
Dr. Radi Jarrar – Birzeit University, 2021

COMP2421—DATA STRUCTURES
AND ALGORITHMS
Linked Lists

Dr. Radi Jarrar
Department of Computer Science
Birzeit University

1

Dr. Radi Jarrar – Birzeit University, 2021

Data structure and Arrays

•A data structure is a way of storing data in a computer so
that they can be retrieved and used efficiently
•An array is a very simple data structure for holding a
sequence of data

2

Dr. Radi Jarrar – Birzeit University, 2021

Data structure and Arrays (2)
•Pros of Arrays
•Access to an array element is fast since we can compute its

location quickly
•Cons
• Fixed size
•When we want to insert or delete an element, we have to shift

subsequent elements (slow)
•We need a large enough block of memory to hold an array

3

Dr. Radi Jarrar – Birzeit University, 2021

Linked Lists
•Another data structure that is used to store sequence of
data
•A linked list consists of a series of structures called nodes
•Data values do not have to be stored in adjacent memory
cells
•Each node contains two fields: a "data" field and a "next"
field, which is a pointer used to link one node to the next
node
•To use a linked list, we only need to know where the first
data value is stored

4

Dr. Radi Jarrar – Birzeit University, 2021

Linked Lists (2)

•Advantages of Linked Lists
•Dynamic size
•No shift of elements on deletion/insertion

•Drawbacks of Linked Lists
• Random access isn’t allowed
• Extra memory is needed for the next pointer

5

Dr. Radi Jarrar – Birzeit University, 2021

Linked Lists (3)
•When to use Linked Lists
• The number of data items to be stored in the list is unknown
•No need for random access
• Insertion in the middle of the list is frequent

6

Dr. Radi Jarrar – Birzeit University, 2021

Array vs. Linked List
• Cost of Accessing an element
• Array

• Base address = 300
• Address of A[i] = 300 + i * 4

• Constant time O(1)

• Linked List

• Average case: O(n)

7

300 320

0 1 2 3 4 5
1 2 3 NULLHead

data next

Dr. Radi Jarrar – Birzeit University, 2021

Array vs. Linked List
• Memory requirements
• Array

• Memory may not be available as one
large block.

• Linked List

• No unused memory.
• Requires extra memory for pointer

variables.
• Works well when memory may be

available as multiple small blocks.

8

X1 X2 X3

0 1 2 3 4 5
X1 X2 X3 NULLHead

Dr. Radi Jarrar – Birzeit University, 2021

Array vs. Linked List
• Cost of inserting/deleting an element
• Array

• The cost of inserting/deleting a new
element:
• At beginning à O(n)
• At end à O(1)
• At ith position à O(n)

• Linked List

• O(1)
• O(n)
• O(n)

9

20 -1 30 19 99 100

0 1 2 3 4 5
20 -1 30 NULLHead

12

Dr. Radi Jarrar – Birzeit University, 2021

Linked Lists vs. Array

10

Operation Array Linked List

Print list O(n) O(n)

Print Element Constant O(n)

Search O(n) O(n)

Insert O(n) Constant

Delete O(n) Constant

Find Index Constant O(n)

Dr. Radi Jarrar – Birzeit University, 2021

Operations on Linked Lists
•Header node: a node that is kept at position zero. It points
to the first element in the list.
•Creation (MakeEmpty): the process of creating the head
node. Returns a pointer to the first node.
• Insertion: obtaining a new cell from the system by using
the malloc call.
•Deletion: delete a given node after find.
•Find: search for a node. If exists, return a pointer to it.

11

Dr. Radi Jarrar – Birzeit University, 2021

Struct Node
•Node is the main building block of the list.
• In this example, each node contains a single data element
and a pointer to the next node in the list.
struct node

{

int Data;

struct node* Next;

};

12

Dr. Radi Jarrar – Birzeit University, 2021

MakeEmpty
• Creates a Linked List
struct node* MakeEmpty(struct node* L){

if(L != NULL)
DeleteList(L);

L = (struct node*)malloc(sizeof(struct node));

if(L == NULL)
printf(“Out of memory!\n”);

L->Next = NULL;
return L;

}

13

Dr. Radi Jarrar – Birzeit University, 2021

IsEmpty
•Checks if the list is empty
int IsEmpty(struct node* L){

return L->Next == NULL;

}

14

Dr. Radi Jarrar – Birzeit University, 2021

IsLast
•Checks if a given node is the last node in the linked list
int IsLast(struct node* P, struct node* L){

}

15

Dr. Radi Jarrar – Birzeit University, 2021

Find
• Looks for a node in the Linked List. Returns a pointer to the node if exists.
struct node* Find(int X, struct node* L){

struct node* P;

P = L->Next;

while(P != NULL && P->Data != X)
X = X->Next;

return P;
}

16

Dr. Radi Jarrar – Birzeit University, 2021

FindPrevious
• Similar to previous but return a pointer to the node previous to the one you

are looking for. If X is not found, then Next field of returned value is NULL.
struct node* FindPrevious(int X, struct node* L){

struct node* P;

P = L;

while(P->Next != NULL && P->Next->Data != X)
P = P->Next;

return P;
}

17

Dr. Radi Jarrar – Birzeit University, 2021

Delete
• Delete the first occurrence in the list. We find P, which is the cell pointer to the one

containing X, via FindPrevious
void Delete(int X, struct node* L){

struct node* P, temp;

P = FindPrevious(X, L);

if(!IsLast(P, L)){
temp = P->Next;
P->Next = temp->Next; //bypass delete cell
free(temp);

