Storage and
Indexing

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Motivation

- DBMS stores vast quantities of data

* Data is stored on external storage devices and fetched into main
memory as needed for processing

e Page is unit of information read from or written to disk. (in DBMS, a
page may have size 8KB or more).

e Data on external storage devices :
— Disks: Can retrieve random page at fixed cost (/O operations).

But reading several consecutive pages is much cheaper (i.e.
faster) than reading them in random order

— Tapes: Can only read pages in sequence.
Cheaper than disks; used for archival storage.

* Cost of page I/0 dominates cost of typical database operations

ot % o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Data on External Storage

Architecture of a DBMS

U§er
J; SQL Query

~ B

Query Compiler

I Query Plan (optimized)

Execution Engine

I Index and Record requests

Index/File/Record Manager

| Page Comim
i g

Buffer Manager

1 Read/Write pages

Disk Space Manager
* Disk /0

~ow |

A first course in database systems, 3® ed, Ullman and Widom , _ , ,

UNIVERSITY
Dr. Ahmaa Aousnaina Storage ana Inaexing pataoase Systems | COMP333

Introduction

| DBMS abstracts data as a collection of Soptisticated users. application
reco rd S Stored in a f| I e Unsophisticated users (customers, travel agents, etc.) programmers, DB administrators

"IAfile is a set of pages, each contain certain [Web Forms J [Appl'-ca-ioufmm EudsJ [SQL Interface J
set of records. B i .

- _————— -

& =

. . . SQL cm;nuwns shows commsad flow
"' The files layer is responsible or data _ !
organization for fast data retrieval. Plan Executor Parser ahows imteraction
‘IFile organization: a way of organizing Query
records in a file. Opermtor Evaivaer optime Engine
|Each file organization makes certain : !
. 9 G . Teansaction |=—= Files and Access Methods —_—
operations efficient, but other operations Manager
q I Recovery
eXpen5|Ve Lock = Buffer Manager Manager
Manager y
Concumency = Disk Space Manager C .
Control DEMS |

Index Files == shows refersnces
\ system Catalog
Diata Files g——~"
DATABASE

= /L—;—/{/\g’ﬁ d
BlRZE:lT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Data on External Storage

"I Hard disks are the primary storage devices for DBMS

"IThe taps are used for archiving.
' IThe unit of information read from or written from

disk is a page.

"JA pageistypically 4KB or 8KB

_IThe cost of page I/0 is the mOSt expensive
operation.

"IDisks have fixed cost per page.
| Each record in a file has a unique identifier called

rid. 7
IUsing the rid, we can identify the page address N B e

o7 4* tarone
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Data on External Storage

Sophisticated users, application

D Th e b u ffel‘ man ag er iS res pO n Si b I e fO r Unsophisticated users (customers, travel agents, etc.) programmers, DB administrators

loading a page into memory.
"IWhen the files layer wants to access a

[Web Forms] [Apphcaliou Front Ends} [SQL Interface]

= H e i
certain page, it asks the buffer manager to e shows command flow
|Oad 'tinto memory (If Itis not already Plan Executor Parser shows nteraction
there)
[[i Query
"1 Space on disk is managed by disk space Operator Evaluator Opi Eron
manager. '
Transaction |1 Files and Access Methods oo
Manager
- Recovery
T R Buffer Manager == Manager
Manager |
Concurrency i Disk Space Manager "

Dr. Ahmad Abusnaina

| Control DBMS |

= - M
—_—
Index Files < shows references
\ System Catalog
Data Fil -
e DATABASE

= /)’L—;—/{/\g’ﬁ d
BIRZE‘IT UNIVERSITY

Storage and Indexing Database Systems | COMP333

Data on External Storage

* File organization:

— Method of arranging a file of records on external storage.
— Record id (rid) is sufficient to physically locate record
— Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields
* Architecture: Buffer manager stages pages from external
storage to main memory buffer pool.

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Multiple File Organizations

Many alternatives exist, each good in some situations and not so good in others

 Heap Files:

— is the simplest file organization: records are stored randomly
across the pages.

