
Storage and Indexing
B I R Z E I T U N I V E R S I T Y - S A M E R Z A I N , P H . D.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Introduction
 DBMS abstracts data as a collection of
records stored in a file.

A file is a set of pages, each contain certain
set of records.

The files layer is responsible or data
organization for fast data retrieval.

File organization: a way of organizing
records in a file.

Each file organization makes certain
operations efficient, but other operations
expensive.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Introduction..2
 For example, suppose that we have a file of employees (name, age, and salary).

 If we want to retrieve employees based on age, then sorting the records based on age
is a good idea.

But if we want to retrieve employees based on salary, then we need to scan the entire
file.

Further, keeping the file sorted on age can be expensive is the file is modified
frequently.

 We use indexing to access records of data in additional ways.

We can build more than one index on the same data file, each with a different search
key.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Data on External Storage
 Hard disks are the primary storage devices for
DBMS

The taps are used for archiving.

The unit of information read from or written from
disk is a page.

A page is typically 4KB or 8KB

The cost of page I/O is the most expensive
operation.

Disks have fixed cost per page.

 Each record in a file has a unique identifier called
rid.

Using the rid, we can identify the page address

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Data on External
Storage ..2

The buffer manager is responsible for
loading a page into memory.

When the files layer wants to access a
certain page, it asks the buffer manager to
load it into memory (if it is not already
there)

 Space on disk is managed by disk space
manager.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

File Organization and Indexing
 As noted before, DBMS (Files Layer) abstracts data as files of
records.

Files can be created and destroyed, records added and deleted.

Files also support scans.

A relation (table) is stored as a file of records.

 the file layer stores records in a file in a set of pages.

The file layer tracks pages and the records inside them.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Heap Files and Indexes
A heap file is the simplest file organization: records are stored randomly
across the pages.

 A heap file supports retrieval of all records or retrieval of particular record
using rid.

 An index is a data structure that allows fast retrieval of data records.

An index is based on a search key.

We can create several indexes for same data file, each with different search
key.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Indexes ..2
 Consider as an example our employee records.

 We can store the records in a file organized as an index on employee age.

Additionally, we can create a separate index file based on salary, to speed up
operations that involve retrieving employees based on salaries.

The first file contains the actual employee records. While the second file
contains data entries.

A data entry is associated with key value K, and contains enough information
to locate data records.

We can efficiently search an index to find the desired data entries. We then
use the data entries to locate the data records.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Indexes..3
 Data Entries in an index can be as one of the following:

 Alternative (1): a data entry is an actual data record associated with search
key.

 Alternative (2): a data entry is a (K, rid) where K is the search key and rid is
record id.

Alternative (3): a data entry is a (K, rid list)

If we want to have more than one index on a file of records, at most we can
have one Alternative(1), why?

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Clustered Indexes
Definition: when a file is organized so that the data records are ordered same as
or close to the ordering of data entries of an index, we say that the index is
clustered.

An index that uses Alternative (1) is clustered by definition.

An index that uses Alternative(2) or Alternative(3) can be clustered only if the
data records are sorted on the search key field.

In practice, indexes that uses Alternative(1) and Alternative(2) are un-clustered,
why?

The performance can be very efficient if we are answering a range query using
clustered index.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Clustered vs Un-Clustered Indexes

Unclustered
Index

Clustered
Index

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Primary and Secondary Indexes
A primary index: is an index on a set of fields that includes
the primary key. Other indexes are called secondary
indexes.

 Two data entries are said to be duplicate if they contain
the same value for search key.
A Primary index is guaranteed not to have duplicates.

In general, secondary indexes contain duplicates.

Unique index: an index with no duplicates.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Hash-Based Indexing
One way to implement indexing is hashing.

 For instance, if the files of employees is hashed
on names, we can find all records of employee
name John.

The record are arranged in buckets ,with each
bucket has one or more related pages.

To identify a bucket, we apply hash function to
the search key.

We can retrieve required page in single I/O
operation.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Hash-Based Index Example

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Note that the search key can be any set of fields.

Also note the search key need not uniquely identify record.

Tree-Based Indexing

Another way to arrange data entries in an index is using a tree data structure.

The data entries are arranged in sorted order on search key.

Note that L1, L2, and L3 are connected via double linked lists.

Number of I/O = length of path + number of leaf pages.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Tree-Based Indexing..2
B+ tree in an index structure in which all paths from root node to leaf in a tree is of same
length.

Here, finding the correct leaf is faster than binary search of pages in a sorted file.

This is because each non-leaf node can have large number of node-pointers, and the height of
tree is rarely more than three or four in practice.

The average number of children for a non-leaf node is called fan-out of the tree.

If every non-leaf tree node has N children, and the tree has H height, then the number of leaf
pages = NH

In practice the average of N (F) = 100, thus the number of leaf nodes = 100 million.

However, to find correct leaf node we need 4 I/Os, while in sorted file we need over 25.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Comparison of File Organization

Now we need to compare between different files organizations in terms of simple operations.

We assume that the file and indexes are organized based on the composite search key (sal, age)

We also assume that all selection operations are based on the composite key (sal, age)

The operations we consider are:

Scan: Fetch all records in the file, thus all pages in the file must be fetched from disk into
buffer pool.

Search with Equality Selection: such as “find all employees with salary 1200 and age 40”

Search with Range Selection: such as “find all employees with age > 35”

Insert new Record: identify correct page, load it into memory, change it, and write it back.

Delete a Record: using rid, we locate the related page, load it into memory, change it, and
write it back.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Cost Model
We need to agree on the cost model that we will use to
differentiate between files:
 B = Number of data pages.

 R = Number of records per page.

 D = Average time to read a page from disk.

 C = Time to process a record.

 H = time to apply the hash function.

 F = fan-out for a tree based file.

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Cost for Heap Files
Scan: the cost = B(D+RC)

Search with Equality Selection:
if selection is specified on a candidate key then cost = 0.5B(D +RC)

If selection is not specified on candidate key them we need to search entire file.

Scan with Range Selection: cost = B(D+RC) coz we need to search all file.

Insert: We assume that inserts are at end of the file, cost = 2D + C

Delete: cost = cost of search + C+ D

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Cost for Sorted Files
Scan: the cost = B(D+RC), again, all pages will be scanned.

Search with Equality Selection:
if selection is specified on age then cost = DLog2B + CLog2R

If selection is not specified on age, it is same as heap file.

Scan with Range Selection: cost = B(D+RC) coz we need to search all file.

Insert: we must find correct position in the file, add new record, then rewrite
all subsequent pages. Cost = search + B(D + RC)

Delete: cost = cost of search + C+ D

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Comparison of I/O Costs

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

Comparison of I/O Cost..2
A heap file has good storage efficiency and supports fast scanning and
insertion of records. But it is slow for searches and deletions.

A sorted file also offers good storage efficiency, but insertion and deletion of
records is low. Searches are faster than heap files.

A clustered file offers all the advantages of a sorted file plus supporting inserts
and deletes efficiently. but requires more space on disk. Searches are even faster
than sorted files.

Unclustered tree and hash indexes offer fast searches, insertion, and deletion,
but scans and range searches with many matches are slow. Hash indexes are a
little faster on equality searches, but they do not support range searches

SAMER ZAIN, PH.D. - BIRZEIT UNIVERSITY

