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What Is a DBMS?

� A very large, integrated collection of data.
� Models real-world enterprise.

� Entities (e.g., students, courses)
� Relationships (e.g., Madonna is taking CS564)

� A Database Management System (DBMS) is a 
software package designed to store and 
manage databases.
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Files vs. DBMS

� Application must stage large datasets 
between main memory and secondary 
storage (e.g., buffering, page-oriented access, 
32-bit addressing, etc.)

� Special code for different queries
� Must protect data from inconsistency due to 

multiple concurrent users
� Crash recovery
� Security and access control
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Why Use a DBMS?

� Data independence and efficient access.
� Reduced application development time.
� Data integrity and security.
� Uniform data administration.
� Concurrent access, recovery from crashes.
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Why Study Databases??

� Shift from computation to information
� at the “low end”: scramble to webspace (a mess!)
� at the “high end”: scientific applications

� Datasets increasing in diversity and volume.  
� Digital libraries, interactive video, Human 

Genome project, EOS project  
� ...  need for DBMS exploding

� DBMS encompasses most of CS
� OS, languages, theory, “A”I,  multimedia, logic

?
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Data Models
� A data model is a collection of concepts for 

describing data.
� A schema is a description of a particular 

collection of data, using the a given data 
model.

� The relational model of data is the most widely 
used model today.

� Main concept:  relation, basically a table with rows 
and columns.

� Every relation has a schema, which describes the 
columns, or fields.
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Levels of Abstraction
� Many views, single 

conceptual (logical) schema
and physical schema.

� Views describe how users 
see the data.                                        

� Conceptual schema defines 
logical structure

� Physical schema describes 
the files and indexes used.

* Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3
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Example: University Database

� Conceptual schema:                  
� Students(sid: string, name: string, login: string, 

age: integer, gpa:real)
� Courses(cid: string, cname:string, credits:integer) 
� Enrolled(sid:string, cid:string, grade:string)

� Physical schema:
� Relations stored as unordered files. 
� Index on first column of Students.

� External Schema (View): 
� Course_info(cid:string,enrollment:integer)
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Data Independence *

� Applications insulated from how data is 
structured and stored.

� Logical data independence:  Protection from 
changes in logical structure of data.

� Physical data independence:   Protection from 
changes in physical structure of data.

* One of the most important benefits of using a DBMS!
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Concurrency Control
� Concurrent execution of user programs             

is essential for good DBMS performance.
� Because disk accesses are frequent, and relatively 

slow, it is important to keep the cpu humming by 
working on several user programs concurrently.

� Interleaving actions of different user programs 
can lead to inconsistency: e.g., check is cleared 
while account balance is being computed.

� DBMS ensures such problems don’t arise:  users 
can pretend they are using a single-user system.
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Transaction: An Execution of a DB Program
� Key concept is transaction, which is an atomic

sequence of database actions (reads/writes).
� Each transaction, executed completely, must 

leave the DB in a consistent state if DB is 
consistent when the transaction begins.

� Users can specify some simple integrity constraints on 
the data, and the DBMS will enforce these constraints.

� Beyond this, the DBMS does not really understand the 
semantics of the data.  (e.g., it does not understand 
how the interest on a bank account is computed).

� Thus, ensuring that a transaction (run alone) preserves 
consistency is ultimately the user’s responsibility!
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Scheduling Concurrent Transactions
� DBMS ensures that execution of {T1, ... , Tn} is 

equivalent to some serial execution T1’ ... Tn’.
� Before reading/writing an object, a transaction requests 

a lock on the object, and waits till the DBMS gives it the 
lock.  All locks are released at the end of the transaction.  
(Strict 2PL locking protocol.)

� Idea: If an action of Ti (say, writing X) affects Tj (which 
perhaps reads X), one of them, say Ti, will obtain the 
lock on X first and Tj is forced to wait until Ti completes; 
this effectively orders the transactions.

� What if Tj already has a lock on Y and Ti later requests a 
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted! 
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Ensuring Atomicity

� DBMS ensures atomicity (all-or-nothing property) 
even if system crashes in the middle of a Xact.

� Idea: Keep a log (history) of all actions carried out 
by the DBMS while executing a set of Xacts:

� Before a change is made to the database, the 
corresponding log entry is forced to a safe location.  
(WAL protocol; OS support for this is often inadequate.)

� After a crash, the effects of partially executed 
transactions are undone using the log. (Thanks to WAL, if 
log entry wasn’t saved before the crash, corresponding 
change was not applied to database!)
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The Log
� The following actions are recorded in the log:

� Ti writes an object:  the old value and the new value.
• Log record must go to disk before the changed page!

� Ti commits/aborts:  a log record indicating this action.
� Log records chained together by Xact id, so it’s easy to 

undo a specific Xact (e.g., to resolve a deadlock).
� Log is often duplexed and archived on “stable” storage.
� All log related activities (and in fact, all CC related 

activities such as lock/unlock, dealing with deadlocks 
etc.) are handled transparently by the DBMS.
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Databases make these folks happy ...

� End users and DBMS vendors
� DB application programmers

� E.g. smart webmasters
� Database administrator (DBA)

� Designs logical /physical schemas
� Handles security and authorization
� Data availability, crash recovery 
� Database tuning as needs evolve

Must understand how a DBMS works!
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Structure of a DBMS

� A typical DBMS has a 
layered architecture.

� The figure does not 
show the concurrency 
control and recovery 
components.

� This is one of several 
possible architectures; 
each system has its own 
variations.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery
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Summary
� DBMS used to maintain, query large datasets.
� Benefits include recovery from system crashes, 

concurrent access, quick application 
development, data integrity and security.

� Levels of abstraction give data independence.
� A DBMS typically has a layered architecture.
� DBAs hold responsible jobs                                

and are well-paid!
� DBMS R&D is one of the broadest,                                

most exciting areas in CS.
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The Entity-Relationship Model

Chapter 2
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Overview of Database Design

� Conceptual design:  (ER Model is used at this stage.) 
� What are the entities and relationships in the 

enterprise?
� What information about these entities and 

relationships should we store in the database?
� What are the integrity constraints or business rules that 

hold? 
� A database `schema’ in the ER Model can be 

represented pictorially (ER diagrams).
� Can map an ER diagram into a relational schema.
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ER Model Basics

� Entity:  Real-world object distinguishable 
from other objects. An entity is described 
(in DB) using a set of attributes. 

� Entity Set:  A collection of similar entities.  
E.g., all employees.  

� All entities in an entity set have the same set of 
attributes.  (Until we consider ISA hierarchies, 
anyway!)

� Each entity set has a key.
� Each attribute has a domain.

Employees

ssn
name

lot
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ER Model Basics (Contd.)

� Relationship:  Association among two or more entities.  
E.g., Attishoo works in Pharmacy department.

� Relationship Set:  Collection of similar relationships.
� An n-ary relationship set  R relates n entity sets E1 ... En; 

each relationship in R involves entities e1    E1, ..., en     En
• Same entity set could participate in different 

relationship sets, or in different “roles” in same set.

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subor-
dinate

super-
visor

ssn
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Key Constraints

� Consider Works_In:  
An employee can 
work in many 
departments; a dept 
can have many 
employees.

� In contrast, each 
dept has at most 
one manager, 
according to the    
key constraint on 
Manages.

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments
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Participation Constraints
� Does every department have a manager?

� If so, this is a participation constraint:  the participation of 
Departments in Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a row of 
the Manages table (with a non-null ssn value!)

lot
name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In
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Weak Entities
� A weak entity can be identified uniquely only by considering 

the primary key of another (owner) entity.
� Owner entity set and weak entity set must participate in a one-to-

many relationship set (one owner, many weak entities).
� Weak entity set must have total participation in this identifying 

relationship set.  

lot

name

agepname

DependentsEmployees

ssn

Policy

cost
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ISA (`is a’) Hierarchies

Contract _Emps

name
ssn

Employees

lot

hour ly_wages
ISA

Hour ly_Emps

contractid

hours_workedvAs in C++, or other PLs, 
attributes are inherited.
vIf we declare A ISA B, every A 
entity is also considered to be a B 
entity. 

� Overlap constraints:  Can Joe be an Hourly_Emps as well as 
a Contract_Emps entity?  (Allowed/disallowed)

� Covering constraints:  Does every Employees entity also have 
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) 

� Reasons for using ISA: 
� To add descriptive attributes specific to a subclass.
� To identify entitities that participate in a relationship.
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Aggregation
� Used when we have 

to model a 
relationship 
involving (entitity 
sets and) a 
relationship set.

� Aggregation allows us 
to treat a relationship 
set as an entity set   
for purposes of 
participation in 
(other) relationships.

* Aggregation vs. ternary relationship:  
v Monitors is a distinct relationship, 
with a descriptive attribute.
v Also, can say that each sponsorship 
is monitored by at most one employee.

budgetdidpid

started_on

pbudget
dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since
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Conceptual Design Using the ER Model
� Design choices:

� Should a concept be modeled as an entity or an 
attribute?

� Should a concept be modeled as an entity or a 
relationship?

� Identifying relationships: Binary or ternary? 
Aggregation?

� Constraints in the ER Model:
� A lot of data semantics can (and should) be captured.
� But some constraints cannot be captured in ER 

diagrams.
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Entity vs. Attribute
� Should address be an attribute of Employees or an 

entity (connected to Employees by a relationship)?
� Depends upon the use we want to make of address 

information, and the semantics of the data:
• If we have several addresses per employee, address

must be an entity (since attributes cannot be set-
valued). 

• If the structure (city, street, etc.) is important, e.g., we 
want to retrieve employees in a given city, address
must be modeled as an entity (since attribute values 
are atomic). 
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Entity vs. Attribute (Contd.)

� Works_In4 does not     
allow an employee to   
work in a department       
for two or more periods.

� Similar to the problem   of 
wanting to record several 
addresses for an employee:  
We want to record several 
values of the descriptive 
attributes for each instance of 
this relationship. 
Accomplished by 
introducing new entity set, 
Duration. 

name

Employees

ssn lot

Works_In4

from to
dname

budgetdid

Departments

dname
budgetdid

name

Departments

ssn lot

Employees Works_In4

Durationfrom to
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Entity vs. Relationship
� First ER diagram OK if 

a manager gets a 
separate discretionary 
budget for each dept.

� What if a manager gets 
a discretionary    
budget that covers      
all managed depts?

� Redundancy: dbudget 
stored for each dept 
managed by manager.

� Misleading: Suggests 
dbudget associated with 
department-mgr 
combination.

Manages2

name dname
budgetdid

Employees Departments

ssn lot

dbudgetsince

dname
budgetdid

DepartmentsManages2

Employees

name
ssn lot

since

Managers dbudget

ISA

This fixes the
problem!
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Binary vs. Ternary Relationships
� If each policy is 

owned by just 1 
employee, and 
each dependent 
is tied to the 
covering policy, 
first diagram is 
inaccurate.

� What are the 
additional 
constraints in the 
2nd diagram?

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design
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Binary vs. Ternary Relationships (Contd.)
� Previous example illustrated a case when two 

binary relationships were better than one ternary 
relationship.

� An example in the other direction:  a ternary 
relation Contracts relates entity sets Parts, 
Departments and Suppliers, and has descriptive 
attribute qty.  No combination of binary 
relationships is an adequate substitute:

� S “can-supply” P,  D “needs” P,  and D  “deals-with” S 
does not imply that D has agreed to buy P from S.

� How do we record qty?
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Summary of Conceptual Design
� Conceptual design follows requirements analysis, 

� Yields a high-level description of data to be stored 
� ER model popular for conceptual design

� Constructs are expressive, close to the way people think 
about their applications.

� Basic constructs: entities, relationships, and attributes
(of entities and relationships).

� Some additional constructs: weak entities, ISA 
hierarchies, and aggregation.

� Note: There are many variations on ER model.
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Summary of ER (Contd.)
� Several kinds of integrity constraints can be expressed 

in the ER model:  key constraints, participation
constraints, and overlap/covering constraints for ISA 
hierarchies.  Some foreign key constraints are also 
implicit in the definition of a relationship set.

� Some constraints (notably, functional dependencies) cannot be 
expressed in the ER model.

� Constraints play an important role in determining the best 
database design for an enterprise.
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Summary of ER (Contd.)
� ER design is subjective.  There are often many ways 

to model a given scenario! Analyzing alternatives 
can be tricky, especially for a large enterprise.  
Common choices include:

� Entity vs. attribute, entity vs. relationship, binary or n-
ary relationship, whether or not to use ISA hierarchies, 
and whether or not to use aggregation.

� Ensuring good database design: resulting 
relational schema should be analyzed and refined 
further. FD information and normalization 
techniques are especially useful.
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The Relational Model

Chapter 3
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Why Study the Relational Model? 

� Most widely used model.
� Vendors: IBM, Informix, Microsoft, Oracle, 

Sybase, etc.
� “Legacy systems” in older models 

� E.G., IBM’s IMS
� Recent competitor: object-oriented model

� ObjectStore, Versant, Ontos
� A synthesis emerging: object-relational model

• Informix Universal Server, UniSQL, O2, Oracle, DB2
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Relational Database: Definitions

� Relational database: a set of relations
� Relation: made up of 2 parts:

� Instance : a table, with rows and columns. 
#Rows = cardinality, # fields = degree / arity.

� Schema : specifies name of relation, plus name and 
type of each column.

• E.G. Students(sid: string, name: string, login: string,                        
age: integer, gpa: real).

� Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).
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Example Instance of Students Relation

sid name login age gpa 
53666 Jones jones@cs 18 3.4 
53688 Smith smith@eecs 18 3.2 
53650 Smith smith@math 19 3.8 

 

 
� Cardinality = 3, degree = 5, all rows distinct
� Do all columns in a relation instance have to

be distinct?
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Relational Query Languages

� A major strength of the relational model: 
supports simple, powerful querying of data. 

� Queries can be written intuitively, and the 
DBMS is responsible for efficient evaluation.