— Suitable when typical access is a full scan of all records
— Unordered collection of records
— Add/Remove records: Easy (Cost?)

* Sorted Files:
— Best for retrieval in search key order, or a range of records is needed
— Arrange and store collection of records in sorted manner.
— Add/Remove records: Easy or not (Cost?)

e Clustered Files & Indexes: Group data into block to enable fast

lookup and efficient modifications. (More on this soon ...)
An index is a data structure that allows fast retrieval of data

records.
We can create several indexes for same data file, each with -
different search key. ot

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Bigger Questions

* What is the “best” file organization?
— Depends on access patterns ...
— How? What are they?

 Can we be quantitative about tradeoffs?
— Better 2 How much?

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Goals for Today

* Big picture overheads for data access

* Then estimate cost in a principled way

* Foundation for query optimization

— Can’t choose the fastest scheme without an estimate of speed!

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost

Model &
AMEWAIE

55 4* s
255 N e 1S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost Model for Analysis

B: The number of data blocks
R: Number of records per block

D: (Average) time to read/write disk block

Average case analysis for uniform random workloads

We will ignore
— Sequential vs Random |/O
— Pre-fetching
— Any in-memory costs

Good enough to show the overall trends!

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

More Assumptions

* Single record insert and delete
e Equality selection — exactly one match
 For Heap Files:
— Insert always appends to end of file.
* For Sorted Files:

— Files compacted after deletions.
— Sorted according to search key

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Heap Files & Sorted Files

Heap File

Records are just integers

e B: The number of data blocks =5
 R: Number of records per block = 2
* D:(Average) time to read/write disk block = 5ms T S

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records
Equality Search
Range Search
Insert

Delete

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cion I
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records
Equality Search
Range Search
Insert

Delete

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cion I
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Scan All Records

Heap File
I Sorted File
* B: The number of data blocks Pages touched: ?
* R: Number of records per block Time to read the record: ?

* D: Average time to read/write disk block o o e
(::.(3 A
v

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search

Range Search

Insert

Delete

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cion I
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search

Range Search

Insert

Delete

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cion I
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find Key 8
Heap File

I

Pages touched on average?

 P(i): Probability of key on pageiis 1/B
* T(i): Number of pages touched if key on pageiisi
 Therefore the expected number of pages touched

B B
- 1 BB+1) B
Z;T(Z)P(@) = ZZE ~ 9B 9

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find Key 8

Heap File

Pages touched on average: B/2

* Breaking an assumption
— What if there was more than one key?

— Need to check all the pages 2> B

N AN P 1=
BIRZ€IT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find Key 8

Sorted File

* Worst-case: Pages touched in binary search
— log,B

* Average-case: Pages touched in binary search
— log,B?

pe s 2P AN e =
BIRZ€IT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Average Case Binary Search

110 / !\
SN AN

‘-l HE H H BH B

Expected Number of Reads: 1(1/B)+2(2/B)+3(4/B)+4(8/B)

log, B . log, B
SN B B-1
E ? = —= E 12" =log, B
. B B « B
=1 1=1 o v

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search

Insert

Delete

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block et B o
e

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search

Insert

Delete

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cion I
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find Keys Between 7 and 9
Heap File

I

Always touch all blocks. Why?

= A——/{/\zﬁ 3
BlRZE‘|T UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find Keys Between 7 and 9
Heap File

I

Always touch all blocks. Why?
Sorted File

lI

* Find beginning of range
e Scan right

= A——/{/\zﬁ 3
BlRZE‘|T UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert

Delete

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block et B o
e

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert

Delete

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block et B o
e

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Insert 4.5

Heap File

Stick at the end of the file. Cost? =2*D Why 2?

257 (b
‘-—fﬂ,«"_/ifwﬂ!)=
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Insert 4.5
Heap File
Read last page, append, write. Cost = 2*D
Sorted File

BN

* Find location for record: log,B

257 (b
‘-—fﬂ,«"_/ifwﬂ!)=
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Insert 4.5
Heap File
Read last page, append, write. Cost = 2*D
Sorted File

B E B ED R Y

* Find location for record: log,B
* Insert and shift rest of file Cost? 2*B/2 Why?

