Solution of quiz#4 Comp333

Consider relation R (A, B, C, D, E) that has the following FD's::
A-→BC FD1
CD-→E FD2
B-→D FD3
E-→A FD4
1) Candidate keys
1.1) [A] ⁺ = {A, B, C} from FD1
[A] ⁺ = {A, B, C, D} from FD3 and {B} subset {A, B, C) we add D to [A] ⁺
$[A]^+$ = {A, B, C, D, E} from FD2 and {C, D} subset {A, B, C, D} we add E to $[A]^+$
So we can deduce all the attribute from A there for A is a candidate key.
1.2) [E] ⁺ = {A, E) from FD4
[E] ⁺ = {A, B, C, E} from FD1 and {A} subset {A, E) we add B, C to [E] ⁺
[E] ⁺ = {A, B, C, D, E} from FD3 and {B} subset {A, B, C, E} we add D to [A] ⁺
So we can deduce all the attribute from E there for E is a candidate key.
1.3)[CD] ⁺ = {C, D, E} from FD2
[CD] ⁺ = {A, C, D, E} from FD4 and {E} subset {C, D, E} we add A to [CD] ⁺
[CD] ⁺ = {A, B, C, D, E} from FD1 and {A} subset {A, C, D, E} we add B to [CD] ⁺
So we can deduce all the attribute from CD there for CD is a candidate key.
1.4) Using the same concept to prove BC also is a candidate key.
Note AC, ED, ACD, ABC are super keys not candidate keys
2) Normalization as follow
If we consider that A is the primary key, so we get the table { <u>A</u> , B, C, D, E}
To let the table satisfy first norm: $B \rightarrow D$ is nested table we get it out of the table above(that
to say remove D and create the table <u>B</u> \rightarrow D.
The tables become:
<u>B</u> →D1
$\underline{A} \rightarrow BCE$ 2
Notice the 2 tables are satisfied the 3 norms (1 st ,2 nd ,3 rd), but does not satisfy the BCNF since
$E \rightarrow A(FD4)$, because of this we remove E from the table and create this table $\underline{E} \rightarrow A$
the system becomes:
<u>B</u> → D1
$\underline{A} \rightarrow BC$ 2
<u>E</u> →A3
Every table in the system is normalized.