
Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Storage and
Indexing

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Motivation

• DBMS stores vast quantities of data

• Data is stored on external storage devices and fetched into main
memory as needed for processing

• Page is unit of information read from or written to disk. (in DBMS, a
page may have size 8KB or more).

• Data on external storage devices :

– Disks: Can retrieve random page at fixed cost (I/O operations).

 But reading several consecutive pages is much cheaper (i.e.
faster) than reading them in random order

– Tapes: Can only read pages in sequence.

 Cheaper than disks; used for archival storage.

• Cost of page I/O dominates cost of typical database operations

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Data on External Storage

• File organization:
– Method of arranging a file of records on external storage.
– Record id (rid) is sufficient to physically locate record

– Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields

• Architecture: Buffer manager stages pages from external
storage to main memory buffer pool.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

introduction

 DBMS abstracts data as a collection of
records stored in a file.

A file is a set of pages, each contain certain
set of records.

The files layer is responsible or data
organization for fast data retrieval.

File organization: a way of organizing
records in a file.

Each file organization makes certain
operations efficient, but other operations
expensive

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Data on External Storage

 Hard disks are the primary storage devices for DBMS

The taps are used for archiving.
The unit of information read from or written from

disk is a page.

A page is typically 4KB or 8KB

The cost of page I/O is the most expensive
operation.

Disks have fixed cost per page.
 Each record in a file has a unique identifier called

rid.

Using the rid, we can identify the page address

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Data on External Storage

The buffer manager is responsible for
loading a page into memory.

When the files layer wants to access a
certain page, it asks the buffer manager to
load it into memory (if it is not already
there)

 Space on disk is managed by disk space

manager.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Data on External Storage

• File organization:
– Method of arranging a file of records on external storage.
– Record id (rid) is sufficient to physically locate record

– Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields

• Architecture: Buffer manager stages pages from external
storage to main memory buffer pool.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

8

Multiple File Organizations

• Heap Files:

– is the simplest file organization: records are stored randomly
across the pages.

– Suitable when typical access is a full scan of all records

– Unordered collection of records

– Add/Remove records: Easy (Cost?)

• Sorted Files:

– Best for retrieval in search key order, or a range of records is needed

– Arrange and store collection of records in sorted manner.

– Add/Remove records: Easy or not (Cost?)

• Clustered Files & Indexes: Group data into block to enable fast
lookup and efficient modifications. (More on this soon …)
An index is a data structure that allows fast retrieval of data
records.
We can create several indexes for same data file, each with
different search key.

Many alternatives exist, each good in some situations and not so good in others

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

9

Bigger Questions

• What is the “best” file organization?

– Depends on access patterns …

– How? What are they?

• Can we be quantitative about tradeoffs?

– Better  How much?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

10

Goals for Today

• Big picture overheads for data access
• Then estimate cost in a principled way

• Foundation for query optimization

– Can’t choose the fastest scheme without an estimate of speed!

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Cost

Model &

Analysis

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

12

Cost Model for Analysis

• B: The number of data blocks

• R: Number of records per block

• D: (Average) time to read/write disk block

• Average case analysis for uniform random workloads

• We will ignore

– Sequential vs Random I/O

– Pre-fetching

– Any in-memory costs

Good enough to show the overall trends!

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

13

More Assumptions

• Single record insert and delete

• Equality selection – exactly one match

• For Heap Files:

– Insert always appends to end of file.

• For Sorted Files:

– Files compacted after deletions.

– Sorted according to search key

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

14

Heap Files & Sorted Files

2, 5 1, 6 4, 7 3, 10 8, 9

1, 2 3, 4 5, 6 7, 8 9, 10

Records are just integers

Heap File

Sorted File

• B: The number of data blocks = 5

• R: Number of records per block = 2

• D: (Average) time to read/write disk block = 5ms

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

15

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records

Equality Search

Range Search

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

16

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records

Equality Search

Range Search

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

17

Scan All Records

1, 2 3, 4 5, 6 7, 8 9, 10

Heap File

Sorted File

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

2, 5 1, 6 4, 7 3, 10 8, 9

Pages touched: ?

Time to read the record: ?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

18

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search

Range Search

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

19

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search

Range Search

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

20

Find Key 8

Heap File

• P(i): Probability of key on page i is 1/B

• T(i): Number of pages touched if key on page i is i

• Therefore the expected number of pages touched

2, 5 1, 6 4, 7 3, 10 8, 9

Pages touched on average?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

21

Find Key 8

Heap File

• Breaking an assumption

– What if there was more than one key?

– Need to check all the pages  B

2, 5 1, 6 4, 7 3, 10 8, 9

Pages touched on average: B/2

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

22

Find Key 8

Sorted File

• Worst-case: Pages touched in binary search

– log2B

• Average-case: Pages touched in binary search

– log2B?