2.7 2
5555 N el ye) * 1
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block et B o
e

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block et B o
e

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Delete 4.5

Heap File

Average case to find the record: B/2 reads
Delete record from page
Cost? =(B/2+1)*D Why +1°?

pe s 2P AN e =
BIRZ€IT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Delete 4.5

Heap File

Average case runtime: (B/2+1) * D

Sorted File

* Find location for record: log,B

° i L
Delete record in page = Gap cign A s
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Delete 4.5

Heap File

)

Average case runtime: (B/2+1) * D

Sorted File

5 Ly (or) a3

* Find location for record: log,B
* Shift rest of file left by 1 record: 2 * (B/2) cign A v

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete (0.5*B+1)*D ((log,B)+B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block Which is betterggj@;g,@‘;}

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D Issues:
* Find
Equality Search 0.5*B*D (log,B)*D * Range
* Modification
Range Search B*D ((log,B)+pages)*D
Can we do
Insert 2*D ((log,B)+B)*D better?
Delete (0.5*B+1)*D ((log,B)+B)*D
B: The number of data blocks Indexes
R: Number of records per block
D: Average time to read/write disk block e S

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

55 4* s
255 N e 1S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

41
Indexes Overview

v Indexing organizes data records on disk to optimize certain kinds of retrieval operations.

v" An index is a data structure that enables fast lookup of data entries by search key.

* Lookup (retrieval): may support many different operations
— Equivalence (i.e. =), range (i.e. >, <, >=), ...

« Data Entries: records stored in the index file, (k, {items})
— A data entry with search key value k, denoted as k*.
— Could be actual records or record-ids (pointers).

— We can efficiently search an index to find the desired data entries, and
then use these to obtain data records.

e Search Key: any subset of columns (i.e. fields) in the relation.

ot % o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Search Key: Any Subset of Columns?

e Search key does not require to be a key of the relation
— Recall: key of a relation must be unique (e.g., SSN)
— Search keys don’t have to be unique

* Additional indexes can be created on a given collection of data
records, each with a different search key,

Why indexing used?
* to speed up search operations that are not efficiently

supported by the file organization used to store the data
records on disk.

ot % o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Example

* Consider the Employee Table.
 We can store the records in a file organized as an index on employee age;
* which itis an alternative to sorting the file by age (i.e Sorted file).

* Additionally, we can create an auxiliary index file based on salary, to
speed up queries involving salary.

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Example: creating different indexes

<age, sal> m

19,100
20,10
20,20
24,80
25,75

10,20
20,20
75,25
80,24

100,19
Dr. Ahmad Abusnaina

4
1
5
2
3

Employee Table
Ahmad 20 10
Assad 24 80
Murad 25 75
Moh’d 19 100
Qusai 20 20

Storage and Indexing

19
20
20
24
25

w N U B

10
20
75
80
100

A N W U1 B

o7 4* tarone
255 N aiye =S
BIRZEIT UNIVERSITY

Database Systems | COMP333

&
Search Key: Any Subset of Columns?

<age, sal> m

* Search key needn’t be a key of the relation 200 1
— Recall: key of a relation must be unique (e.g., SSN) 32,300 /
— Search keys don’t have to be unique 55,140 3
 Composite Keys: more than one column 55,400 4

— Think: Phone Book <Last Name, First>

— Lexicographic order
Salary

* Age =31 & Salary =400 Ahmad $400
e Age =55 & Salary > 200 443 Assad 32 S300
X * Age>31&salary =400 244 Moh'd 55 $140
v+ Age=31 134 Qusai 55 $400
* Age>31

X e Salary =300
Means that the index is unable to
exclude all entries that are not in the
result set.

557 i allyes) e yedl

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Data Entries: How are they stored?

 What is the representation of data in the index?
— Actual data or pointer(s) to the data

e How is the data stored in the data file?

