
TRANSACTIONS MANAGEMENT

Dr. Ahmad Abusnaina

Birzeit University

Department of Computer Sciences

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

TRANSACTION

 A transaction can be defined as a group of tasks.

A single task is the minimum processing work

which cannot be divided further.

 Let’s take an example of a simple transaction.

Suppose a bank employee transfers JOD 500

from A's account to B's account.

 This very simple and small transaction involves

several low-level tasks.

2

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

TRANSACTION

 A’s Account

Open_Account(A)

Old_Balance = A.balance

New_Balance = Old_Balance - 500

A.balance = New_Balance

Close_Account(A)

 B’s Account

Open_Account(B)

Old_Balance = B.balance

New_Balance = Old_Balance + 500

B.balance = New_Balance

Close_Account(B)

3

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

TRANSACTION

 A transaction is the DBMS’s abstract view of a

user program (or activity):

- A sequence of reads and writes of database objects.

- Unit of work that must commit or abort as an atomic

unit.

• A user’s program may carry out many operations on the

data retrieved from the database, but the DBMS is only

concerned about what data is read/written from/to the

database.

• Transaction Manager controls the execution of

transactions.
4

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

ACID PROPERTIES

 A transaction is a very small unit of a program

and it may contain several low-level tasks.

 A transaction in a database system must

maintain four properties:
 Atomicity,

 Consistency,

 Isolation,

 Durability

 Commonly known as ACID properties.

5

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

ATOMIC

 The execution of each transaction has to be atomic

 Either all actions are carried out (happen) or none

happen.

 There must be no state in a database where a

transaction is left partially completed.

 The user should not worry about the effect of

incomplete transactions.

6

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

CONSISTENCY

 The database must remain in a consistent state

after any transaction.

 No transaction should have any adverse effect on

the data residing in the database.

 If the database was in a consistent state before

the execution of a transaction, it must remain

consistent after the execution of the transaction

as well.

7

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

ISOLATION

 In a database system where more than one

transaction are being executed simultaneously and in

parallel,

 Every transaction is an independent entity. One

transaction should not affect any other transaction

running at the same time.

 all the transactions will be carried out and executed as

if it is the only transaction in the system.

8

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

DURABILITY

 Once the DBMS informs the user that the

transaction has been successfully completed:

 Its effects should be permanent even if the system

crashes before changes are reflected to disk.

 If a transaction commits but the system fails

before the data could be written on to the disk,

then that data will be updated once the system

springs back into action.

9

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

 A transaction ends in one of three cases:

 Commit after completing all actions

 Abort after executing some actions

 System crash while the transaction is in progress.

10

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

 DBMS ensures the above states by logging all

actions:

 Undo the actions of aborted/failed transactions

 Redo actions of committed transactions not yet

propagated to disk when system crashes.

11

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

 The DBMS must find a way to clean up partial

transactions

 The DBMS uses Log

 Keeping in it all the changes made to the database

 It is also used for durability

12

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

STATES OF TRANSACTION

13

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

TRANSACTIONS AND SCHEDULES

 A transaction is seen by DBMS as a series of

actions…..read and write

 R(O) : transaction reading an object from DB

 W(O) : transaction writing an object to DB

 Abort : action of a transaction aborting

 Commit : action of transaction committing

14

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

 A schedule: is a list of actions of reading, writing,

aborting or committing from a set of transactions with

the same order as when the transactions are in the

origin transaction

 Vertical axis's is the time

15

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

 A complete schedule include all actions of all

transactions appearing in it

 Serial schedule no interleaving (no concurrent

execution) of actions from different transactions.

 Refer to figure 16.1

16

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

CONCURRENT EXECUTION OF

TRANSACTIONS

 Concurrent Execution: The DBMS interleaves the

actions of different transactions to improve the

performance

 But not all interleaves should be allowed, why?

17

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

MOTIVATION FOR CONCURRENT

EXECUTION

 First: while one transaction is waiting for page
reading from disk, the CPU can process another
transaction . Fast

 Second: interleaved execution of a short transaction
with a long transaction usually allows the short
transaction to complete quickly.

 In serial execution, the short transaction will have to wait.
Short could stuck behind long transaction.

 Concurrent Execution

 increase System throughput: number of transactions
completed in a given amount of time.

 decrease Response Time: average time taken to complete
a transaction. 18

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

SERIALIZABILITY AND SCHEDULES

 Given a set of transactions, a schedule is a sequence of

interleaved actions from all transactions

 Example: Given the following transactions, how to

schedule them?

 T1: Read(A), Write(A), Read(B), Write(B)

 T2: Read(A), Write(A), Read(B), Write(B)

19

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

SERIAL SCHEDULE

 A possible serial schedule is:

 T1: T2:

 R(A)

 W(A)

 R(B)

 W(B)

 R(A)

 W(A)

 R(B)

 W(B)
20

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

SERIALIZABILITY

 A schedule is serializable if it is equivalent to

complete serial schedule.

 A serializable schedule: over a set of a

committed transaction has the effect of the

database to be the same as some other complete

serial schedule.