1, 2 3, 4 5, 6 7, 8 9, 10

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

23

Average Case Binary Search

Expected Number of Reads: 1 (1 / B) + 2 (2 / B) + 3 (4 / B) + 4 (8 / B)

1 IO

2 IOs

3 IOs

4 IOs

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

24

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

25

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

26

Find Keys Between 7 and 9

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9

Always touch all blocks. Why?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

27

Find Keys Between 7 and 9

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9

Always touch all blocks. Why?

Sorted File

1, 2 3, 4 5, 6 7, 8 9, 10

• Find beginning of range

• Scan right

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

28

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*D

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

29

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*D

Insert

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

30

Insert 4.5

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Stick at the end of the file. Cost? = 2*D Why 2?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

31

Insert 4.5

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Read last page, append, write. Cost = 2*D

Sorted File

1, 2 3, 4 5, 6 7, 8 9, 10

• Find location for record: log2B

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

32

Insert 4.5

Heap File

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Sorted File

• Find location for record: log2B

• Insert and shift rest of file

1, 2 3, 4 5, 6 7, 8 9, 10 4.5,5 6, 7 8, 9 10, _

Cost? 2*B/2 Why?

Read last page, append, write. Cost = 2*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

33

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

34

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

35

Delete 4.5

Heap File

Average case to find the record: B/2 reads

Cost? Why +1?

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Delete record from page

= (B/2+1)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

36

Delete 4.5

Heap File

Average case runtime: (B/2+1) * D

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Sorted File

1, 2 3, 4 5, 6 7, 8 9, 10 4.5,5 6, 7 8, 9 10, __,5

• Find location for record: log2B

• Delete record in page  Gap

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

37

Delete 4.5

Heap File

Average case runtime: (B/2+1) * D

2, 5 1, 6 4, 7 3, 10 8, 9 4.5,

Sorted File

• Find location for record: log2B

• Shift rest of file left by 1 record: 2 * (B/2)

1, 2 3, 4 5, 6 7, 8 9, 10 5 6 7 8 9 10 , , , , __

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

38

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

Which is better?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

39

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

Issues:
• Find
• Range
• Modification

Can we do
better?

Indexes

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Indexes

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

41

Indexes Overview

• Lookup (retrieval): may support many different operations

– Equivalence (i.e. =), range (i.e. >, < , >=), …

• Data Entries: records stored in the index file, (k, {items})

– A data entry with search key value k, denoted as k*.

– Could be actual records or record-ids (pointers).

– We can efficiently search an index to find the desired data entries, and
then use these to obtain data records.

• Search Key: any subset of columns (i.e. fields) in the relation.

 Indexing organizes data records on disk to optimize certain kinds of retrieval operations.

 An index is a data structure that enables fast lookup of data entries by search key.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

42

Search Key: Any Subset of Columns?

• Search key does not require to be a key of the relation

– Recall: key of a relation must be unique (e.g., SSN)

– Search keys don’t have to be unique

• Additional indexes can be created on a given collection of data
records, each with a different search key,

• Why indexing used?

• to speed up search operations that are not efficiently
supported by the file organization used to store the data
records on disk.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Example

• Consider the Employee Table.

• We can store the records in a file organized as an index on employee age;

• which it is an alternative to sorting the file by age (i.e Sorted file).

• Additionally, we can create an auxiliary index file based on salary, to
speed up queries involving salary.

•

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Example: creating different indexes

Name age sal

Ahmad 20 10

Assad 24 80

Murad 25 75

Moh’d 19 100

Qusai 20 20

<age, sal> rid

19,100 4

20,10 1

20,20 5

24,80 2

25,75 3

<sal,age> rid

10,20 1

20,20 5

75,25 3

80,24 2

100,19 4

<sal> rid

10 1

20 5

75 3

80 2

100 4

<age> rid

19 4

20 1

20 5

24 2

25 3

Employee Table

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

45

Search Key: Any Subset of Columns?

• Search key needn’t be a key of the relation

– Recall: key of a relation must be unique (e.g., SSN)

– Search keys don’t have to be unique

• Composite Keys: more than one column

– Think: Phone Book <Last Name, First>

– Lexicographic order

– <Age, Salary>:

• Age = 31 & Salary = 400

• Age = 55 & Salary > 200

• Age > 31 & Salary = 400

• Age = 31

• Age > 31

• Salary = 300

SSN Name Age Salary

123 Ahmad 31 $400

443 Assad 32 $300

244 Moh’d 55 $140

134 Qusai 55 $400

✗

✓
✓

✓

✗
✓

Means that the index is unable to
exclude all entries that are not in the
result set.