— Clustered or unclustered with respect to the index

* Big Impact on Performance

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

What to store as a data entry in an index?

e Three main alternatives:
1. By Value:

A data entry k* is an actual data record (with search key value k).
2. By Reference: <k, rid of matching data record>

A data entry k* is a (k, rid) pair, where rid is the record id of a data
record with search key value k.
3. By List of References: <Kk, list of rids of all matching data records>

A data entry k* is a (k. rid-list) pair, where rid-list is a list of record ids of
data records with search key value k.

* Can have multiple (different) indexes per file, for e.g.,
— file stored by age
— a hash index on salary and
— B+ tree index on name.

ot % o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Alternatives for Storing Data Entries

Alternative 1: By Value — Actual data record (with key value k)

* Index as a file organization for records
— Similar to heap files or sorted files
* No “pointer lookups” to get data records

— Following record ids

* Could a single relation have multiple indexes of this form?

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Alternatives for Storing Data Entries

Alternative 2: By Reference, <k, rid of matching data record> and

Alternative 3: By List of references, <k, list of rids of matching data records>

By Reference

Name By List of references
Gonzalez

———— Gonzalez Amanda 400
Gonzalez 2 » L4
— 443 Gonzalez Joey $300 Gonzalez {1, 2, 3}
Gonzalez 3
_— 244 Gonzalez Jose $140 Hong 4
Hong 4 /
— 134 Hong Sue $400

e Alternatives 2 or 3 needed to support multiple indexes per table!
e Alternative 3 more compact than alternative 2

* Forvery large rid lists, single data entry spans multiple blocks.
con ik

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Clustered vs. Unclustered Index

* |n a clustered index:

— index data entries are stored in (approximate) order by value of search
keys in data records

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Clustered vs. Unclustered Index

* |n a clustered index:

— index data entries are stored in (approximate) order by value of search
keys in data records

Clustered Unclustered
Record Id Last Salary Key Record Id
Name
Gonzalez — Gonzalez Amanda $400 Gonzalez 3
Gonzalez 2 -_— 443 Gonzalez Joey $300 Gonzalez 1
Gonzalez 3 —_— 244 Gonzalez Jose $140 Hong 4
Hong 4 —_— 134 Hong Sue $400 Gonzalez 2
i BB

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Clustered vs. Unclustered Index

* |n a clustered index:

— index data entries are stored in (approximate) order by value of search
keys in data records

— A file can be clustered on at most one search key

e Cost of retrieving data records through index varies greatly based on
whether index is clustered or not!

* Note: there is another definition of “clustering”
— Data Mining/Al: grouping similar items in n-space

ot % o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Clustered vs. Unclustered Index

Alternative 2: Use references to data entries, data records in a Heap File
* To build a clustered index, first sort the heap file

— Leave some free space on each block for future inserts
* Overflow blocks may be needed for inserts

— Thus, order of data records is “close to”, but not identical to, the sort
order

Clustered _
Index Entries
direct search for
data entries

N

Unclustered

=g

5 D
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Clustered vs. Unclustered Index

Alternative 2: Use references to data entries, data records in a Heap File
* To build a clustered index, first sort the heap file

— Leave some free space on each block for future inserts
* Overflow blocks may be needed for inserts

— Thus, order of data records is “close to”, but not identical to, the sort
order

Clustered Unclustered

Index Entries
direct search for
data entries

N\

<—>- Data Entrié

Index File

)] "BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

/4ty N\
HEENENENRBR

2=

Clustered vs. Unclustered Index

Alternative 2: Use references to data entries, data records in a Heap File
* To build a clustered index, first sort the heap file
— Leave some free space on each block for future inserts

* Overflow blocks may be needed for inserts

— Thus, order of data records is “close to”, but not identical to, the sort
order

Unclustered

N\

Clustered _
Index Entries

direct search for
data entries

N\

<—>- Data Entrié

Index File

- - .
f\>
2=

.‘BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

—
%

Clustered vs. Unclustered Indexes

* Clustered Index Pros
— Efficient for range searches

— Potentially locality benefits? S
* Sequential disk access, prefetching, etc. algorithms.

