into two parts
2. Divide the array again until elements

cannot be further broken
3. Sort the elements from smallest to 

largest
4. Merge the divided sorted arrays 

together
5. The array is now sorted
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Merge Sort
• To solve Merge sort, we have to write a recurrence relation for the running 

time.
• Assume N is a power of 2 so that we always split in half
• For N=1, the time for merge sort is constant.
• Otherwise, time to merge sort N number of elements equals to the time to do 2 

recursive merge sorts of size N/2 plus the time to merge which is linear.
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Recursion Analysis – Merge Sort

• 𝑇 𝑁 = /
𝑑, 𝑁 = 0,𝑁 = 1
2𝑇 !

" +𝑁, 𝑁 > 1

• T(N) = 2T(N/2) + N
• T(N/2) = 2T(N/4) + N/2
• T(N) = 2(2T(N/4) + N/2) + N

= 4T(N/4) + 2N
• T(N/4) = 2T(N/8) + N/4
• T(N) = 4(2T(N/8) + N/4)+ 2N

= 8T(N/8) + 3N
• T(N/16) = 2T(N/16) + N/16

• T(N) = 16T(N/16) + 4N

• The pattern is T(N) = 2k.T(N/2k) + k.N

• We want to reduce this in terms of T(1) 
which is what we know, in this case 
N/2k = 1 à 2k = N à k = log2N
• So now we can substitute the terms such 

that à 2log
2
N T(1) + log2N . N

• We know that alog
b

c = clog
b

a à

• = N + log N . N à O(N log N)
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BINARY SEARCH
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Binary Search
• Search for an element in a sorted array.
int BinarySearch(int A[], int lower, int upper, int key){

if(lower <= upper){
int mid = (lower + upper) / 2;

if(A[mid] == key)
return mid;

else
if(A[mid] < key)

return BinarySearch(A, mid+i, upper, key);
else

return BinarySearch(A, lower, mid-1, key);
}
else

return -1;
}
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Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half 

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)
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Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half 

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)
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Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half 

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)
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Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half 

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)
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Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half 

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)
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Binary Search
• Compare x with the middle element
• If x matches the middle, return middle index
• Else if x is greater than the middle element, then x can only lie in the right half 

sub-array after the mid element. So we recur right half.
• Else, x is smaller so recur the left half
• E.g., Search(23)
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Binary Search – Recurrence Relation

• 𝑇 𝑁 = /
𝑑, 𝑁 = 1
𝑇 !

" + 𝑐, 𝑁 > 1

• T(N) = T(N/2) + c
• T(N/2) = T(N/4) + c
• T(N) = T(N/22) + 2c
• T(N/4) = T(N/8) + c
• T(N) = T(N/23) + 3c
• T(N/8) = T(N/16) + c
• T(N) = T(N/24) + 4c

. .

. .
The pattern is T(N) = T(N/2k) + k.c

• We want tol get rid of the T(N/2k). We 
can solve it when we reach T(1) à

• T(d) = T(1) = 1 = !"!
• à 2k =  N à k = log N
• T(N) = T(1) + c log N 
• T(N) = d + c log N
• T(N) = O(log N)
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INSERTION SORT
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Insertion Sort
• Insertion Sort is a simple sorting algorithm.
• Good for small lists.
• Good for partially sorted lists.

• The time analysis of Insertion Sort depends on the nature of the input data
• Best case
• Average case
• Worst case
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}

92
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it will execute
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}
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Number of times the while loop 
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for that value of i. When i=1, 
it will execute
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}
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Recursion Analysis - Example
void insertion (int[] arr, int size){

int j, key;

for (int i = 2; i < size; i++) {
key= arr[i];
j=i-1;

while (j>0 && arr[j]>key){
arr[j+1] = arr[j];
j--;

}
arr[j+1]=key;

}
}
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Insertion Sort
• Assumption: constant amount of time is required for each line of the pseudo code 
à ith line needs ci time.
• T(N) = C1N + C2(N-1) + C3(N-1) + C4∑'(") 𝑡* + C5∑'(") (𝑡*−1)+C6∑'(") (𝑡*−1)+ C7(N-1) 
• The total time equals the cost of each line times the number of times executed for 

each line.
• Best Case: the array is already sorted. For each i, there will be 1 comparison in the 

while loop. So ti equals 1 for each i
• C5 and C6 times zero
• C4∑'(") 𝑡* = ∑'(") 1=1+1+1+…+1 [(n-1) times]
• So T(N) = C1N + C2(N-1) + C3(N-1) + C4(N-1)+ C5(0)+C6(0)+ C7(N-1) 

= N(C1 + C2 + C3 + C4 + C5 + C6 + C7) - (C2 + C3 + C4 + C7) 
= O(N)
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Insertion Sort
• Worst Case (same for Average Case): the array is reverse sorted. For each i, the 

while loop will execute i number of times, so ti = i.
• T(N) = C1N + C2(N-1) + C3(N-1) + C4∑'(") 𝑡* + C5∑'(") (𝑡*−1)+C6∑'(") (𝑡*−1)+ C7(N-1) 

à 1 + 2 + 3 +⋯+𝑁 = ! !+,
"

but ∑'(") 𝑖 = ! !+,
" − 1 because we started at 2

• Similarly ∑'(") (𝑖 − 1) = ! !-,
"

• So T(N) = C1N + C2(N-1) + C3(N-1) + C4(
! !+,

" − 1 ) + C5(
! !-,

" ) + C6(
! !-,

" ) +
C7(N-1) 

= N2(C4
" + C5

" + C6
" ) + N(C1 + C2 + C3 + C4

" − C5
" − C6

" + C7) - (C2 + C3 + C4 + C7) 
= O(N2)
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