✗

<age, sal> rid

31,400 1

32,300 2

55,140 3

55,400 4

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

46

Data Entries: How are they stored?

• What is the representation of data in the index?

– Actual data or pointer(s) to the data

• How is the data stored in the data file?

– Clustered or unclustered with respect to the index

• Big Impact on Performance

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

47

What to store as a data entry in an index?

• Three main alternatives:

1. By Value:

 A data entry k* is an actual data record (with search key value k).
2. By Reference: <k, rid of matching data record>

 A data entry k* is a (k, rid) pair, where rid is the record id of a data

 record with search key value k.
3. By List of References: <k, list of rids of all matching data records>

 A data entry k* is a (k. rid-list) pair, where rid-list is a list of record ids of
 data records with search key value k.

• Can have multiple (different) indexes per file, for e.g.,

– file stored by age

– a hash index on salary and

– B+ tree index on name.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

48

Alternatives for Storing Data Entries

• Index as a file organization for records

– Similar to heap files or sorted files

• No “pointer lookups” to get data records

– Following record ids

• Could a single relation have multiple indexes of this form?

Alternative 1: By Value – Actual data record (with key value k)

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

49

Alternatives for Storing Data Entries

• Alternatives 2 or 3 needed to support multiple indexes per table!

• Alternative 3 more compact than alternative 2

• For very large rid lists, single data entry spans multiple blocks.

Alternative 2: By Reference, <k, rid of matching data record> and

Alternative 3: By List of references, <k, list of rids of matching data records>

Key Record Id

Gonzalez 1

Gonzalez 2

Gonzalez 3

Hong 4

Key Record Id

Gonzalez {1, 2, 3}

Hong 4

By Reference

By List of references
SSN Last

Name
First

Name
Salary

123 Gonzalez Amanda $400

443 Gonzalez Joey $300

244 Gonzalez Jose $140

134 Hong Sue $400

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

50

Clustered vs. Unclustered Index

• In a clustered index:

– index data entries are stored in (approximate) order by value of search
keys in data records

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

51

Clustered vs. Unclustered Index

• In a clustered index:

– index data entries are stored in (approximate) order by value of search
keys in data records

SSN Last
Name

First
Name

Salary

123 Gonzalez Amanda $400

443 Gonzalez Joey $300

244 Gonzalez Jose $140

134 Hong Sue $400

Key Record Id

Gonzalez 1

Gonzalez 2

Gonzalez 3

Hong 4

Clustered Unclustered

Key Record Id

Gonzalez 3

Gonzalez 1

Hong 4

Gonzalez 2

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

52

Clustered vs. Unclustered Index

• In a clustered index:

– index data entries are stored in (approximate) order by value of search
keys in data records

– A file can be clustered on at most one search key

• Cost of retrieving data records through index varies greatly based on
whether index is clustered or not!

• Note: there is another definition of “clustering”

– Data Mining/AI: grouping similar items in n-space

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

53

Clustered vs. Unclustered Index

• To build a clustered index, first sort the heap file

– Leave some free space on each block for future inserts

• Overflow blocks may be needed for inserts

– Thus, order of data records is “close to”, but not identical to, the sort
order

Alternative 2: Use references to data entries, data records in a Heap File

Index Index

Clustered Unclustered

Data Entries

Index File
Data File

Index Entries
direct search for

data entries

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

54

Clustered vs. Unclustered Index

• To build a clustered index, first sort the heap file

– Leave some free space on each block for future inserts

• Overflow blocks may be needed for inserts

– Thus, order of data records is “close to”, but not identical to, the sort
order

Alternative 2: Use references to data entries, data records in a Heap File

Index Index

Clustered Unclustered

Data Entries

Index File
Data File

Index Entries
direct search for

data entries

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

55

Clustered vs. Unclustered Index

• To build a clustered index, first sort the heap file

– Leave some free space on each block for future inserts

• Overflow blocks may be needed for inserts

– Thus, order of data records is “close to”, but not identical to, the sort
order

Alternative 2: Use references to data entries, data records in a Heap File

Index Index

Clustered Unclustered

Data Entries

Index File
Data File

Index Entries
direct search for

data entries

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

56

Clustered vs. Unclustered Indexes

• Clustered Index Pros

– Efficient for range searches

– Potentially locality benefits?

• Sequential disk access, prefetching, etc.

– Support certain types of compression

• Clustered Cons

– More expensive to maintain

• Need to update index data structure

– File usually only packed to 2/3 to accommodate inserts

– Need more storage space

Enhance compression
algorithms.