� The key: precise semantics for relational queries.
� Allows the optimizer to extensively re-order 

operations, and still ensure that the answer does 
not change.
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The SQL Query Language

� Developed by IBM (system R) in the 1970s
� Need for a standard since it is used by many 

vendors
� Standards: 

� SQL-86
� SQL-89 (minor revision)
� SQL-92 (major revision)
� SQL-99 (major extensions, current standard)
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The SQL Query Language

� To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2
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Querying Multiple Relations
� What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid 

Smith Topology112 
 

 

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instance 
of Enrolled (is this possible if 
the DBMS ensures referential 
integrity?):

we get:
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Creating Relations in SQL
� Creates the Students          

relation. Observe that the        
type (domain)  of each field         
is specified, and enforced by     
the DBMS whenever tuples
are added or modified. 

� As another example, the   
Enrolled table holds    
information about courses       
that students take.

CREATE TABLE Students
(sid: CHAR(20), 
name: CHAR(20), 
login: CHAR(10),
age: INTEGER,
gpa: REAL)  

CREATE TABLE Enrolled
(sid: CHAR(20), 
cid: CHAR(20), 
grade: CHAR(2))  
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Destroying and Altering Relations

� Destroys the relation Students.  The schema 
information and the tuples are deleted.

DROP TABLE  Students 

� The schema of Students is altered by adding a 
new field; every tuple in the current instance 
is extended with a null value in the new field.

ALTER TABLE  Students 
ADD COLUMN firstYear: integer
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Adding and Deleting Tuples

� Can insert a single tuple using:

INSERT INTO  Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

� Can delete all tuples satisfying some 
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

* Powerful variants of these commands are available; more later!
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Integrity Constraints (ICs)
� IC: condition that must be true for any instance 

of the database; e.g., domain constraints.
� ICs are specified when schema is defined.
� ICs are checked when relations are modified.

� A legal instance of a relation is one that satisfies 
all specified ICs.  

� DBMS should not allow illegal instances.
� If the DBMS checks ICs, stored data is more 

faithful to real-world meaning.
� Avoids data entry errors, too!
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Primary Key Constraints

� A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all 

key fields, and
2. This is not true for any subset of the key.

� Part 2 false? A superkey.
� If there’s >1 key for a relation, one of the keys is 

chosen (by DBA) to be the primary key.
� E.g., sid is a key for Students.  (What about 

name?)  The set {sid, gpa} is a superkey.
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Primary and Candidate Keys in SQL
� Possibly many candidate keys (specified using 

UNIQUE), one of which is chosen as the primary key.
CREATE TABLE Enrolled

(sid CHAR(20)
cid  CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid,cid) )

� “For a given student and course, 
there is a single grade.” vs. 
“Students can take only one 
course, and receive a single grade 
for that course; further, no two 
students in a course receive the 
same grade.”

� Used carelessly, an IC can prevent 
the storage of database instances 
that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)

cid  CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid),
UNIQUE (cid, grade) )
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Foreign Keys, Referential Integrity

� Foreign key : Set of fields in one relation that is used 
to `refer’ to a tuple in another relation.  (Must 
correspond to primary key of the second relation.)  
Like a `logical pointer’.

� E.g. sid is a foreign key referring to Students:
� Enrolled(sid: string, cid: string, grade: string)
� If all foreign key constraints are enforced,  referential 

integrity is achieved, i.e., no dangling references.
� Can you name a data model w/o referential integrity? 

• Links in HTML!
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Foreign Keys in SQL
� Only students listed in the Students relation should 

be allowed to enroll for courses.
CREATE TABLE Enrolled

(sid CHAR(20),  cid CHAR(20),  grade CHAR(2),
PRIMARY KEY  (sid,cid),
FOREIGN KEY (sid) REFERENCES Students )

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students
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Enforcing Referential Integrity
� Consider Students and Enrolled; sid in Enrolled is a 

foreign key that references Students.
� What should be done if an Enrolled tuple with a 

non-existent student id is inserted?  (Reject it!)
� What should be done if a Students tuple is deleted?

� Also delete all Enrolled tuples that refer to it.
� Disallow deletion of a Students tuple that is referred to.
� Set sid in Enrolled tuples that refer to it to a default sid.
� (In SQL, also: Set sid in Enrolled tuples that refer to it to a 

special value null, denoting `unknown’ or `inapplicable’.)
� Similar if primary key of Students tuple is updated.
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Referential Integrity in SQL

� SQL/92 and SQL:1999 
support all 4 options on 
deletes and updates.

� Default is NO ACTION   
(delete/update is rejected)

� CASCADE (also delete 
all tuples that refer to 
deleted tuple)

� SET NULL / SET DEFAULT
(sets foreign key value 
of referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY  (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT )



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 19

Where do ICs Come From?
� ICs are based upon the semantics of the real-

world enterprise that is being described in the 
database relations. 

� We can check a database instance to see if an 
IC is violated, but we can NEVER infer that 
an IC is true by looking at an instance.

� An IC is a statement about all possible instances!
� From example, we know name is not a key, but the 

assertion that sid is a key is given to us.
� Key and foreign key ICs are the most 

common; more general ICs supported too.
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Logical DB Design: ER to Relational

� Entity sets to tables:

CREATE TABLE Employees 
(ssn CHAR(11),
name CHAR(20),
lot  INTEGER,
PRIMARY KEY  (ssn))Employees

ssn
name

lot
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Relationship Sets to Tables

� In translating a relationship 
set to a relation, attributes of 
the relation must include:

� Keys for each 
participating entity set  
(as foreign keys).

• This set of attributes 
forms a superkey for 
the relation.

� All descriptive attributes.

CREATE TABLE Works_In(
ssn CHAR(1),
did  INTEGER,
since  DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn) 

REFERENCES Employees,
FOREIGN KEY (did) 

REFERENCES Departments)
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Review: Key Constraints

� Each dept has at 
most one manager, 
according to the    
key constraint on 
Manages.

Translation to 
relational model?

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments
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Translating ER Diagrams with Key Constraints

� Map relationship to a 
table:

� Note that did is 
the key now!

� Separate tables for 
Employees and 
Departments.

� Since each 
department has a 
unique manager, we 
could instead 
combine Manages 
and Departments.

CREATE TABLE  Manages(
ssn CHAR(11),
did  INTEGER,
since  DATE,
PRIMARY KEY  (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE  Dept_Mgr(
did  INTEGER,
dname CHAR(20),
budget  REAL,
ssn CHAR(11),
since  DATE,
PRIMARY KEY  (did),
FOREIGN KEY (ssn) REFERENCES Employees)
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Review: Participation Constraints
� Does every department have a manager?

� If so, this is a participation constraint:  the participation of 
Departments in Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a 
row of the Manages table (with a non-null ssn value!)

lot
name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In
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Participation Constraints in SQL
� We can capture participation constraints involving 

one entity set in a binary relationship, but little else 
(without resorting to CHECK constraints).

CREATE TABLE  Dept_Mgr(
did  INTEGER,
dname CHAR(20),
budget  REAL,
ssn CHAR(11) NOT NULL,
since  DATE,
PRIMARY KEY  (did),
FOREIGN KEY  (ssn) REFERENCES Employees,

ON DELETE NO ACTION)
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Review: Weak Entities
� A weak entity can be identified uniquely only by 

considering the primary key of another (owner) entity.
� Owner entity set and weak entity set must participate in a 

one-to-many relationship set (1 owner, many weak entities).
� Weak entity set must have total participation in this 

identifying relationship set.  

lot

name

agepname

DependentsEmployees

ssn

Policy

cost
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Translating Weak Entity Sets
� Weak entity set and identifying relationship 

set are translated into a single table.
� When the owner entity is deleted, all owned weak 

entities must also be deleted.
CREATE TABLE Dep_Policy (

pname CHAR(20),
age  INTEGER,
cost  REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY  (pname, ssn),
FOREIGN KEY  (ssn) REFERENCES Employees,

ON DELETE CASCADE)
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Review: ISA Hierarchies

Contract _Emps

name
ssn

Employees

lot

hour ly_wages
ISA

Hour ly_Emps

contractid

hours_worked

� As in C++, or other PLs, 
attributes are inherited.

� If we declare A ISA B, every A 
entity is also considered to be a B 
entity. 

� Overlap constraints:  Can Joe be an Hourly_Emps as well as 
a Contract_Emps entity?  (Allowed/disallowed)

� Covering constraints:  Does every Employees entity also have 
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no) 
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Translating ISA Hierarchies to Relations
� General approach:

� 3 relations: Employees, Hourly_Emps and Contract_Emps.
• Hourly_Emps:  Every employee is recorded in 

Employees.  For hourly emps, extra info recorded in 
Hourly_Emps (hourly_wages, hours_worked, ssn); must 
delete Hourly_Emps tuple if referenced Employees
tuple is deleted).

• Queries involving all employees easy, those involving 
just Hourly_Emps require a join to get some attributes.

� Alternative:  Just Hourly_Emps and Contract_Emps.
� Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked.
� Each employee must be in one of these two subclasses.    
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Review: Binary vs. Ternary 
Relationships

� What are the 
additional 
constraints in 
the 2nd 
diagram?

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design
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Binary vs. Ternary Relationships (Contd.)
� The key 

constraints allow 
us to combine 
Purchaser with 
Policies and 
Beneficiary with 
Dependents.

� Participation 
constraints lead to 
NOT NULL 
constraints.

� What if Policies is 
a weak entity set?

CREATE TABLE  Policies (
policyid  INTEGER,
cost  REAL,
ssn  CHAR(11)  NOT NULL,
PRIMARY KEY (policyid).
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

CREATE TABLE Dependents (
pname  CHAR(20),
age  INTEGER,
policyid  INTEGER,
PRIMARY KEY (pname, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)
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Views

� A view is just a relation, but we store a 
definition, rather than a set of tuples.

CREATE  VIEW  YoungActiveStudents (name, grade)
AS SELECT   S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

� Views can be dropped using the DROP VIEW command.
� How to handle DROP TABLE if there’s a view on the table?

• DROP TABLE command has options to let the user specify 
this.
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Views and Security

� Views can be used to present necessary 
information (or a summary), while hiding 
details in underlying relation(s).

� Given YoungStudents, but not Students or 
Enrolled, we can find students s who have are 
enrolled, but not the cid’s of the courses they are 
enrolled in.
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Relational Model: Summary

� A tabular representation of data.
� Simple and intuitive, currently the most widely used.
� Integrity constraints can be specified by the DBA, 

based on application semantics.  DBMS checks for 
violations.  

� Two important ICs: primary and foreign keys
� In addition, we always have domain constraints.

� Powerful and natural query languages exist.
� Rules to translate ER to relational model
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Relational Algebra

Chapter 4, Part A
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Relational Query Languages
� Query languages: Allow manipulation and retrieval 

of data from a database.
� Relational model supports simple, powerful QLs:

� Strong formal foundation based on logic.
� Allows for much optimization.

� Query Languages != programming languages!
� QLs not expected to be “Turing complete”.
� QLs not intended to be used for complex calculations.
� QLs support easy, efficient access to large data sets.
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Formal Relational Query Languages

� Two mathematical Query Languages form 
the basis for “real” languages (e.g. SQL), and 
for implementation:

� Relational Algebra:  More operational, very useful 
for representing execution plans.

� Relational Calculus:   Lets users describe what they 
want, rather than how to compute it.  (Non-
operational, declarative.)
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Preliminaries
� A query is applied to relation instances, and the 

result of a query is also a relation instance.
� Schemas of input relations for a query are fixed (but 

query will run regardless of instance!)
� The schema for the result of a given query is also 

fixed! Determined by definition of query language 
constructs.

� Positional vs. named-field notation:  
� Positional notation easier for formal definitions, 

named-field notation more readable.  
� Both used in SQL
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Example Instances

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

� “Sailors” and “Reserves” 
relations for our examples.

� We’ll use positional or 
named field notation, 
assume that names of fields 
in query results are 
`inherited’ from names of 
fields in query input 
relations.
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Relational Algebra
� Basic operations:

� Selection (     )    Selects a subset of rows from relation.
� Projection (     )   Deletes unwanted columns from relation.
� Cross-product (     )  Allows us to combine two relations.
� Set-difference (     ) Tuples in reln. 1, but not in reln. 2.
� Union (     ) Tuples in reln. 1 and in reln. 2.

� Additional operations:
� Intersection, join, division, renaming:  Not essential, but 

(very!) useful.
� Since each operation returns a relation, operations

can be composed! (Algebra is “closed”.)

σ
π

−
×

�
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Projection
sname rating

yuppy 9
lubber 8
guppy 5
rusty 10

π
sname rating

S
,

( )2

age
35.0
55.5

πage S( )2

� Deletes attributes that are not in 
projection list.

� Schema of result contains exactly 
the fields in the projection list, 
with the same names that they 
had in the (only) input relation.

� Projection operator has to 
eliminate duplicates!  (Why??)

� Note: real systems typically 
don’t do duplicate elimination 
unless the user explicitly asks 
for it.  (Why not?)
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Selection

σ
rating

S>8
2( )

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σ
sname rating rating

S
,

( ( ))>8
2

� Selects rows that satisfy 
selection condition.

� No duplicates in result!  
(Why?)

� Schema of result 
identical to schema of 
(only) input relation.

� Result relation can be 
the input for another 
relational algebra 
operation!  (Operator
composition.)
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Union, Intersection, Set-Difference

� All of these operations take 
two input relations, which 
must be union-compatible:

� Same number of fields.
� `Corresponding’ fields 

have the same type.
� What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−
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Cross-Product
� Each row of S1 is paired with each row of R1.
� Result schema has one field per field of S1 and R1, 

with field names `inherited’ if possible.
� Conflict:  Both S1 and R1 have a field called sid.

ρ ( ( , ), )C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

� Renaming operator: 
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Joins
� Condition Join:

� Result schema same as that of cross-product.
� Fewer tuples than cross-product, might be 

able to compute more efficiently
� Sometimes called a theta-join.  

R c S c R S
� �

= ×σ ( )

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1

� �

. .<
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Joins
� Equi-Join:  A special case of condition join where 

the condition c contains only equalities.