Graduation project or
Master

— Support certain types of compression

* Clustered Cons
— More expensive to maintain
* Need to update index data structure
— File usually only packed to 2/3 to accommodate inserts
— Need more storage space

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

Scan all records B*D B*D
Equality Search 0.5*B*D (log,B) * D
Range Search B*D ((log,B)+pages)*D
Insert 2*D ((log,B)+B)*D
Delete (0.5*B+1)*D ((log,B)+B)*D

Can we do better with indexes?

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block et B o
e

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records

Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block cogn M

BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Clustered vs. Unclustered Index

Assumptions:
* Store data by reference (Alternative 2)

e Clustered index with 2/3 full heap file pages
— Clustered = Heap file is initially sorted
— Fan-out (F): relatively large. Why?
* Page of <key, pointer> pairs ~ O(R)
— Assume static index

Brecisd
ERSITY

BIRZEIT UNIV/|
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records

Equality Search 0.5*B*D (log,B)*D
Range Search B*D ((log,B)+pages))*D
Insert 2*D ((log,B) + B)*D
Delete (0.5*B+1)*D ((log,B) + B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block cogn M

BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Scan all the Records

Assumptions:

* Store data by reference (Alternative 2)

* Clustered index with [2/3 full heap file pages
* Occupancy = 66.6%

— Clustered 2 -is initially sorted

Cost? =15*B*D Why?
=(3/2) *B*D

File size = 1.5 data size

Do we need

the index? M

s
ERSITY

BIRZEIT UNIV/|
Storage and Indexing Database Systems | COMP333

Dr. Ahmad Abusnaina

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block cogn M

BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D

Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block cogn M

BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find the record with key 3

Search the index: =log:(1.5*B) *D
* Each page load narrows search by factor of F

* Lookup record in heap file by record-id =D

b
ERSITY

BIRZEIT UNIV/|
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D ((log:1.5*B))*D
Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B) + B)*D

Delete (0.5*B+1)*D ((log,B) + B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block cogn M

BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D ((log:1.5*B))*D
Range Search B*D ((log,B)+pages))*D

Insert 2*D ((log,B)+B)*D

Delete (0.5*B+1)*D ((log,B)+B)*D

e B: The number of data blocks
* R: Number of records per block

* D: Average time to read/write disk block cogn M

BIRZEIT UNIVERSITY
Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Find keys between 3 and 7

Search the index: =log:(1.5*B) *D
* Each page load narrows search by factor of F
* Lookup record in heap file by record-id =D

* Scan the data pages until the end of range
= (#matching pages) * D

Cost?

I -
13
HEY PSRy
'%\‘/‘
2=

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D ((log:1.5*B))*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D

Delete (0.5*B+ 1)*D ((log,B)+B)*D

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cogn M
Dr. Ahmad Abusnaina Storage and Indexing Database Systlz;i?l ngﬁ\?}gg’é’é’

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D (log1.5*B)*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D

Delete (0.5*B+1)*D ((log,B)+B)*D

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cogn M
Dr. Ahmad Abusnaina Storage and Indexing Database Systlz;i?l ngﬁ\?}gg’é’é’

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D (log1.5*B)*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D ((log;1.5*B)+2)*D
Delete (0.5*B+1)*D ((log,B)+B)*D

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cogn M
Dr. Ahmad Abusnaina Storage and Indexing Database Systlz;i?l ngﬁ\?}gg’é’é’

Cost of Operations

_ Heap File Sorted File Clustered Index

Scan all records 1.5*B*D
Equality Search 0.5*B*D (log,B)*D (log1.5*B)*D
Range Search B*D ((log,B)+pages))*D ((log;1.5*B)+pages)*D
Insert 2*D ((log,B)+B)*D ((log;1.5*B)+2)*D
Delete (0.5*B+1) *D ((log,B)+B)*D ((log;1.5*B)+2)*D

e B: The number of data blocks

* R: Number of records per block

* D: Average time to read/write disk block cogn M
Dr. Ahmad Abusnaina Storage and Indexing Database Systlz;i?l ngﬁ\?}gg’é’é’