}
}

18

Dr. Radi Jarrar – Birzeit University, 2021

Insert
• Pass an element to be inserted, a list L, and position P. Insert an

element after the position implied by P.
void Insert(int X, struct node* L, struct node* P){

struct node* temp;

temp = (struct node*)malloc(sizeof(struct
node));

temp->Data = X;

temp->Next = P->Next;

P->Next = temp;

}

19

Dr. Radi Jarrar – Birzeit University, 2021

PrintList
• Given a list, print its elements.
void PrintList(struct node* L){

struct node* P = L;
if(IsEmpty(L))

printf(“Empty list\n”);
else

do{
P=P->Next;
printf(“%d\t”, P->Data);

}while(!IsLast(P, L));
printf(“\n”);

}

20

Dr. Radi Jarrar – Birzeit University, 2021

DeleteList
• Given a list, delete all its elements.
void DeleteList(struct node* L){

struct node* P, temp;
P = L->Next;
L->Next = NULL;

while(P != NULL){
temp = P->Next;
free(P);
P=temp;

}
}

21

Dr. Radi Jarrar – Birzeit University, 2021

Size of Linked List
• Write a routine to find the size of a linked list.

int size(struct node* L){
struct node* p = L->Next;
int count = 0;
while(p != NULL){

count += 1;
p = p->Next;

}
return count;

}

22

Dr. Radi Jarrar – Birzeit University, 2021

Types of Linked Lists
•Linear singly-linked list
•Doubly linked list
•Single circular linked list
•Doubly circular linked list

23

Dr. Radi Jarrar – Birzeit University, 2021

Circular Linked List
•The last node keeps a pointer to the first node

24

Dr. Radi Jarrar – Birzeit University, 2021

Doubly Linked List
• Each node points to its next and previous node
•Add an extra pointer to the previous node
•Adds more space requirements and doubles the cost of insertion &

deletion because more pointers to fix
• Simplifies deletion-no need for FindPrevious

25

Dr. Radi Jarrar – Birzeit University, 2021

Doubly Circular Linked List
• Each node points to its next and previous node
• The last node’s next is the first; and the previous of the first is the

last

26

Dr. Radi Jarrar – Birzeit University, 2021

APPLICATIONS TO LINKED LISTS

27

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort
• Is a non-comparative sorting algorithm. We are not comparing
elements (in a list for instance) with each other.

1. Takes the least significant digits (LSD) of the values to be
sorted.

2. Sorts the list of elements based on the digit

https://youtu.be/7pwwgxmMHnc

28

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (2)

•E.g., 9, 169, 739, 538, 10, 5, 36 à array size 7

• Solution: consider 0 to 9 linked lists. 10 lists. Each one

represent a digit which each significant digit can be. We are

going to sort each number into one of these lists as we are

going along.

•Total of 10 lists

• 0-9 refers to actual numbers

29

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (3)
• STEP 1: take the least significant digit (the one’s column).
Extract using the mod 10 (int m=10, n=1;) (m is the
modulus; divide the whole number, then divide the
number by n).

30

9 169 739 538 10 5 36

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (4)
• So after the first round:

31

9 169 739 538 10 5 36

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (4)
• So after the first round:

32

9 169 739 538 10 5 36

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (5)
•Once we reached the end of the list, we make a new array
and put the values by removing from head of each list.
•Then the sorted new array is: 10, 5, 36, 538, 9,
169, 739

•Now we look at the second significant digit in the new
array and we re-arrange the numbers based on that digit.
• Implementation (m=m*10 (which is the mod); n=n*10
which is 10 now)

33

10 5 36 538 9 169 739

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (6)
•Again, we take the mod of each number with m then we
divide by n and put it in the list.

34

10 5 36 538 9 169 739

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (7)
• So the list becomes 5, 9, 10, 36, 538, 739, 169
•Now we look at the third digit:

35

5 9 19 36 538 739 169

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (8)
• So the FINAL list becomes 5, 9, 10, 36, 169, 538, 739
•Notes
• The mod value m and the divisor value n go as big as the largest

number of digits inside the array.
• In other words, it increases one digit every time until array is

sorted.
• In this example, significant digit increase each time.

36

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (9)
• Time complexity
•O(kN) where N is the number of elements to sort, k is the number

of digits (or it can be said for n keys which have d or fewer
digits). Generally, k cannot be considered as a constant so it is not
removed.
• Best case: kN; average case: kN; worst case: kN

37

Dr. Radi Jarrar – Birzeit University, 2021

Radix Sort (10)
•Radix sort for strings?
•List of words: dab, add, fee, bee, ace, eba

38

Dr. Radi Jarrar – Birzeit University, 2021

Extra exercises on linked lists
•Question 1) Write a function that takes two sorted linked
lists and return true if the lists are disjoin lists (meaning
they have no common elements). Use iterations to solve
this question.
•Question 2) Write a recursive function that takes two
sorted linked lists and return true if the lists are disjoin
lists (meaning they have no common elements). Your
algorithm should be O(n).
•Question 3) Write a function to reverse a given doubly
linked list.

39

Dr. Radi Jarrar – Birzeit University, 2021

Extra exercises on linked lists
•Question 4) Write a function called concat() that receives
two lists and append the first one to the second.
•Question 5) Given a singly linked list, write a function to
swap elements pairwise.

For example, if the linked list is 1->2->3->4->5 then the
function should change it to 2->1->4->3->5, and if the linked
list is 1->2->3->4->5->6 then the function should change it to
2->1->4->3->6->5.

40

Dr. Radi Jarrar – Birzeit University, 2021

Extra exercises on linked lists
•Question 6) Write a function called RemoveDuplicates()
that takes a list sorted in increasing order and deletes any
duplicate nodes from the list.

•Question 7) Write an iterative Reverse() function that
reverses a list by rearranging all the .next pointers and the
head pointer.

41