� Result schema similar to cross-product, but only 
one copy of fields for which equality is specified.

� Natural Join: Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1
� �
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Division
� Not supported as a primitive operator, but useful for 

expressing queries like:                                        
Find sailors who have reserved all boats.

� Let A have 2 fields, x and y; B have only field y:
� A/B = 
� i.e., A/B contains all x tuples (sailors) such that for every y

tuple (boat) in B, there is an xy tuple in A.
� Or:  If the set of y values (boats) associated with an x value 

(sailor) in A contains all y values in B, the x value is in A/B.
� In general, x and y can be any lists of fields; y is the 

list of fields in B, and x y is the list of fields of A.

{ }x x y A y B| ,∃ ∈ ∀ ∈

∪
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Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3
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Expressing A/B Using Basic Operators

� Division is not essential op; just a useful shorthand.  
� (Also true of joins, but joins are so common that systems 

implement joins specially.)
� Idea:  For A/B, compute all x values that are not 

`disqualified’ by some y value in B.
� x value is disqualified if by attaching y value from B, we 

obtain an xy tuple that is not in A.

Disqualified x values:

A/B:

π πx x A B A(( ( ) ) )× −

π x A( ) − all disqualified tuples
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Find names of sailors who’ve reserved boat #103

� Solution 1:   π σsname bid
serves Sailors(( Re ) )=103

� �

� Solution 2: ρ σ( , Re )Temp serves
bid

1
103=

ρ ( , )Temp Temp Sailors2 1 � �

π sname Temp( )2

� Solution 3: π σsname bid
serves Sailors( (Re ))=103

� �
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Find names of sailors who’ve reserved a red boat

� Information about boat color only available in 
Boats; so need an extra join:

π σsname color red
Boats serves Sailors((

' '
) Re )=

� � � �

� A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors( ((

' '
) Re ) )=

� � � �

A query optimizer can find this, given the first solution!
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Find sailors who’ve reserved a red or a green boat
� Can identify all red or green boats, then find 

sailors who’ve reserved one of these boats:

ρ σ( , (
' ' ' '

))Tempboats
color red color green

Boats= ∨ =

π sname Tempboats serves Sailors( Re )
� � � �

� Can also define Tempboats using union!  (How?)
� What happens if       is replaced by       in this query?∨ ∧
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Find sailors who’ve reserved a red and a green boat

� Previous approach won’t work!  Must identify 
sailors who’ve reserved red boats, sailors 
who’ve reserved green boats, then find the 
intersection (note that sid is a key for Sailors):

ρ π σ( , ((
' '

) Re ))Tempred
sid color red

Boats serves=
� �

π sname Tempred Tempgreen Sailors(( ) )∩ � �

ρ π σ( , ((
' '

) Re ))Tempgreen
sid color green

Boats serves=
� �
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Find the names of sailors who’ve reserved all boats

� Uses division; schemas of the input relations 
to / must be carefully chosen:

ρ π π( , (
,

Re ) / ( ))Tempsids
sid bid

serves
bid

Boats

π sname Tempsids Sailors( )
� �

� To find sailors who’ve reserved all ‘Interlake’ boats:

/ (
' '

)π σ
bid bname Interlake

Boats=.....
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Summary

� The relational model has rigorously defined 
query languages that are simple and 
powerful.

� Relational algebra is more operational; useful 
as internal representation for query 
evaluation plans.

� Several ways of expressing a given query; a 
query optimizer should choose the most 
efficient version.
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SQL:  Queries, Programming, 
Triggers

Chapter 5
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Example Instances

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

� We will use these 
instances of the 
Sailors and 
Reserves relations 
in our examples.

� If the key for the 
Reserves relation 
contained only the 
attributes sid and 
bid, how would the 
semantics differ?
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Basic SQL Query

� relation-list A list of relation names (possibly with a 
range-variable after each name).

� target-list A list of attributes of relations in relation-list
� qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of                                 )  
combined using AND, OR and NOT.

� DISTINCT is an optional keyword indicating that the 
answer should not contain duplicates.  Default is that 
duplicates are not eliminated!  

SELECT        [DISTINCT]  target-list
FROM relation-list
WHERE        qualification

< > = ≤ ≥ ≠, , , , ,
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Conceptual Evaluation Strategy
� Semantics of an SQL query defined in terms of the 

following conceptual evaluation strategy:
� Compute the cross-product of relation-list.
� Discard resulting tuples if they fail qualifications.
� Delete attributes that are not in target-list.
� If DISTINCT is specified, eliminate duplicate rows.

� This strategy is probably the least efficient way to 
compute a query!  An optimizer will find more 
efficient strategies to compute the same answers.
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Example of Conceptual Evaluation
SELECT S.sname
FROM     Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96
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A Note on Range Variables

� Really needed only if the same relation 
appears twice in the FROM clause.  The 
previous query can also be written as:

SELECT S.sname
FROM     Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM     Sailors, Reserves 
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!OR
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Find sailors who’ve reserved at least one boat

� Would adding DISTINCT to this query make a 
difference?

� What is the effect of replacing S.sid by S.sname in 
the SELECT clause?  Would adding DISTINCT to 
this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid
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Expressions and Strings

� Illustrates use of arithmetic expressions and string 
pattern matching:  Find triples (of ages of sailors and 
two fields defined by expressions) for sailors whose names 
begin and end with B and contain at least three characters.

� AS and = are two ways to name fields in result.
� LIKE is used for string matching. `_’ stands for any 

one character and `%’ stands for 0 or more arbitrary 
characters.  

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’
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Find sid’s of sailors who’ve reserved a red or a green boat

� UNION: Can be used to 
compute the union of any 
two union-compatible sets of
tuples (which are 
themselves the result of 
SQL queries).

� If we replace OR by AND in 
the first version, what do 
we get?

� Also available:  EXCEPT
(What do we get if we 
replace UNION by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’
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Find sid’s of sailors who’ve reserved a red and a green boat

� INTERSECT: Can be used to 
compute the intersection 
of any two  union-
compatible sets of tuples. 

� Included in the SQL/92 
standard, but some 
systems don’t support it.

� Contrast symmetry of the 
UNION and INTERSECT 
queries with how much 
the other versions differ.

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND  S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM  Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Key field!
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Nested Queries

� A very powerful feature of SQL:  a WHERE clause can 
itself contain an SQL query!  (Actually, so can FROM
and HAVING clauses.)

� To find sailors who’ve not reserved #103, use NOT IN.
� To understand semantics of nested queries, think of a 

nested loops evaluation:  For each Sailors tuple, check the 
qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:
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Nested Queries with Correlation

� EXISTS is another set comparison operator, like IN.  
� If UNIQUE is used, and * is replaced by R.bid, finds 

sailors with at most one reservation for boat #103.  
(UNIQUE checks for duplicate tuples; * denotes all 
attributes.  Why do we have to replace * by R.bid?)

� Illustrates why, in general, subquery must be re-
computed for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE   EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:
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More on Set-Comparison Operators

� We’ve already seen IN, EXISTS and UNIQUE.  Can also 
use NOT IN, NOT EXISTS and NOT UNIQUE.

� Also available:  op ANY, op ALL,  op IN
� Find sailors whose rating is greater than that of some 

sailor called Horatio:

> < = ≥ ≤ ≠, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 14

Rewriting INTERSECT Queries Using IN

� Similarly, EXCEPT queries re-written using NOT IN.  
� To find names (not sid’s) of Sailors who’ve reserved 

both red and green boats, just replace S.sid by S.sname
in SELECT clause.  (What about INTERSECT query?)

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)
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Division in SQL

� Let’s do it the hard 
way, without EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE  NOT EXISTS 

((SELECT B.bid
FROM  Boats B)

EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE  NOT EXISTS  (SELECT B.bid

FROM Boats B 
WHERE  NOT EXISTS  (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

(1)

(2)
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Aggregate Operators
� Significant extension of 

relational algebra.

COUNT (*)
COUNT ( [DISTINCT] A)
SUM ( [DISTINCT] A)
AVG ( [DISTINCT] A)
MAX (A)
MIN (A)

SELECT  AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT  COUNT (*)
FROM Sailors S

SELECT  AVG ( DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT  MAX(S2.rating)

FROM Sailors S2)

single column

SELECT  COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’
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Find name and age of the oldest sailor(s)

� The first query is illegal! 
(We’ll look into the 
reason a bit later, when 
we discuss GROUP BY.)

� The third query is 
equivalent to the second 
query, and is allowed in 
the SQL/92 standard, 
but is not supported in 
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT  MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT  MAX (S2.age)

FROM Sailors S2)
= S.age
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GROUP BY and HAVING
� So far, we’ve applied aggregate operators to all 

(qualifying) tuples.  Sometimes, we want to apply 
them to each of several groups of tuples.

� Consider:  Find the age of the youngest sailor for each 
rating level.

� In general, we don’t know how many rating levels 
exist, and what the rating values for these levels are!

� Suppose we know that rating values go from 1 to 10; 
we can write 10 queries that look like this (!):

SELECT  MIN (S.age)
FROM  Sailors S
WHERE  S.rating = i

For i = 1, 2, ... , 10:
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Queries With GROUP BY and HAVING

� The target-list contains (i) attribute names (ii) terms 
with aggregate operations (e.g., MIN (S.age)).

� The attribute list (i) must be a subset of grouping-list.  
Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group.  (A 
group is a set of tuples that have the same value for all 
attributes in grouping-list.)

SELECT        [DISTINCT]  target-list
FROM relation-list
WHERE        qualification
GROUP BY grouping-list
HAVING      group-qualification
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Conceptual Evaluation
� The cross-product of relation-list is computed, tuples

that fail qualification are discarded, `unnecessary’ fields 
are deleted, and the remaining tuples are partitioned 
into groups by the value of attributes in grouping-list.  

� The group-qualification is then applied to eliminate 
some groups.  Expressions in group-qualification must 
have a single value per group!

� In effect, an attribute in group-qualification that is not an 
argument of an aggregate op also appears in grouping-list.  
(SQL does not exploit primary key semantics here!)

� One answer tuple is generated per qualifying group.
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Find the age of the youngest sailor with age    18, 
for each rating with at least 2 such sailors

� Only S.rating and S.age are 
mentioned in the SELECT, 
GROUP BY or HAVING clauses; 
other attributes `unnecessary’.

� 2nd column of result is 
unnamed.  (Use AS to name it.)

SELECT S.rating,  MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY  S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

Answer relation

≥
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For each red boat, find the number of 
reservations for this boat

� Grouping over a join of three relations.
� What do we get if we remove B.color=‘red’

from the WHERE clause and add a HAVING
clause with this condition?

� What if we drop Sailors and the condition 
involving S.sid?

SELECT B.bid,  COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY  B.bid
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Find the age of the youngest sailor with age > 18, 
for each rating with at least 2 sailors (of any age)

� Shows HAVING clause can also contain a subquery.  
� Compare this with the query where we considered 

only ratings with 2 sailors over 18!
� What if HAVING clause is replaced by:

� HAVING COUNT(*) >1

SELECT S.rating,  MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY  S.rating
HAVING 1  <  (SELECT  COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)
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Find those ratings for which the average 
age is the minimum over all ratings

� Aggregate operations cannot be nested!  WRONG:  
SELECT  S.rating
FROM Sailors S
WHERE S.age =  (SELECT  MIN (AVG (S2.age))  FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY  S.rating) AS Temp

WHERE Temp.avgage = (SELECT  MIN (Temp.avgage)
FROM Temp)

v Correct solution (in SQL/92):
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Null Values
� Field values in a tuple are sometimes unknown (e.g., a 

rating has not been assigned) or inapplicable (e.g., no 
spouse’s name).  

� SQL provides a special value null for such situations.
� The presence of null complicates many issues. E.g.:

� Special operators needed to check if value is/is not null. 
� Is rating>8 true or false when rating is equal to null?  What 

about AND, OR and NOT connectives?
� We need a 3-valued logic (true, false and unknown).
� Meaning of constructs must be defined carefully.  (e.g., 

WHERE clause eliminates rows that don’t evaluate to true.)
� New operators (in particular, outer joins) possible/needed.
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Integrity Constraints (Review)
� An IC describes conditions that every legal instance 

of a relation must satisfy.
� Inserts/deletes/updates that violate IC’s are disallowed.
� Can be used to ensure application semantics (e.g., sid is a 

key), or prevent inconsistencies (e.g., sname has to be a 
string, age must be < 200)

� Types of IC’s:  Domain constraints, primary key 
constraints, foreign key constraints, general 
constraints.

� Domain constraints:  Field values must be of right type. 
Always enforced.

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 27

General Constraints

� Useful when 
more general 
ICs than keys 
are involved.

� Can use queries 
to express 
constraint.

� Constraints can 
be named.

CREATE TABLE   Sailors
( sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY  (sid),
CHECK ( rating >= 1 

AND rating <= 10 )
CREATE TABLE  Reserves

( sname CHAR(10),
bid  INTEGER,
day  DATE,
PRIMARY KEY  (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

( SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))
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Constraints Over Multiple Relations
CREATE TABLE   Sailors

( sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY  (sid),
CHECK
( (SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100 )

� Awkward and 
wrong!

� If Sailors is 
empty, the 
number of Boats
tuples can be 
anything!

� ASSERTION is the 
right solution; 
not associated 
with either table.

CREATE ASSERTION smallClub
CHECK
( (SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100 )

Number of boats
plus number of 
sailors is < 100 
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Triggers

� Trigger: procedure that starts automatically if 
specified changes occur to the DBMS

� Three parts:
� Event (activates the trigger)
� Condition (tests whether the triggers should run)
� Action (what happens if the trigger runs)
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Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 31

Summary
� SQL was an important factor in the early acceptance 

of the relational model; more natural than earlier, 
procedural query languages.

� Relationally complete; in fact, significantly more 
expressive power than relational algebra.

� Even queries that can be expressed in RA can often 
be expressed more naturally in SQL.

� Many alternative ways to write a query; optimizer 
should look for most efficient evaluation plan.