Tree-Based Indexing

e Usually B+ tree is used.
* Each node points to one block

— Make leaves into a linked list (range queries are easier)

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

B+ Trees Basics

 Parameter d = the degree

* Each node has >=d and <= 2d keys (except root)

30

/

Keys k <30

Keys 30<=k<120

i

120

240

\\

Keys 120<=k<240

e Each leaf has >=d and <= 2d keys:

Dr. Ahmad Abusnaina

40

40

50

50

Storage and Indexing

60

60

Keys 240<=k

Next leaf

ot % o
En TS
BIRZEIT UNIVERSITY

Database Systems | COMP333

B+ Tree Example

- Find the key 40

80
20 60 100 120 140
\ ~ ~
20<40<60
10 | 15 | 18 20 | 30 1 40 | 50 60 | 65 80 | 85 | 90
o] AR 1\ 1T
e e

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Searching a B+ Tree

* Exact key values:
— Start at the root
— Proceed down, to the leaf

* Range queries:
— Asabove
— Then sequential traversal

Dr. Ahmad Abusnaina

Storage and Indexing

Select
From
Where

Select
From
Where

ot % o
En TS
BIRZEIT UNIVERSITY

Database Systems | COMP333

B+ Trees in Practice

The average number of children
for a non-leaf node is called the
fan-out of the tree.

e Typical order: d= 100.

e Typical fill-factor: 67%.
— average fanout = 133

e Typical capacities:
— Height 4: 1334 =312,900,700 records
— Height 3: 1333 = 2,352,637 records

 B-Trees — dynamic, good for changing data, range
queries

How many I/O needed to
search for a record within
312 million records?

ot ** o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Hash-Based Indexes

« Good for equality selections.

* Index is a collection of buckets.
« Bucket = primary page plus zero or more overflow pages.
» Buckets contain data entries.

« Hashing function h: h(r) = bucket in which (data entry for) record r
belongs.

h looks at the search key fields of r.

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Static Hashing

* Hprimary pages fixed, allocated sequentially, never de-allocated;
 overflow pages if needed.
* h(k)=k mod N = bucket to which data entry with key k belongs. (N = # of buckets)

-~ h(k) =(a * k+ b) usually works well.
— aand b are constants

h(key) mod N

key i . o=
—(® -

N-1 | 5, ...

Primary bucket pages Overflow pages
5 o3 el

BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Summary

* Many file organizations, with tradeoffs
— Heap Files, Sorted Files, Clustered Files and Indexes
— Benefits depend on the common operations
— Compute expected costs

* Indexes: fast lookup of data entries by search key
— Lookup: equivalence, range, region ...
— Search key: arbitrary columns

e Data Entries:

— 3 alternatives: By Value, By Reference, By List of
References

ot % o
255 N aiye =S
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Summary

e Often multiple indexes per file of data records
— Each with a different search key

* |ndexes can be classified as clustered vs unclustered

— Important consequences for utility/performance

ot % o
En TS
BIRZEIT UNIVERSITY

Dr. Ahmad Abusnaina Storage and Indexing Database Systems | COMP333

Summary

Cost of Operations

[=4
%

(a) Scan (b) Equality |[(c) Range (d) Insert [(e) Delete
(1) Heap |BD 0.5BD BD 2D Search
+D

(2) Sorted |BD Dlog 2B D(log2B) |[Search |Search
+D. # pgs w. |+ BD +BD
match recs

(3) 1.5BD Dlog r 1.5B |D(log F 1.5B) |Search [Search

Clustered +D. # pgs w. |+ D +D
match recs

(4) Unclust. [BD(R+0.15) |D(1 + D(log F 0.15B |Search |Search

necindes log F0.15B) [+ # match [+2D |+2D
recs)

(5) Unclust. [BD(R+0.125) (2D BD Search |Search

Hash index + 2D + 2D

Dr. Ahmad Abusnaina

Storage and Indexing

BIRZEIT UNIVERSITY

Database Systems | COMP333