Graduation project or
Master

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

57

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B) * D

Range Search B*D ((log2B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

Can we do better with indexes?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

58

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

59

Clustered vs. Unclustered Index

Index

• Store data by reference (Alternative 2)

• Clustered index with 2/3 full heap file pages

– Clustered  Heap file is initially sorted

– Fan-out (F): relatively large. Why?

• Page of <key, pointer> pairs ~ O(R)

– Assume static index

Assumptions:

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

60

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

61

Scan all the Records

Index

• Store data by reference (Alternative 2)

• Clustered index with 2/3 full heap file pages

• Occupancy = 66.6%

– Clustered  Heap file is initially sorted

Assumptions:

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Do we need
the index?

No
Cost? = 1.5 * B * D Why?

= (3/2) * B * D

File size = 1.5 data size

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

62

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

63

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

64

Find the record with key 3

Index

• Each page load narrows search by factor of F

• Lookup record in heap file by record-id

Search the index:

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Cost?

= logF (1.5 * B) * D

= D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

65

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D ((logF1.5*B))*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B) + B)*D

Delete (0.5*B+1)*D ((log2B) + B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

66

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D ((logF1.5*B))*D

Range Search B*D ((log2B)+pages))*D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

67

Find keys between 3 and 7

Index

• Each page load narrows search by factor of F

• Lookup record in heap file by record-id

• Scan the data pages until the end of range

Search the index:

1, 2, _ 3, 4, _ 5, 6, _ 7, 8, _ 9, 10, _

Cost?

= logF (1.5 * B) * D

= D

= (#matching pages) * D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

68

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D ((logF1.5*B))*D

Range Search B*D ((log2B)+pages))*D ((logF1.5*B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B + 1)*D ((log2B)+B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

69

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D (logF1.5*B)*D

Range Search B*D ((log2B)+pages))*D ((logF1.5*B)+pages)*D

Insert 2*D ((log2B)+B)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

70

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D (logF1.5*B)*D

Range Search B*D ((log2B)+pages))*D ((logF1.5*B)+pages)*D

Insert 2*D ((log2B)+B)*D ((logF1.5*B)+2)*D

Delete (0.5*B+1)*D ((log2B)+B)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

71

Cost of Operations

• B: The number of data blocks

• R: Number of records per block

• D: Average time to read/write disk block

Heap File Sorted File Clustered Index

Scan all records B*D B*D 1.5*B*D

Equality Search 0.5*B*D (log2B)*D (logF1.5*B)*D

Range Search B*D ((log2B)+pages))*D ((logF1.5*B)+pages)*D

Insert 2*D ((log2B)+B)*D ((logF1.5*B)+2)*D

Delete (0.5*B+1) * D ((log2B)+B)*D ((logF1.5*B)+2)*D

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Tree-Based Indexing

• Usually B+ tree is used.

• Each node points to one block

– Make leaves into a linked list (range queries are easier)

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

B+ Trees Basics

• Parameter d = the degree

• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2
Find the key 40

40  80

20 < 40  60

30 < 40  40

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Searching a B+ Tree

• Exact key values:

– Start at the root

– Proceed down, to the leaf

• Range queries:

– As above

– Then sequential traversal

Select name

From people

Where age = 25

Select name

From people

Where 20 <= age

 and age <= 30

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

B+ Trees in Practice

• Typical order: d= 100.

• Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records

– Height 3: 1333 = 2,352,637 records

• B-Trees – dynamic, good for changing data, range
queries

The average number of children
for a non-leaf node is called the
fan-out of the tree.

How many I/O needed to
search for a record within

312 million records?

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Hash-Based Indexes

• Good for equality selections.

• Index is a collection of buckets.

• Bucket = primary page plus zero or more overflow pages.

• Buckets contain data entries.

• Hashing function h: h(r) = bucket in which (data entry for) record r
belongs.

• h looks at the search key fields of r.

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Static Hashing

• # primary pages fixed, allocated sequentially, never de-allocated;

• overflow pages if needed.

• h(k)= k mod N = bucket to which data entry with key k belongs. (N = # of buckets)
– h(k) = (a * k + b) usually works well.

– a and b are constants

h(key) mod N

h
key

Primary bucket pages Overflow pages

2

0

N-1

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

79

Summary

 • Many file organizations, with tradeoffs

– Heap Files, Sorted Files, Clustered Files and Indexes

– Benefits depend on the common operations

– Compute expected costs

• Indexes: fast lookup of data entries by search key

– Lookup: equivalence, range, region …

– Search key: arbitrary columns

• Data Entries:

– 3 alternatives: By Value, By Reference, By List of
References

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

80

Summary

 • Often multiple indexes per file of data records

– Each with a different search key

• Indexes can be classified as clustered vs unclustered

– Important consequences for utility/performance

Dr. Ahmad Abusnaina Storage and Indexing Database Systems|COMP333

Summary