� In practice, users need to be aware of how queries are 
optimized and evaluated for best results.
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Summary (Contd.)
� NULL for unknown field values brings many 

complications
� SQL allows specification of rich integrity 

constraints
� Triggers respond to changes in the database
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Database Application Development

Chapter 6
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Overview

Concepts covered in this lecture:
SQL in application code
Embedded SQL
Cursors
Dynamic SQL
JDBC
SQLJ
Stored procedures
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SQL in Application Code
SQL commands can be called from within a 
host language (e.g., C++ or Java) program.

SQL statements can refer to host variables 
(including special variables used to return status).
Must include a statement to connect to the right 
database.

Two main integration approaches:
Embed SQL in the host language (Embedded SQL, 
SQLJ)
Create special API to call SQL commands (JDBC)
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SQL in Application Code (Contd.)

Impedance mismatch:
SQL relations are (multi-) sets of records, with 
no a priori bound on the number of records.  
No such data structure exist traditionally in 
procedural programming languages such as 
C++.  (Though now: STL)

SQL supports a mechanism called a cursor to 
handle this.
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Embedded SQL
Approach: Embed SQL in the host language.

A preprocessor converts the SQL statements into 
special API calls.
Then a regular compiler is used to compile the 
code.

Language constructs:
Connecting to a database:
EXEC SQL CONNECT
Declaring variables: 
EXEC SQL BEGIN (END) DECLARE SECTION
Statements:
EXEC SQL Statement;
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Embedded SQL: Variables

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

Two special “error” variables:
SQLCODE (long, is negative if an error has occurred)
SQLSTATE (char[6], predefined codes for common errors)
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Cursors

Can declare a cursor on a relation or query 
statement (which generates a relation).
Can open a cursor, and repeatedly fetch a tuple then 
move the cursor, until all tuples have been retrieved.

Can use a special clause, called ORDER BY, in queries that 
are accessed through a cursor, to control the order in 
which tuples are returned.
• Fields in ORDER BY clause must also appear in SELECT clause.

The ORDER BY clause, which orders answer tuples, is only 
allowed in the context of a cursor.

Can also modify/delete tuple pointed to by a cursor.
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Cursor that gets names of sailors who’ve 
reserved a red boat, in alphabetical order

Note that it is illegal to replace S.sname by, say, 
S.sid in the ORDER BY clause!  (Why?)
Can we add S.sid to the SELECT clause and 
replace S.sname by S.sid in the ORDER BY clause?

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
ORDER BY  S.sname
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Embedding SQL in C: An Example
char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTION
c_minrating = random();
EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age FROM Sailors S
WHERE S.rating > :c_minrating
ORDER BY S.sname;

do {
EXEC SQL FETCH sinfo INTO :c_sname, :c_age;
printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’);
EXEC SQL CLOSE sinfo;
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Dynamic SQL

SQL query strings are now always known at compile 
time (e.g., spreadsheet, graphical DBMS frontend): 
Allow construction of SQL statements on-the-fly

Example:
char c_sqlstring[]=

{“DELETE FROM Sailors WHERE raiting>5”};
EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;
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Database APIs: Alternative to 
embedding

Rather than modify compiler, add library with database 
calls (API)
Special standardized interface: procedures/objects
Pass SQL strings from language, presents result sets 
in a language-friendly way
Sun’s JDBC: Java API
Supposedly DBMS-neutral 

a “driver” traps the calls and translates them into DBMS-
specific code
database can be across a network
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JDBC: Architecture

Four architectural components:
Application (initiates and terminates connections, 
submits SQL statements)
Driver manager (load JDBC driver)
Driver (connects to data source, transmits requests 
and returns/translates results and error codes)
Data source (processes SQL statements)
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JDBC Architecture (Contd.)
Four types of drivers:
Bridge:

Translates SQL commands into non-native API.
Example: JDBC-ODBC bridge. Code for ODBC and JDBC 
driver needs to be available on each client.

Direct translation to native API, non-Java driver:
Translates SQL commands to native API of data source. 
Need OS-specific binary on each client.

Network bridge:
Send commands over the network to a middleware server 
that talks to the data source. Needs only small JDBC driver 
at each client.

Direction translation to native API via Java driver:
Converts JDBC calls directly to network protocol used by 
DBMS. Needs DBMS-specific Java driver at each client.
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JDBC Classes and Interfaces

Steps to submit a database query:
Load the JDBC driver
Connect to the data source
Execute SQL statements

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 15

JDBC Driver Management

All drivers are managed by the
DriverManager class
Loading a JDBC driver:

In the Java code:
Class.forName(“oracle/jdbc.driver.Oracledriver”);
When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver
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Connections in JDBC

We interact with a data source through sessions. Each 
connection identifies a logical session.
JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:
String url=“jdbc:oracle:www.bookstore.com:3083”;
Connection con;
try{

con = DriverManager.getConnection(url,usedId,password);
} catch SQLException excpt { …}
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Connection Class Interface
public int getTransactionIsolation() and
void setTransactionIsolation(int level)
Sets isolation level for the current connection.
public boolean getReadOnly() and
void setReadOnly(boolean b)
Specifies whether transactions in this connection are read-
only
public boolean getAutoCommit() and
void setAutoCommit(boolean b)
If autocommit is set, then each SQL statement is 
considered its own transaction. Otherwise, a transaction is 
committed using commit(), or aborted using rollback().
public boolean isClosed()
Checks whether connection is still open.
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Executing SQL Statements
Three different ways of executing SQL 
statements:

Statement (both static and dynamic SQL 
statements)
PreparedStatement (semi-static SQL statements)
CallableStatment (stored procedures)

PreparedStatement class:
Precompiled, parametrized SQL statements:

Structure is fixed
Values of parameters are determined at run-time
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Executing SQL Statements (Contd.)
String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;
PreparedStatment pstmt=con.prepareStatement(sql);
pstmt.clearParameters();
pstmt.setInt(1,sid);
pstmt.setString(2,sname);
pstmt.setInt(3, rating);
pstmt.setFloat(4,age);

// we know that no rows are returned, thus we use
executeUpdate()

int numRows = pstmt.executeUpdate();
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ResultSets

PreparedStatement.executeUpdate only returns the 
number of affected records
PreparedStatement.executeQuery returns data, 
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);
// rs is now a cursor
While (rs.next()) {

// process the data
}
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ResultSets (Contd.)

A ResultSet is a very powerful cursor:
previous(): moves one row back
absolute(int num): moves to the row with the 
specified number
relative (int num): moves forward or 
backward
first() and last()
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Matching Java and SQL Data Types

getTimestamp()java.sql.TimeStampTIMESTAMP
getTime()java.sql.TimeTIME
getDate()java.sql.DateDATE
getFloat()DoubleREAL
getInt()IntegerINTEGER
getDouble()DoubleFLOAT
getDouble()DoubleDOUBLE
getString()StringVARCHAR
getString()StringCHAR
getBoolean()BooleanBIT
ResultSet get methodJava classSQL Type

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 23

JDBC: Exceptions and Warnings

Most of java.sql can throw and SQLException
if an error occurs.
SQLWarning is a subclass of EQLException; 
not as severe (they are not thrown and their 
existence has to be explicitly tested)
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Warning and Exceptions (Contd.)
try {

stmt=con.createStatement();
warning=con.getWarnings();
while(warning != null) {

// handle SQLWarnings;
warning = warning.getNextWarning():

}
con.clearWarnings();
stmt.executeUpdate(queryString);
warning = con.getWarnings();
…

} //end try
catch( SQLException SQLe) {

// handle the exception
}
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Examining Database Metadata

DatabaseMetaData object gives information 
about the database system and the catalog.

DatabaseMetaData md = con.getMetaData();
// print information about the driver:
System.out.println(
“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 26

Database Metadata (Contd.)
DatabaseMetaData md=con.getMetaData();
ResultSet trs=md.getTables(null,null,null,null);
String tableName;
While(trs.next()) {

tableName = trs.getString(“TABLE_NAME”);
System.out.println(“Table: “ + tableName);
//print all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.println(crs.getString(“COLUMN_NAME” + “, “);
}

}
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A (Semi-)Complete Example
Connection con = // connect

DriverManager.getConnection(url, ”login", ”pass"); 
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT name, rating FROM Sailors";
ResultSet rs = stmt.executeQuery(query);
try { // handle exceptions

// loop through result tuples
while (rs.next()) {

String s = rs.getString(“name");
Int n = rs.getFloat(“rating");
System.out.println(s + "   " + n);

}
} catch(SQLException ex) {

System.out.println(ex.getMessage ()
+ ex.getSQLState () + ex.getErrorCode ());

}
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SQLJ
Complements JDBC with a (semi-)static query model: 

Compiler can perform syntax checks, strong type 
checks, consistency of the query with the schema

All arguments always bound to the same variable:
#sql = {

SELECT name, rating INTO :name, :rating
FROM Books WHERE sid = :sid;

Compare to JDBC:
sid=rs.getInt(1);
if (sid==1) {sname=rs.getString(2);}
else { sname2=rs.getString(2);}

SQLJ (part of the SQL standard) versus embedded 
SQL (vendor-specific)
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SQLJ Code
Int sid; String name; Int rating;
// named iterator
#sql iterator Sailors(Int sid, String name, Int rating);
Sailors sailors;
// assume that the application sets rating
#sailors = {

SELECT sid, sname INTO :sid, :name
FROM Sailors WHERE rating = :rating

};
// retrieve results
while (sailors.next()) {

System.out.println(sailors.sid + “ “ + sailors.sname));
}
sailors.close();
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SQLJ Iterators
Two types of iterators (“cursors”):

Named iterator
Need both variable type and name, and then allows retrieval 
of columns by name.
See example on previous slide.

Positional iterator
Need only variable type, and then uses FETCH .. INTO 
construct:
#sql iterator Sailors(Int, String, Int);
Sailors sailors;
#sailors = …
while (true) {

#sql {FETCH :sailors INTO :sid, :name} ;
if (sailors.endFetch()) { break; }
// process the sailor

}
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Stored Procedures

What is a stored procedure:
Program executed through a single SQL statement
Executed in the process space of the server

Advantages:
Can encapsulate application logic while staying 
“close” to the data
Reuse of application logic by different users
Avoid tuple-at-a-time return of records through 
cursors
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Stored Procedures: Examples
CREATE PROCEDURE ShowNumReservations

SELECT S.sid, S.sname, COUNT(*)
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sid, S.sname

Stored procedures can have parameters:
Three different modes: IN, OUT, INOUT

CREATE PROCEDURE IncreaseRating(
IN sailor_sid INTEGER, IN increase INTEGER)

UPDATE Sailors
SET rating = rating + increase
WHERE sid = sailor_sid
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Stored Procedures: Examples 
(Contd.)
Stored procedure do not have to be written in 

SQL:

CREATE PROCEDURE TopSailors(
IN num INTEGER)

LANGUAGE JAVA
EXTERNAL NAME “file:///c:/storedProcs/rank.jar”
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Calling Stored Procedures

EXEC SQL BEGIN DECLARE SECTION
Int sid;
Int rating;
EXEC SQL END DECLARE SECTION

// now increase the rating of this sailor
EXEC CALL IncreaseRating(:sid,:rating);
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Calling Stored Procedures (Contd.)

JDBC:
CallableStatement cstmt=

con.prepareCall(“{call
ShowSailors});

ResultSet rs =
cstmt.executeQuery();

while (rs.next()) {
…

}

SQLJ:
#sql iterator 

ShowSailors(…);
ShowSailors showsailors;
#sql showsailors={CALL

ShowSailors};
while (showsailors.next()) {
…

}
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SQL/PSM
Most DBMSs allow users to write stored procedures in a 

simple, general-purpose language (close to SQL) à
SQL/PSM standard is a representative

Declare a stored procedure:
CREATE PROCEDURE name(p1, p2, …, pn)

local variable declarations
procedure code;

Declare a function:
CREATE FUNCTION name (p1, …, pn) RETURNS

sqlDataType
local variable declarations
function code;
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Main SQL/PSM Constructs
CREATE FUNCTION rate Sailor

(IN sailorId INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER
DECLARE numRes INTEGER
SET numRes = (SELECT COUNT(*)

FROM Reserves R
WHERE R.sid = sailorId)

IF (numRes > 10) THEN rating =1;
ELSE rating = 0;
END IF;
RETURN rating;
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Main SQL/PSM Constructs (Contd.)

Local variables (DECLARE)
RETURN values for FUNCTION
Assign variables with SET
Branches and loops:

IF (condition) THEN statements;
ELSEIF (condition) statements;
… ELSE statements; END IF;
LOOP statements; END LOOP

Queries can be parts of expressions
Can use cursors naturally without “EXEC SQL”
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Summary
Embedded SQL allows execution of
parametrized static queries within a host 
language
Dynamic SQL allows execution of completely ad-
hoc queries within a host language
Cursor mechanism allows retrieval of one record 
at a time and bridges impedance mismatch 
between host language and SQL
APIs such as JDBC introduce a layer of 
abstraction between application and DBMS
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Summary (Contd.)

SQLJ: Static model, queries checked a 
compile-time.
Stored procedures execute application logic 
directly at the server
SQL/PSM standard for writing stored 
procedures
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Internet Applications

Chapter 7
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Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages, 
passing arguments, maintaining state (cookies)
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Uniform Resource Identifiers

Uniform naming schema to identify resources on the 
Internet
A resource can be anything:

Index.html
mysong.mp3
picture.jpg

Example URIs:
http://www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com 
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Structure of URIs

http://www.cs.wisc.edu/~dbbook/index.html

URI has three parts:
Naming schema (http)
Name of the host computer (www.cs.wisc.edu)
Name of the resource (~dbbook/index.html)

URLs are a subset of URIs
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Hypertext Transfer Protocol

What is a communication protocol? 
Set of standards that defines the structure of messages
Examples: TCP, IP, HTTP

What happens if you click on 
www.cs.wisc.edu/~dbbook/index.html?