 Informally, equivalent, means that all conflicting

operations are ordered in the same way

 conflicting those read and write operations to the

same element,

21

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

SERIALIZABILITY

 T1 T2

 R(A)

 W(A)

 R(A)

 W(A)

 R(B)

 W(B)

 R(B)

 W(B)

 T1 T2

 R(A)

 W(A)

 R(A)

 W(A)

 R(B)

 W(B)

 R(B)

 W(B)

Serializable Non-Serializable

22

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

ANOMALIES DUE TO INTERLEAVED

EXECUTION

 Two actions on the same data object may conflict if at

least one of them is a write

 WR (dirty read)

 RW (unrepeatable read)

 WW (overwriting uncommitted data)

Unrecoverable schedule

23

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

READING UNCOMMITTED DATA

WR CONFLICT

 A transaction T2 could read a

database object A that has been

modified by T1, but not yet

committed

 What happen if T1 fails/abort?

 We call it Dirty Read

24

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

UNREPEATABLE READS

RW CONFLICT

 T2 change the value of an object A that has been read by
T1 while T1 is still in progress

 If T1 tries to read A another time it will be different!

T1 T2

R(A)

R(A)

W(A)

Commit

R(A)

Commit

25

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

OVERWRITING UNCOMMITTED DATA

WW CONFLICT
 T2 could overwrites object A which has already been

modified by T1, while T1 is still in progress.

T1 T2

W(A)

W(A)

W(B)

Commit

W(B)

Commit

26

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

UNRECOVERABLE SCHEDULE

 In case of aborted transaction, the system make

rollback (undo), so the effect of T2 will be lost.

T1 T2

R(A)

W(A)

R(A)

W(A)

Commit

R(L)

Abort

27

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

TESTING SERIALIZABILITY

28

Which schedule is serial, non serial, serializable?

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

CONSTRUCTING THE PRECEDENCE GRAPHS FOR

SCHEDULES

29

Constructing the precedence graphs for schedules A to D from Figure 21.5
to test for conflict serializability.
(a) Precedence graph for serial schedule A.
(b) Precedence graph for serial schedule B.
(c) Precedence graph for schedule C (not serializable).
(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

30

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

31

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

LOCK-BASED CONCURRENCY CONTROL

 A locking protocol is a set of rules to be followed by

each transaction to ensure that, even though actions

of several transactions might be interleaved, the net

effect is identical to executing all transactions in

serial order.

 To avoid previous conflicts

32

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

STRICT TWO-PHASE LOCKING (STRICT

2PL) PROTOCOL

 Each transaction must obtain an

 S (shared) lock on object before reading,

 X (exclusive) lock on object before writing.

 Lock rules:

• If a Tx holds an X lock on an object, no other Tx

can acquire a lock (S or X) on that object;

• If a Tx holds an S lock, no other Tx can get an

X lock on that object.

33

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

CONCURRENT AFTER APPLYING STRICT 2PL

T1 T2

S(A)

R(A)

S(A)

R(A)

X(B)

W(B)

Commit

S(C)

R(C)

X(C)

W(C)

Commit

T1 T2
R(A)

R(A)
W(B)
Commit

R(C)
W(C)
Commit

34

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

SCHEDULING WITH 2PL
 T1 T2

 S(A)

 R(A)

 X(A)

 W(A)

 S(B)

 R(B)

 X(B)

 W(B)

 COMMIT

 S(A)

 R(A)

 X(A)

 W(A)

 S(B)

 R(B)

 X(B)

 W(B)

 Commit

35

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

SCHEDULING WITH 2PL (EXAMPLE2)

 T1 T2

 R(A)

 S(B) R(C)

 W(C)

 R(B)X(B)

 W(B)

 W(B)

 COMMIT

 COMMIT

 T1 T2

 S(A)

 R(A)

 S(C)

 R(C)

 X(C)

 W(C)

 S(B)

 R(B)

 X(B)

 W(B)

 COMMIT

 X(B)

 W(B)

 COMMIT 36

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

DEAD LOCK

 In a multi-process system, deadlock is an unwanted

situation that arises in a shared resource environment,

where a process indefinitely waits for a resource that is

held by another process.

 For example, assume a set of transactions {T0, T1, T2, ...,Tn}.

 T0 needs an object X to complete its task.

 object X is held by T1, and T1 is waiting for a object Y,

 Y is held by T2. T2 is waiting for object Z,

 Z is held by T0.

o Thus, all the processes wait for each other to release

resources.

 In this situation, none of the processes can finish their task.

 This situation is known as a deadlock.
37

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

DEAD LOCK

 Deadlocks are not healthy for a system.

 In case a system is stuck in a deadlock, the

transactions involved in the deadlock are either rolled

back or restarted.

 Deadlock Detection: many, one of them is timeout

mechanism.

 Deadlock Prevention: If DBMS finds that a deadlock

situation might occur, then that transaction is never

allowed to be executed.

38

Dr. Ahmad Abusnaina Transactions Management Database Systems|COMP333

DEAD LOCK

 T1 T2

 X(A)

 R(A)

 W(A)

 X(C)

 R(C)

 W(C)

 X(C)

 R(C)

 W(C)

 COMMIT

 X(A)

 W(A)

 COMMIT

39