Client (web browser) sends HTTP request to server
Server receives request and replies
Client receives reply; makes new requests
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HTTP (Contd.)
Client to Server:

GET ~/index.html HTTP/1.1 
User-agent: Mozilla/4.0 
Accept: text/html, image/gif, 

image/jpeg 

Server replies:

HTTP/1.1 200 OK 
Date: Mon, 04 Mar 2002 12:00:00 GMT 
Server: Apache/1.3.0 (Linux) 
Last-Modified: Mon, 01 Mar 2002 

09:23:24 GMT 
Content-Length: 1024
Content-Type: text/html 
<HTML> <HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet 

Bookstore</h1>
Our inventory:
<h3>Science</h3>
<b>The Character of Physical Law</b>
...
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HTTP Protocol Structure

HTTP Requests
Request line: GET ~/index.html HTTP/1.1 

GET: Http method field (possible values are GET and POST, 
more later)
~/index.html: URI field
HTTP/1.1: HTTP version field

Type of client: User-agent: Mozilla/4.0
What types of files will the client accept:

Accept: text/html, image/gif, image/jpeg 
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HTTP Protocol Structure (Contd.)
HTTP Responses

Status line: HTTP/1.1 200 OK 
HTTP version: HTTP/1.1
Status code: 200
Server message: OK
Common status code/server message combinations:

• 200 OK: Request succeeded
• 400 Bad Request: Request could not be fulfilled by the server
• 404 Not Found: Requested object does not exist on the server
• 505 HTTP Version not Supported

Date when the object was created:
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT 

Number of bytes being sent: Content-Length: 1024
What type is the object being sent: Content-Type: text/html 
Other information such as the server type, server time, etc.
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Some Remarks About HTTP

HTTP is stateless
No “sessions”
Every message is completely self-contained
No previous interaction is “remembered” by the protocol
Tradeoff between ease of implementation and ease of 
application development: Other functionality has to be built 
on top

Implications for applications:
Any state information (shopping carts, user login-information) 
need to be encoded in every HTTP request and response!
Popular methods on how to maintain state:

• Cookies (later this lecture)
• Dynamically generate unique URL’s at the server level (later this 

lecture)
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Web Data Formats

HTML
The presentation language for the Internet

Xml
A self-describing, hierarchal data model

DTD
Standardizing schemas for Xml

XSLT (not covered in the book)
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HTML: An Example
<HTML>

<HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet 

Bookstore</h1>
Our inventory:

<h3>Science</h3>
<b>The Character of Physical 

Law</b>
<UL>

<LI>Author: Richard 
Feynman</LI>
<LI>Published 1980</LI>
<LI>Hardcover</LI>

</UL>

<h3>Fiction</h3>
<b>Waiting for the Mahatma</b>
<UL>

<LI>Author: R.K. Narayan</LI>
<LI>Published 1981</LI>

</UL>
<b>The English Teacher</b>
<UL>

<LI>Author:  R.K. Narayan</LI>
<LI>Published 1980</LI>
<LI>Paperback</LI>

</UL>

</BODY>
</HTML>

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 12

HTML: A Short Introduction

HTML is a markup language
Commands are tags:

Start tag and end tag
Examples:

• <HTML> … </HTML>
• <UL> … </UL>

Many editors automatically generate HTML 
directly from your document (e.g., Microsoft 
Word has an “Save as html” facility)
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HTML: Sample Commands

<HTML>: 
<UL>: unordered list
<LI>: list entry
<h1>: largest heading
<h2>: second-level heading, <h3>, <h4> 
analogous
<B>Title</B>: Bold 
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XML: An Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BOOKLIST>

<BOOK genre="Science" format="Hardcover">
<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>
<PUBLISHED>1981</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
</BOOKLIST>
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XML – The Extensible Markup Language

Language
A way of communicating information

Markup
Notes or meta-data that describe your data or 
language

Extensible
Limitless ability to define new languages or data 
sets



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 16

XML – What’s The Point?

You can include your data and a description of what 
the data represents

This is useful for defining your own language or protocol
Example: Chemical Markup Language

<molecule>
<weight>234.5</weight>
<Spectra>…</Spectra>
<Figures>…</Figures>

</molecule>
XML design goals:

XML should be compatible with SGML
It should be easy to write XML processors
The design should be formal and precise
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XML – Structure

XML: Confluence of SGML and HTML
Xml looks like HTML
Xml is a hierarchy of user-defined tags called 
elements with attributes and data
Data is described by elements, elements are 
described by attributes
<BOOK genre="Science" format="Hardcover">…</BOOK>

closing tag

attribute

attribute value
data

open tag
element name
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XML – Elements

<BOOK genre="Science" format="Hardcover">…</BOOK>

Xml is case and space sensitive
Element opening and closing tag names must be identical
Opening tags: “<” + element name + “>”
Closing tags: “</” + element name + “>”
Empty Elements have no data and no closing tag: 

They begin with a “<“ and end with a “/>”
<BOOK/>

closing tag
attribute

attribute value dataopen tag
element name
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XML – Attributes

<BOOK genre="Science" format="Hardcover">…</BOOK>

Attributes provide additional information for element tags.
There can be zero or more attributes in every element; each one 
has the the form:

attribute_name=‘attribute_value’
- There is no space between the name and the “=‘”
- Attribute values must be surrounded by “ or ‘ characters

Multiple attributes are separated by white space (one or more 
spaces or tabs).

closing tag
attribute

attribute value data
open tag

element name
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XML – Data and Comments

<BOOK genre="Science" format="Hardcover">…</BOOK>

Xml data is any information between an opening and closing tag
Xml data must not contain the ‘<‘ or ‘>’ characters

Comments:
<!- comment ->

closing tag
attribute

attribute value
data

open tag
element name

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 21

XML – Nesting & Hierarchy

Xml tags can be nested in a tree hierarchy
Xml documents can have only one root tag
Between an opening and closing tag you can insert:

1. Data
2. More Elements
3. A combination of data and elements

<root>
<tag1>

Some Text
<tag2>More</tag2>

</tag1>
</root>
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Xml – Storage

Storage is done just like an n-ary tree (DOM)

<root>

<tag1>

Some Text

<tag2>More</tag2>

</tag1>

</root>

Node
Type: Element_Node
Name: Element
Value: Root

Node
Type: Element_Node
Name: Element
Value: tag1

Node
Type: Text_Node
Name: Text
Value: More

Node
Type: Element_Node
Name: Element
Value: tag2

Node
Type: Text_Node
Name: Text
Value: Some Text
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DTD – Document Type Definition

A DTD is a schema for Xml data
Xml protocols and languages can be 
standardized with DTD files
A DTD says what elements and attributes are 
required or optional

Defines the formal structure of the language
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DTD – An Example
<?xml version='1.0'?>
<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

<!ELEMENT Cherry EMPTY>
<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ELEMENT Apple EMPTY>
<!ATTLIST Apple color CDATA #REQUIRED>

<!ELEMENT Orange EMPTY>
<!ATTLIST Orange location ‘Florida’>

--------------------------------------------------------------------------------

<Basket>
<Apple/>
<Cherry flavor=‘good’/>
<Orange/>

</Basket>

<Basket>
<Cherry flavor=‘good’/>
<Apple color=‘red’/>
<Apple color=‘green’/>

</Basket>
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DTD - !ELEMENT

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

!ELEMENT declares an element name, and 
what children elements it should have
Content types:

Other elements
#PCDATA (parsed character data)
EMPTY (no content)
ANY (no checking inside this structure)
A regular expression

Name Children
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DTD - !ELEMENT (Contd.)

A regular expression has the following 
structure:

exp1, exp2, exp3, …, expk: A list of regular 
expressions
exp*: An optional expression with zero or more 
occurrences
exp+: An optional expression with one or more 
occurrences
exp1 | exp2 | … | expk: A disjunction of expressions
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DTD - !ATTLIST

<!ATTLIST   Cherry   flavor   CDATA   #REQUIRED>

<!ATTLIST Orange  location CDATA #REQUIRED
color ‘orange’>

!ATTLIST defines a list of attributes for an 
element
Attributes can be of different types, can be 
required or not required, and they can have 
default values.

Element Attribute Type Flag
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DTD – Well-Formed and Valid
<?xml version='1.0'?>
<!ELEMENT Basket (Cherry+)>

<!ELEMENT Cherry EMPTY>
<!ATTLIST Cherry flavor CDATA #REQUIRED>

--------------------------------------------------------------------------------

Well-Formed and Valid
<Basket>

<Cherry flavor=‘good’/>
</Basket>

Not Well-Formed
<basket>

<Cherry flavor=good>
</Basket>

Well-Formed but Invalid
<Job>

<Location>Home</Location>
</Job>
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XML and DTDs

More and more standardized DTDs will be developed
MathML
Chemical Markup Language

Allows light-weight exchange of data with the same 
semantics

Sophisticated query languages for XML are available:
Xquery
XPath
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Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages, 
passing arguments, maintaining state (cookies)
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Components of Data-Intensive 
Systems
Three separate types of functionality:

Data management
Application logic
Presentation

The system architecture determines whether 
these three components reside on a single 
system (“tier) or are distributed across several 
tiers
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Single-Tier Architectures

All functionality combined into a 
single tier, usually on a 
mainframe

User access through dumb 
terminals

Advantages:
Easy maintenance and 
administration

Disadvantages:
Today, users expect 
graphical user interfaces.
Centralized computation of 
all of them is too much for a 
central system

GRAPHIC
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Client-Server Architectures

Work division: Thin client
Client implements only the 
graphical user interface
Server implements business 
logic and data management

Work division: Thick client
Client implements both the 
graphical user interface and the 
business logic
Server implements data 
management

GRAPHIC



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 34

Client-Server Architectures (Contd.)

Disadvantages of thick clients
No central place to update the business logic
Security issues: Server needs to trust clients

• Access control and authentication needs to be managed at 
the server

• Clients need to leave server database in consistent state
• One possibility: Encapsulate all database access into stored 

procedures
Does not scale to more than several 100s of clients

• Large data transfer between server and client
• More than one server creates a problem: x clients, y 

servers: x*y connections

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 35

The Three-Tier Architecture

Database System

Application Server

Client Program (Web Browser)Presentation tier

Middle tier

Data management
tier
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The Three Layers

Presentation tier
Primary interface to the user
Needs to adapt to different display devices (PC, PDA, cell 
phone, voice access?)

Middle tier
Implements business logic (implements complex actions, 
maintains state between different steps of a workflow)
Accesses different data management systems

Data management tier
One or more standard database management systems
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Example 1: Airline reservations

Build a system for making airline reservations
What is done in the different tiers?
Database System

Airline info, available seats, customer info, etc.
Application Server

Logic to make reservations, cancel reservations, 
add new airlines, etc.

Client Program
Log in different users, display forms and human-
readable output
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Example 2: Course Enrollment

Build a system using which students can enroll 
in courses
Database System

Student info, course info, instructor info, course 
availability, pre-requisites, etc.

Application Server
Logic to add a course, drop a course, create a new 
course, etc.

Client Program
Log in different users (students, staff, faculty), 
display forms and human-readable output
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Technologies

Database System
(DB2)

Application Server
(Tomcat, Apache)

Client Program
(Web Browser)

HTML
Javascript
XSLT

JSP
Servlets
Cookies
CGI

XML
Stored Procedures
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Advantages of the Three-Tier 
Architecture

Heterogeneous systems 
Tiers can be independently maintained, modified, and replaced

Thin clients
Only presentation layer at clients (web browsers)

Integrated data access
Several database systems can be handled transparently at the middle 
tier
Central management of connections

Scalability
Replication at middle tier permits scalability of business logic

Software development
Code for business logic is centralized
Interaction between tiers through well-defined APIs: Can reuse 
standard components at each tier
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Lecture Overview

Internet Concepts
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The middle tier
CGI, application servers, Servlets, JavaServerPages, 
passing arguments, maintaining state (cookies)
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Overview of the Presentation Tier

Recall: Functionality of the presentation tier
Primary interface to the user
Needs to adapt to different display devices (PC, 
PDA, cell phone, voice access?)
Simple functionality, such as field validity checking

We will cover:
HTML Forms: How to pass data to the middle tier
JavaScript: Simple functionality at the presentation 
tier
Style sheets: Separating data from formatting
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HTML Forms

Common way to communicate data from client to 
middle tier
General format of a form:

<FORM ACTION=“page.jsp” METHOD=“GET”
NAME=“LoginForm”>

…
</FORM>

Components of an HTML FORM tag:
ACTION: Specifies URI that handles the content
METHOD: Specifies HTTP GET or POST method
NAME: Name of the form; can be used in client-side scripts to 
refer to the form
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Inside HTML Forms

INPUT tag
Attributes:

• TYPE: text (text input field), password (text input field where 
input is, reset (resets all input fields)

• NAME: symbolic name, used to identify field value at the middle 
tier

• VALUE: default value
Example: <INPUT TYPE=“text” Name=“title”>

Example form:
<form method="POST" action="TableOfContents.jsp">

<input type="text" name="userid">
<input type="password" name="password">
<input type="submit" value="Login“ name="submit">
<input type=“reset” value=“Clear”>

</form>
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Passing Arguments

Two methods: GET and POST
GET

Form contents go into the submitted URI
Structure:
action?name1=value1&name2=value2&name3=value3

• Action: name of the URI specified in the form
• (name,value)-pairs come from INPUT fields in the form; empty 

fields have empty values (“name=“)
Example from previous password form:
TableOfContents.jsp?userid=john&password=johnpw
Note that the page named action needs to be a program, script, 
or page that will process the user input
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HTTP GET: Encoding Form Fields

Form fields can contain general ASCII 
characters that cannot appear in an URI
A special encoding convention converts such 
field values into “URI-compatible” characters:

Convert all “special” characters to %xyz, were xyz 
is the ASCII code of the character. Special 
characters include &, =, +, %, etc.
Convert all spaces to the “+” character
Glue (name,value)-pairs from the form INPUT 
tags together with “&” to form the URI
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HTML Forms: A Complete Example
<form method="POST" action="TableOfContents.jsp">

<table align = "center" border="0" width="300">
<tr>

<td>Userid</td>
<td><input type="text" name="userid" size="20"></td>

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="password" size="20"></td>

</tr>
<tr>

<td align = "center"><input type="submit" value="Login“
name="submit"></td>

</tr>
</table>

</form>
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JavaScript
Goal: Add functionality to the presentation tier.
Sample applications:

Detect browser type and load browser-specific page
Form validation: Validate form input fields
Browser control: Open new windows, close existing windows 
(example: pop-up ads)

Usually embedded directly inside the HTML with the 
<SCRIPT> … </SCRIPT> tag.
<SCRIPT> tag has several attributes:

LANGUAGE: specifies language of the script (such as
javascript)
SRC: external file with script code
Example:
<SCRIPT LANGUAGE=“JavaScript” SRC=“validate.js>
</SCRIPT>
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JavaScript (Contd.)

If <SCRIPT> tag does not have a SRC attribute, then 
the JavaScript is directly in the HTML file.
Example:
<SCRIPT LANGUAGE=“JavaScript”>
<!-- alert(“Welcome to our bookstore”)
//-->
</SCRIPT>
Two different commenting styles

<!-- comment for HTML, since the following JavaScript code 
should be ignored by the HTML processor
// comment for JavaScript in order to end the HTML 
comment

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 50

JavaScript (Contd.)

JavaScript is a complete scripting language
Variables
Assignments (=, +=, …)
Comparison operators (<,>,…), boolean operators 
(&&, ||, !)
Statements

• if (condition) {statements;} else {statements;}
• for loops, do-while loops, and while-loops

Functions with return values
• Create functions using the function keyword
• f(arg1, …, argk) {statements;}
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JavaScript: A Complete Example

HTML Form:

<form method="POST“
action="TableOfContents.jsp">
<input type="text" 

name="userid">
<input type="password" 

name="password">
<input type="submit" 

value="Login“
name="submit">

<input type=“reset”
value=“Clear”>

</form>

Associated JavaScript:

<script language="javascript">
function testLoginEmpty()
{
loginForm = document.LoginForm
if ((loginForm.userid.value == "") ||

(loginForm.password.value == ""))
{
alert('Please enter values for userid and 
password.');

return false;
}
else return true;

}
</script>
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Stylesheets

Idea: Separate display from contents, and adapt 
display to different presentation formats
Two aspects:

Document transformations to decide what parts of the 
document to display in what order
Document rending to decide how each part of the document is 
displayed

Why use stylesheets?
Reuse of the same document for different displays
Tailor display to user’s preferences
Reuse of the same document in different contexts

Two stylesheet languages
Cascading style sheets (CSS): For HTML documents
Extensible stylesheet language (XSL): For XML documents
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CSS: Cascading Style Sheets

Defines how to display HTML documents
Many HTML documents can refer to the same CSS

Can change format of a website by changing a single style sheet
Example:
<LINK REL=“style sheet” TYPE=“text/css” HREF=“books.css”/>

Each line consists of three parts:
selector {property: value}
Selector: Tag whose format is defined
Property: Tag’s attribute whose value is set
Value: value of the attribute
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CSS: Cascading Style Sheets

Example style sheet:

body {background-color: yellow}
h1 {font-size: 36pt}
h3 {color: blue}
p {margin-left: 50px; color: red}

The first line has the same effect as:
<body background-color=“yellow>
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XSL

Language for expressing style sheets
More at: http://www.w3.org/Style/XSL/ 

Three components
XSLT: XSL Transformation language

• Can transform one document to another
• More at http://www.w3.org/TR/xslt 

XPath: XML Path Language
• Selects parts of an XML document
• More at http://www.w3.org/TR/xpath

XSL Formatting Objects
• Formats the output of an XSL transformation
• More at http://www.w3.org/TR/xsl/ 
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Lecture Overview
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The middle tier
CGI, application servers, Servlets, JavaServerPages, 
passing arguments, maintaining state (cookies)
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Overview of the Middle Tier

Recall: Functionality of the middle tier
Encodes business logic
Connects to database system(s)
Accepts form input from the presentation tier
Generates output for the presentation tier

We will cover
CGI: Protocol for passing arguments to programs running at 
the middle tier
Application servers: Runtime environment at the middle tier
Servlets: Java programs at the middle tier
JavaServerPages: Java scripts at the middle tier
Maintaining state: How to maintain state at the middle tier. 
Main focus: Cookies.
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CGI: Common Gateway Interface

Goal: Transmit arguments from HTML forms to 
application programs running at the middle tier
Details of the actual CGI protocol unimportant à
libraries implement high-level interfaces

Disadvantages:
The application program is invoked in a new process at every 
invocation (remedy: FastCGI)
No resource sharing between application programs (e.g., 
database connections)
Remedy: Application servers
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CGI: Example

HTML form:
<form action=“findbooks.cgi” method=POST>
Type an author name:
<input type=“text” name=“authorName”>
<input type=“submit” value=“Send it”>
<input type=“reset” value=“Clear form”>
</form>

Perl code:
use CGI;
$dataIn=new CGI;
$dataIn->header();
$authorName=$dataIn->param(‘authorName’);
print(“<HTML><TITLE>Argument passing test</TITLE>”);
print(“The author name is “ + $authorName);
print(“</HTML>”);
exit;
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Application Servers

Idea: Avoid the overhead of CGI
Main pool of threads of processes
Manage connections
Enable access to heterogeneous data sources
Other functionality such as APIs for session 
management
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Application Server: Process Structure

Process Structure

Web Browser Web Server

Application Server

C++ Application

JavaBeans

DBMS 1

DBMS 2

Pool of Servlets

HTTP

JDBC

ODBC
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Servlets

Java Servlets: Java code that runs on the middle tier
Platform independent
Complete Java API available, including JDBC

Example:
import java.io.*;
import java.servlet.*;
import java.servlet.http.*;

public class ServetTemplate extends HttpServlet {
public void doGet(HTTPServletRequest request,

HTTPServletResponse response)
throws SerletExpection, IOException {

PrintWriter out=response.getWriter();
out.println(“Hello World”);

}
}
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Servlets (Contd.)

Life of a servlet?
Webserver forwards request to servlet container
Container creates servlet instance (calls init() 
method; deallocation time: calls destroy() method)
Container calls service() method

• service() calls doGet() for HTTP GET or doPost() for HTTP 
POST

• Usually, don’t override service(), but override doGet() and
doPost()
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Servlets: A Complete Example
public class ReadUserName extends HttpServlet {

public void doGet( HttpServletRequest request,
HttpSevletResponse response)

throws ServletException, IOException {
reponse.setContentType(“text/html”);
PrintWriter out=response.getWriter();
out.println(“<HTML><BODY>\n <UL> \n” +

“<LI>” + request.getParameter(“userid”) + “\n” +
“<LI>” + request.getParameter(“password”) + “\n” +
“<UL>\n<BODY></HTML>”);

}
public void doPost( HttpServletRequest request,

HttpSevletResponse response)
throws ServletException, IOException {
doGet(request,response);

}
}
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Java Server Pages

Servlets
Generate HTML by writing it to the “PrintWriter”
object
Code first, webpage second

JavaServerPages
Written in HTML, Servlet-like code embedded in 
the HTML
Webpage first, code second
They are usually compiled into a Servlet
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JavaServerPages: Example

<html>
<head><title>Welcome to B&N</title></head>
<body>

<h1>Welcome back!</h1>
<% String name=“NewUser”;

if (request.getParameter(“username”) != null) {
name=request.getParameter(“username”);

}
%>
You are logged on as user <%=name%>
<p>

</body>
</html>
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Maintaining State

HTTP is stateless.
Advantages

Easy to use: don’t need anything
Great for static-information applications
Requires no extra memory space

Disadvantages
No record of previous requests means

• No shopping baskets
• No user logins
• No custom or dynamic content
• Security is more difficult to implement
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Application State

Server-side state
Information is stored in a database, or in the 
application layer’s local memory

Client-side state
Information is stored on the client’s computer in the 
form of a cookie

Hidden state
Information is hidden within dynamically created 
web pages
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Application State

So many kinds of 
state…

…how will I choose?
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Server-Side State

Many types of Server side state:
1. Store information in a database

Data will be safe in the database
BUT: requires a database access to query or update 
the information

2. Use application layer’s local memory
Can map the user’s IP address to some state
BUT: this information is volatile and takes up lots of 
server main memory

5 million IPs = 20 MB
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Server-Side State

Should use Server-side state maintenance for 
information that needs to persist

Old customer orders
“Click trails” of a user’s movement through a site
Permanent choices a user makes
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Client-side State: Cookies

Storing text on the client which will be passed 
to the application with every HTTP request. 

Can be disabled by the client. 
Are wrongfully perceived as "dangerous", and 
therefore will scare away potential site visitors if 
asked to enable cookies1

Are a collection of (Name, Value) pairs

1http://www.webdevelopersjournal.com/columns/stateful.html
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Client State: Cookies
Advantages

Easy to use in Java Servlets / JSP
Provide a simple way to persist non-essential data on the client even 
when the browser has closed

Disadvantages
Limit of 4 kilobytes of information
Users can (and often will) disable them

Should use cookies to store interactive state
The current user’s login information
The current shopping basket
Any non-permanent choices the user has made
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Creating A Cookie
Cookie myCookie = 

new Cookie(“username", “jeffd");
response.addCookie(userCookie);

You can create a cookie at any time
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Accessing A Cookie
Cookie[] cookies = request.getCookies(); 
String theUser;
for(int i=0; i<cookies.length; i++) { 

Cookie cookie = cookies[i];
if(cookie.getName().equals(“username”)) theUser = 
cookie.getValue();

} 
// at this point theUser == “username”

Cookies need to be accessed BEFORE you set your response header:
response.setContentType("text/html");
PrintWriter out = response.getWriter(); 
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Cookie Features

Cookies can have
A duration (expire right away or persist even after 
the browser has closed)
Filters for which domains/directory paths the 
cookie is sent to

See the Java Servlet API and Servlet Tutorials 
for more information
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Hidden State

Often users will disable cookies
You can “hide” data in two places:

Hidden fields within a form
Using the path information

Requires no “storage” of information because 
the state information is passed inside of each 
web page
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Hidden State: Hidden Fields

Declare hidden fields within a form:
<input type=‘hidden’ name=‘user’
value=‘username’/>

Users will not see this information (unless they 
view the HTML source)
If used prolifically, it’s a killer for performance 
since EVERY page must be contained within a 
form.
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Hidden State: Path Information

Path information is stored in the URL request:
http://server.com/index.htm?user=jeffd

Can separate ‘fields’ with an & character:
index.htm?user=jeffd&preference=pepsi

There are mechanisms to parse this field in 
Java.  Check out the javax.servlet.http.HttpUtils 

parserQueryString() method.

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 80

Multiple state methods

Typically all methods of state maintenance are 
used:

User logs in and this information is stored in a 
cookie
User issues a query which is stored in the path 
information
User places an item in a shopping basket cookie
User purchases items and credit-card information 
is stored/retrieved from a database
User leaves a click-stream which is kept in a log 
on the web server (which can later be analyzed)

Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 81

Summary

We covered:
Internet Concepts (URIs, HTTP)
Web data formats

HTML, XML, DTDs
Three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding; Javascript;
Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages, passing 
arguments, maintaining state (cookies)
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Transaction
n A transaction is a collection of actions that make 

consistent transformations of system states while 
preserving system consistency.
l concurrency transparency
l failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state
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Transaction Example –
A Simple SQL Query

…
main() {
…
EXEC SQL UPDATE Project 

SET Budget = Budget * 1.1 
WHERE Pname = `CAD/CAM’;

EXEC SQL COMMIT RELEASE;
return(0);
…}
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Example Database

Consider an airline reservation example with the 
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)
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Example Reservation Transaction

…
main {
…
EXEC SQL BEGIN DECLARE SECTION;

char flight_no[6], customer_name[20]; 
char day; 

EXEC SQL END DECLARE SECTION;
scanf(flight_no, day, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE = :day;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES(:flight_no,:day,:customer_name, null);

printf(“Reservation completed”);
EXEC SQL COMMIT RELEASE;
return(0);}
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Termination of Transactions…
main {
…

EXEC SQL BEGIN DECLARE SECTION;
char flight_no[6], customer_name[20]; 
char day; int temp1, temp2; 

EXEC SQL END DECLARE SECTION;
scanf(flight_no, day, customer_name); 
EXEC SQL SELECT STSOLD,CAP INTO :temp1,:temp2

FROM FLIGHT
WHERE FNO = :flight_no AND DATE = :day;

if temp1 = temp2 then { 
printf(“no free seats”);
EXEC SQL ROLLBACK RELEASE;
return(-1);}

else {
EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE = :day;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (:flight_no, :day, :customer_name, null);

EXEC SQL COMMIT RELEASE;
printf(“Reservation completed”);
return(0);}

}
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Characterization

n Read set (RS)
l The set of data items that are read by a transaction

n Write set (WS)
l The set of data items whose values are changed by 

this transaction
n Base set (BS)

l RS ∪ WS
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Let
l oij(x) be some operation oj of transaction Ti operating on data 

item x, where oj ∈ {read,write} and oj is atomic

l OSi = ∪j oij

l Ni ∈ {abort,commit}

Transaction Ti is a partial order Ti = {Σi, <i} where

¶ Σi = OSi ∪ {Ni }

· For any two operations oij, oik ∈ OSi , if oij = R(x) and 
oik=W(x) for any data item x, then either oij<ioik or  oik<ioij

¸ ∀oij ∈ OSi, oij <i Ni

Formalization
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Consider a transaction T:
Read(x)
Read(y)
x ←x + y
Write(x)
Commit

Then
Σ = {R(x), R(y), W(x), C}
< = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Example
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Assume
< = {(R(x),W(x)), (R(y),W(x)), (R(x), C), (R(y), C), (W(x), C)}

DAG Representation

R(x)

C

R(y)

W(x)
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Properties of Transactions

ATOMICITY
l all or nothing

CONSISTENCY
l no violation of integrity constraints

ISOLATION
l concurrent changes invisible ⇒ serializable

DURABILITY
l committed updates persist
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n Either all or none of the transaction's operations are 
performed.

n Atomicity requires that if a transaction is interrupted by a 
failure, its partial results must be undone.

n The activity of preserving the transaction's atomicity in 
presence of transaction aborts due to input errors, system 
overloads, or deadlocks is called transaction recovery.

n The activity of ensuring atomicity in the presence of system 
crashes is called crash recovery.

Atomicity
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n Internal consistency
l A transaction which executes alone against a 

consistent database leaves it in a consistent 
state.

l Transactions do not violate database integrity 
constraints.

n Transactions are correct programs

Consistency
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Isolation

n Serializability
l If several transactions are executed concurrently, the 

results must be the same as if they were executed 
serially in some order.

n Incomplete results
l An incomplete transaction cannot reveal its results to 

other transactions before its commitment.
l Necessary to avoid cascading aborts.

8-14

Isolation Example

n Consider the following two transactions:
T1: Read(x) T2: Read(x)

x ←x+1 x ←x+1
Write(x) Write(x)
Commit Commit

n Possible execution sequences:
T1: Read(x) T1: Read(x)
T1: x ←x+1 T1: x ←x+1
T1: Write(x ) T2: Read(x)
T1: Commit T1: Write(x )
T2: Read(x) T2: x ←x+1
T2: x ←x+1 T2: Write(x )
T2: Write(x ) T1: Commit
T2: Commit T2: Commit
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Consistency Degrees
(due to Jim Gray)

n Degree 0
l Transaction T does not overwrite dirty data of other 

transactions
l Dirty data refers to data values that have been updated 

by a transaction prior to its commitment

n Degree 1
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
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Consistency Degrees (cont’d)
(due to Jim Gray)

n Degree 2
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
l T does not read dirty data from other transactions

n Degree 3
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
l T does not read dirty data from other transactions
l Other transactions do not dirty any data read by T 

before T completes.
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SQL-92 Isolation Levels

Phenomena:
n Dirty read

l T1 modifies x which is then read by T2 before T1 terminates; T1
aborts ⇒ T2 has read value which never exists in the database.

n Non-repeatable (fuzzy) read
l T1 reads x; T2 then modifies or deletes x and commits. T1 tries to 

read x again but reads a different value or can’t find it. 

n Phantom
l T1 searches the database according to a predicate while T2 inserts 

new tuples that satisfy the predicate.
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SQL-92 Isolation Levels (cont’d)

n Read Uncommitted
l For transactions operating at this level, all three phenomena are 

possible.

n Read Committed
l Fuzzy reads and phantoms are possible, but dirty reads are not.

n Repeatable Read
l Only phantoms possible.

n Anomaly Serializable
l None of the phenomena are possible.
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n Once a transaction commits, the system must 
guarantee that the results of its operations will 
never be lost, in spite of subsequent failures.

n Database recovery

Durability
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Transactions Provide…

n Atomic and reliable execution in the presence of  failures

n Correct execution in the presence of multiple user accesses 

n Correct management of replicas (if they support it) 
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Architecture

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Transaction
Monitor

Begin_transaction,
Read, Write, 
Commit, Abort

To execution
engine 

Results

Scheduler
(SC)
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Transaction Execution

Begin_Transaction, 
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write, 
Abort, EOT

User
Application 

User
Application 

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)



MySQL and Java

Ömer Erdem Demir

January 25, 2006

1 Requirements

You will need:

1. java and javac

2. MySQL installed. Directions for installing MySQL on CSIF machines can be found at
http://csifdocs.cs.ucdavis.edu/tiki-index.php?page=CSIF+MySQL+4.x+Install

3. MySQL JDBC driver. You can download it from http://dev.mysql.com/downloads/con-
nector/j/3.1.html
Extract mysql-connector-java-3.1.12-bin.jar (or the latest version you have)
from the Connector/J archive to your home directory, you will not need the other
files.

2 Setting up the tutorial database

In this section we will create a new database, a new user, and a very simple table. MySQL
has a two level directory like hierarchy for keeping databases and tables. At the root there
is MySQL; under root you can only create “databases.” Database is almost like a directory,
you can create “tables” under a database. Follow the steps listed below.

1. Start the mysql server (follow the CSIF MySQL tutorial).

2. Check if mysql server is running.

$ mysqladmin -u root -p status

Uptime: 434 Threads: 1 Questions: 86 Slow queries: 0 . . .

3. Start the mysql client. We will use the command line client to create a new database,
a new user and a table in the new database.
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(a) $ mysql -u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.
...
mysql>

(b) Create a new database named ecs160tutorial.

mysql> CREATE DATABASE ecs160tutorial;

Query OK, 1 row affected (0.06 sec)

(c) Create a user with all privileges on this database. The user name will be tutorialuser
and the password will be 123456. Although this is NOT good practice, it will
suffice.

mysql> GRANT ALL ON ecs160tutorial.* TO tutorialuser@’%’

-> IDENTIFIED BY ’123456’;

mysql> GRANT ALL ON ecs160tutorial.* TO tutorialuser@’localhost’

-> IDENTIFIED BY ’123456’;

(d) Quit mysql client. We’ll reconnect as tutorialuser to the ecs160tutorial

database to setup a table.

mysql> quit

Bye

$ mysql -u tutorialuser -p ecs160tutorial

Enter password:

Welcome. . .
...
mysql>

(e) Now we will create a simple table with two columns, name and last name.

mysql> CREATE TABLE simple_table (name CHAR(128), last_name CHAR(128));

Query OK, 0 rows affected (0.01 sec)

show tables command will list all the tables created in this database.

mysql> show tables;

+--------------------------+

| Tables_in_ecs160tutorial |

+--------------------------+

| simple_table |

+--------------------------+

1 row in set (0.00 sec)

So far we set up a new database for this tutorial, created a user and a very simple table.
I think it is a good idea to create a new database and user for your project as we did in this
tutorial. In the next section, I’ll describe how to connect to the ecs160tutorial database
from a Java program and execute simple queries.
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3 Connecting to a MySQL database from a Java pro-

gram using the Connector/J JDBC driver

I assume that you downloaded and installed Connector/J. If you haven’t done so, read
section 1 for the requirements.

You can connect to the MySQL database in two steps. Those steps are detailed below.

1. First load the driver.

Class driver_class=null;

try {

driver_class = Class.forName("com.mysql.jdbc.Driver");

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

System.out.println("Found driver " + driver_class);

We don’t need to register the driver, once it is loaded it will be used for connection
requests to mysql databases.

2. Next step is to connect to the MySQL server and the ecs160tutorial database. Recall
that the user name is tutorialuser and the password is 123456.

Connection connection=null;

try {

connection = DriverManager.getConnection

("jdbc:mysql://localhost:3306/ecs160tutorial","tutorialuser","123456");

} catch (SQLException e) {

e.printStackTrace();

}

try {

System.out.println

("Established connection to "+ connection.getMetaData().getURL());

} catch (SQLException e1) {

e1.printStackTrace();

}

You must have noticed that DriverManager.getConnection takes three arguments.
The first argument is the URL of the server; URLs always start with jdbc:mysql://

and followed by the server address and the database name. Therefore, if you are
running the MySQL server on a different machine you should replace localhost with
the correct machine address, either name or IP address. Moreover, you’ll need to
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replace 3306 with the number of the port your MySQL server is listening on. Next
component of the URL is the database name. The second argument is the user name
and the last one is the password.

Next, we will switch back to the mysql client to populate simple_table.

1. Connect to the database using the mysql client.

$ mysql -u tutorialuser -p ecs160tutorial

Enter password:

Welcome. . .
...
mysql>

2. Now we will insert two items into our simple_table.

mysql> INSERT INTO simple_table VALUES ("omer","demir");

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO simple_table VALUES ("kivilcim","dogerlioglu-demir");

Query OK, 1 row affected (0.00 sec)

3. Run the following query, the output you see should be similar to the output given
below.

mysql> SELECT * from simple_table;

+----------+-------------------+

| name | last_name |

+----------+-------------------+

| omer | demir |

| kivilcim | dogerlioglu-demir |

+----------+-------------------+

2 rows in set (0.00 sec)

Now, we will execute the same SELECT query from our Java program.

1. We will use the connection to create an empty statement.

statement = connection.createStatement();

2. Execute the SELECT query.

statement.execute("SELECT * FROM simple_table");

3. Get the result set of the query.

4



ResultSet resset = statement.getResultSet();

See http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html for the API doc-
umentation.

4. We are ready to print the result of the query. The result set returned by the statement
initially points before the first row, thus you must call next to advance to the first
row. See the code snippet below.

System.out.println("Row Name Last_Name");

while(resset.next())

{

System.out.print(resset.getRow());

System.out.print(" " + resset.getString("name"));

System.out.println(" " + resset.getString("last_name"));

}

resset.close();

A row of the result set is made up of columns. We know the column names and the
types of the columns of simple_table; they are name and last_name and both are
type string. Therefore, we will use getString (remember column type) method with
the column names.

The output should be similar to the one below.

Row Name Last_Name

1 omer demir

2 kivilcim dogerlioglu-demir

4 Summary

In this tutorial I explained, using MySQL, how to create a database, a user, and a simple
table. I also explained how to connect to a MySQL database from a Java program and
execute queries. The Java program I used as the example can be found in the appendix.
You can use javac to compile the program. Don’t forget to change the host address and the
port number. To run it, you will need to pass -classpath option:

java -classpath /home/<user_name>/mysql-connector-java-3.1.12-bin.jar:$CLASSPATH:. Main

5
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10.3.4 First Normal Form
First normal form (INF) is now considered to be part of the formal definition of a rela
tionin the basic (flat) relational model;12 historically, it was defined to disallow multival
ued attributes, composite attributes, and their combinations. It states that the domain of
anattribute must include only atomic (simple, indivisible) valuesand that the value of any
attribute in a tuple must be a single value from the domain of that attribute. Hence, INF

disallows having a set of values, a tuple of values, or a combination of both as an attribute
value for a single tuple. In other words, I NF disallows "relations within relations" or "rela
tions as attribute values within tuples." The only attribute values permitted by lNF are
single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 10.1, whose primary key is
DNUMBER, and suppose that we extend it by including the DLOCATIONS attribute as shown in
Figure 10.8a. We assume that each department can have a number of locations. The
DEPARTMENT schema and an example relation state are shown in Figure 10.8. As we can see,

DLOCATIONS

Bellaire
Sugarland
Houston
Stafford
Houston

{Bellaire, Sugarland, Houston}
{Stafford}
{Houston}

DLOCATION

333445555
987654321
888665555

333445555
333445555
333445555
987654321
888665555

DMGRSSN

DMGRSSN

_=~=~_L-=D.:.:.M:.::G~R=SS:::N~_I DLOCATIONS

______~ i j

(a) DEPARTMENT

DNAME
I

DNUMBER

t
(b) DEPARTMENT

DNAME I DNUMBER

Research 5
Administration 4
Headquarters 1

(e) DEPARTMENT

DNAME
I

DNUMBER

Research 5
Research 5
Research 5
Administration 4
Headquarters 1

FIGURE 10.8 Normalization into 1NF. (a) A relation schema that is not in 1NF.

(b) Example state of relation DEPARTMENT. (c) 1NF version of same relation with
redundancy.

12. This condition is removed in the nested relational model and in object-relational systems
(ORDBMSs), both of which allow unnormalized relations (see Chapter 22).
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this is not in 1NF because DLOCATIONS is not an atomic attribute, as illustrated by the first
tuple in Figure 1O.8b. There are two ways we can look at the DLOCATIONS attribute:

• The domain of DLOCATIONS contains atomic values, but some tuples can have a set of
these values. In this case, DLOCATIONS is not functionally dependent on the primary key
DNUMBER.

• The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case,
DNUMBER ~ DLOCATIONS, because each set is considered a single member of the attribute
domain. 13

In either case, the DEPARTMENT relation of Figure 10.8 is not in 1NF; in fact, it does not
even qualify as a relation according to our definition of relation in Section 5.1. There are
three main techniques to achieve first normal form for such a relation:

1. Remove the attribute DLOCATIONS that violates 1NF and place it in a separate rela
tion DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT. The primary
key of this relation is the combination {DNUMBER, DLOCATION},as shown in Figure 10.2.
A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This
decomposes the non-1NF relation into two 1NFrelations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT, as shown in Figure 10.8c. In this case,
the primary key becomes the combination {DNUMBER, DLOCATION}. This solution has
the disadvantage of introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute-for example, if it is
known that at most three locations can exist for a department-replace the DLOCA·

TIONS attribute by three atomic attributes: DLOCATIONl, DLOCATION2, and DLOCATION3.

This solution has the disadvantage of introducing null values if most departments
have fewer than three locations. It further introduces a spurious semantics about
the ordering among the location values that is not originally intended. Querying
on this attribute becomes more difficult; for example, consider how you would
write the query: "List the departments that have "Bellaire" as one of their loca
tions" in this design.

Of the three solutions above, the first is generally considered best because it does not
suffer from redundancy and it is completely general, having no limit placed on a
maximum number of values. In fact, if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes that are themselves
composite. These are called nested relations because each tuple can have a relation
within it. Figure 10.9 shows how the EMP_PRO) relation could appear if nesting is allowed.
Each tuple represents an employee entity, and a relation PRO)S(PNUMBER, HOURS) within each

13. In this case we can consider the domain of OLOCATIONS to be the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the set of single locations.
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PROJS
SSN ENAME

PNUMBER !HOURS

SSN ENAME I PNUMBER I HOURS I

.. _-------_ .. _---------- _------------------

888665555 Borg,James E.

Smith,John B.

Wong,Franklin T.

Zelaya,Alicia J.

Jabbar,Ahmad V.

Wallace,Jennifer S.

999887777

123456789

333445555

987987987

987654321

1 32.5

2 L~ .
..~~~ f\J.a.ray1l.I1!BCI~~.~.~.~· 3 4:Q:Q .
453453453 English,JoyceA. 1 20.0

... ?- ?Q:Q .
2 10.0
3 10.0

10 10.0

............2.Q 1.Q,Q .
30 30.0

.......1.Q .1Q,Q .
10 35.0

..................................................................:3Q 5:Q .
30 20.0

20 J~:.Q .
20 null

(c) EMP_PROJ1

SSN I ENAME

EMP_PROJ2

§§tLJ PNUMBER HOURS I

FIGURE 10.9 Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ

relation with a "nested relation" attribute PROJS. (b) Example extension of the
EMUROJ relation showing nested relations within each tuple. (c) Decomposition
of EMP_PROJ into relations EMP_PROJI and EMP_PROJ2 by propagating the primary key.

tuple represents the employee's projects and the hours per week that employee works on
each project. The schema of this EMP_PROJ relation can be represented as follows:

EMP_PROJ (SSN, ENAME, {PROJS(PNUMBER, HOURS)})

The set braces { } identify the attribute PROJS as multivalued, and we list the
component attributes that form PROJS between parentheses ( ). Interestingly, recent trends
for supporting complex objects (see Chapter 20) and XMLdata (see Chapter 26) using the
relational model attempt to allow and formalize nested relations within relational
database systems, which were disallowed early on by iNF.
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Notice that SSN is the primary key of the EMP_PROJ relation in Figures 10.9a and b,
while PNUMBER is the partial key of the nested relation; that is, within each tuple, the nested
relation must have unique values of PNUMBER. To normalize this into INF, we remove the
nested relation attributes into a new relation and propagate the primary key into it; the
primary key of the new relation will combine the partial key with the primary key of the
original relation. Decomposition and primary key propagation yield the schemas EMP_

PROJl and EMP_PROJ2 shown in Figure 10.9c.
This procedure can be applied recursively to a relation with multiple-level nesting to

unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-lNF relation:

PERSON (ss#, {CAR_LIC#}, {PHONE#})

This relation represents the fact that a person has multiple cars and multiple phones. If a
strategy like the second option above is followed, it results in an all-key relation:

PERSON_IN_INF (ss#, CAR_LIC#, PHONE#)

To avoid introducing any extraneous relationship between CAR_LIC# and PHONE#, all
possible combinations of values are represented for every 55#. giving rise to redundancy.
This leads to the problems handled by multivalued dependencies and 4NF, which we
discuss in Chapter 11. The right way to deal with the two multivalued attributes in PERSON

above is to decompose it into two separate relations, using strategy 1 discussed above:
Pl(55#, CAR_LIC#) and P2( 55#, PHONE#).

10.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency. A func
tional dependency X -7 Y is a full functional dependency if removal of any attribute A
from X means that the dependency does not hold any more; that is, for any attribute A E

X, (X - {A}) does not functionally determine Y. A functional dependency X -7 Y is a par
tial dependency if some attribute A E X can be removed from X and the dependency still
holds; that is, for some A E X, (X - {A}) -7 Y. In Figure lO.3b, {SSN, PNUMBER} -7 HOURS is a
full dependency (neither SSN -7 HOURS nor PNUMBER -7 HOURS holds). However, the depen
dency {SSN, PNUMBER} -7 ENAME is partial because SSN -7 ENAME holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test need not be applied at all. The EMP_PROJ relation in Figure 10.3b is in INF but is not in
2NF. The nonprime attribute ENAME violates 2NF because of FD2, as do the nonprime
attributes PNAME and PLOCATION because of FD3. The functional dependencies FD2 and FD3
make ENAME, PNAME, and PLOCATION partially dependent on the primary key {SSN, PNUMBER} of
EMP_PROJ, thus violating the 2NF test.
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Ifa relation schema is not in 2NF, it can be "second normalized" or "2NFnormalized" into
a number of 2NF relations in which nonprime attributes are associated only with the part of
the primary key on which they are fully functionally dependent. The functional dependencies
FDI, m2, and FD3 in Figure IO.3b hence lead to the decomposition of EMP_PRO] into the three
relation schemas EPl, EP2, and EP3 shown in Figure 10.lOa, each of which is in 2NF.

10.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A functional
dependency X ~ Y in a relation schema R is a transitive dependency if there is a set of

(a)

PLOCATION

____t_t
'------- tFD2

FD3

J} 2NF '-'lRMAUZATION

ED1

J1- 3NF '-'lRMAUZATION

ED2

FIGURE 10.10 Normalizing into 2NF and 3NF. (a) Normalizing EMP_PRO] into 2NF
relations. (b) Normalizing EMP_DEPT into 3NF relations.
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attributes Z that is neither a candidate key nor a subset of any key of R,14 and both X -7 Z
and Z -7 Y hold. The dependency SSN -7 DMGRSSN is transitive through DNUMBER in EMP_DEPTof
Figure 1O.3a because both the dependencies SSN -7 DNUMBER and DNUMBER -7 DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. Intuitively, we can see that
the dependency of DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER is not a key of
EMP_DEPT.

Definition. According to Codd's original definition, a relation schema R is in 3NF if it
satisfies 2NFandno nonprime attribute of R is transitively dependent on the primary key.

The relation schema EMP_DEPT in Figure lO.3a is in 2NF, since no partial dependencies
on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of
DMGRSSN (and also DNAME) on SSN via DNUMBER. We can normalize EMP_DEPT by decomposing it
into the two 3NF relation schemas EDl and ED2 shown in Figure 10.lOb. Intuitively, we see
that EDl and ED2 represent independent entity facts about employees and departments. A
NATURAL JOIN operation on EDI and ED2 will recover the original relation EMP_DEPT without
generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (proper subset) of the primary key, or any functional dependency in which the left
hand side is a nonkey attribute is a "problematic" FD. 2NF and 3NF normalization remove
these problem FDs by decomposing the original relation into new relations. In terms of
the normalization process, it is not necessary to remove the partial dependencies before
the transitive dependencies, but historically, 3NF has been defined with the assumption
that a relation is tested for 2NF first before it is tested for 3NF. Table 10.1 informally
summarizes the three normal forms based on primary keys, the tests used in each case, and
the corresponding "remedy" or normalization performed to achieve the normal form.

10.4 GENERAL DEFINITIONS OF SECOND AND
THIRD NORMAL FORMS

In general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies, because these types of dependencies cause the update anomalies
discussed in Section 10.1.2. The steps for normalization into 3NF relations that we have
discussed so far disallow partial and transitive dependencies on the primary key. These
definitions, however, do not take other candidate keys of a relation, if any, into account.
In this section we give the more general definitions of 2NFand 3NF that take all candidate
keys of a relation into account. Notice that this does not affect the definition of 1NF,
since it is independent of keys and functional dependencies. As a general definition of
prime attribute, an attribute that is part of any candidate key will be considered as prime.

--~-------------------- ------------------- ---

14.This is the general definition of transitive dependency. Because we are concerned only with pri
marykeysin this section, we allow transitive dependencies where X is the primarykey but Z maybe
(a subsetof) a candidate key.
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TABLE 10.1 SUMMARY OF NORMAL FORMS BASED ON PRIMARY KEYS AND CORRESPONDING

NORMALIZATION

NORMAL FORM TEST REMEDY (NORMALIZATION)

First (lNF)

Second (2NF)

Third (3NF)

Relation should have no nonatomic
attributes or nested relations.
For relations where primary key contains
multiple attributes, no nonkey attribute
should be functionally dependent on a part
of the primary key.

Relation should not have a nonkey attribute
functionally determined by another nonkey
attribute (or by a set of nonkey attributes.)
That is, there should be no transitive depen
dency of a nonkey attribute on the primary
key.

Form new relations for each nonatomic
attribute or nested relation.
Decompose and set up a new relation for
each partial key with its dependent
attributets). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it.
Decompose and set up a relation that
includes the nonkey attributets) that
functionally determinets) other nonkey
attributets).

Partial and full functional dependencies and transitive dependencies will now be consid
ered with respect to all candidate keys of a relation.

10.4.1 General Definition of Second Normal Form

Definition. A relation schema R is in second normal form (2NF) if every nonprime
attribute A in R is not partially dependent on any key of R.15

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test neednot be applied at all. Consider the relation schema LOTS shown in Figure 10.11a,
which describes parcels of land for sale in various counties of a state. Suppose that there
are two candidate keys: PROPERTY_ID# and {COUNTY_NAME, LOT#}; that is, lot numbers are
unique only within each county, but PROPERTY_ID numbers are unique across counties for
the entire state.

Based on the two candidate keys PROPERTY_ID# and {cOUNTY_NAME, LOT#}, we know that
thefunctional dependencies FD1 and FD2 of Figure 1O.11a hold. We choose PROPERTY_ID#

as the primary key, so it is underlined in Figure 10.11a, but no special consideration will

15. This definition can be restated as follows: A relation schema R is in 2NF if every nonprime
attribute A in R isfullyfunctionally dependent on every key of R.
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(a) LOTS

FD2 t t t t
FD3 t

FD4 t
(b) LOTS1

FD2 t t
FD4 t

LOTS2

COUNTY NAME TAX_RATE

FD3 t
(c) LOTS1A LOTS1B

AREA PRICE

FD4 I t
FD2

(d) LOTS 1NF

/ -,
LOTS1 LOTS2 2NF

/~ I
LOTS1A LOTS1B LOTS2 3NF

FIGURE 10.11 Normalization into 2NF and 3NF. (a) The LOTS relation with its func
tional dependencies FDl through FD4. (b) Decomposing into the 2NF relations
LOTsl and LOTS2. (c) Decomposing LOTsl into the 3NF relations LOTsIA and LOTsIB. (d)
Summary of the progressive normal ization of LOTS.
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be given to this key over the other candidate key. Suppose that the following two
additionalfunctional dependencies hold in LOTS:

FD3: COUNTY_NAME ~ TAX_RATE

FD4: AREA ~ PRICE

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), while FD4 says that the price of a lot is
determined by its area regardless of which county it is in. (Assume that this is the price of
thelot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because TAX_RATE is
partially dependent on the candidate key {COUNTY_NAME, LOT#}, due to FD3. To normalize LOTS

into 2NF, we decompose it into the two relations LOTSl and LOTS2, shown in Figure 10.11b.
We construct LOTSl by removing the attribute TAX_RATE that violates 2NF from LOTS and
placing it with COUNTCNAME (the left-hand side of FD3 that causes the partial dependency)
into another relation LOTS2. Both LOTSl and LOTS2 are in 2NF. Notice that FD4 does not
violate 2NF and is carried over to LOTSl.

10.4.2 General Definition of Third Normal Form

Definition. A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X ~ A holds in R, either (a) X is a superkey of R, or (b)
A isa prime attribute of R.

According to this definition, LOTS2 (Figure lO.l1b) is in 3NF. However, FD4 in LOTSl

violates 3NF because AREA is not a superkey and PRICE is not a prime attribute in LOTSl. To
normalize LOTSl into 3NF, we decompose it into the relation schemas LOTSlA and LOTSlB

shown in Figure 10.11e. We construct LOTSlA by removing the attribute PRICE that violates
3NF from LOTSl and placing it with AREA (the left-hand side of FD4 that causes the
transitive dependency) into another relation LOTSlB. Both LOTSlA and LOTSlB are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

I LOTSl violates 3NF because PRICE is transitively dependent on each of the candidate
keys of LOTSl via the nonprime attribute AREA.

I This general definition can be applied directly to test whether a relation schema is in
3NF; it does not have to go through 2NF first. If we apply the above 3NF definition to
LOTS with the dependencies FD1 through FD4, we find that both FD3 and FD4 violate
3NF. We could hence decompose LOTS into LOTSlA, LOTSlB, and LOTS2 directly. Hence
the transitive and partial dependencies that violate 3NF can be removed in any order.

10.4.3 Interpreting the General Definition of
Third Normal Form

A relation schema R violates the general definition of 3NF if a functional dependency X
--tA holds in R that violates both conditions (a) and (b) of 3NF. Violating (b) means that
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A is a nonprime attribute. Violating (a) means that X is not a superset of any key of R;
hence, X could be nonprime or it could be a proper subset of a key of R. If X is nonprime,
we typically have a transitive dependency that violates 3NF, whereas if X is a proper sub
set of a key of R, we have a partial dependency that violates 3NF (and also 2NF). Hence,
we can state a general alternative definition of 3NF as follows: A relation schema R is in
3NF if every nonprime attribute of R meets both of the following conditions:

• It is fully functionally dependent on every key of R.

• It is nontransitively dependent on every key of R.

10.5 BOYCE-CODD NORMAL FORM
Bovce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found
to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation
in 3NF is not necessarily in BCNF. Intuitively, we can see the need for a stronger normal
form than 3NF by going back to the LOTS relation schema of Figure 1O.11a with its four
functional dependencies Fol through Fo4. Suppose that we have thousands oflots in the
relation but the lots are from only two counties: Dekalb and Fulton. Suppose also that lot
sizes in Dekalb County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in
Fulton County are restricted to 1.1, 1.2, ... , 1.9, and 2.0 acres. In such a situation we
would have the additional functional dependency FD5: AREA --7 COUNTY_NAME. If we add this
to the other dependencies, the relation schema LOTSIA still is in 3NF because COUNTY_NAME is
a prime attribute.

The area of a lot that determines the county, as specified by Fo5, can be represented
by 16 tuples in a separate relation R(AREA, COUNTCNAME), since there are only 16 possible
AREA values. This representation reduces the redundancy of repeating the same
information in the thousands of LOTSIA tuples. BCNF is a stronger normal form that would
disallow LOTslA and suggest the need for decomposing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X --7 A holds in R, then X is a superkey of R.

The formal definition of BCNF differs slightly from the definition of 3NF. The only
difference between the definitions of BCNF and 3NF is that condition (b) of 3NF, which
allows A to be prime, is absent from BCNF. In our example, Fo5 violates BCNF in LOTsIA

because AREA is not a superkey of LOTslA. Note that Fo5 satisfies 3NF in LOTSIA because
COUNTY_NAME is a prime attribute (condition b), but this condition does not exist in the
definition of BCNF. We can decompose LOTSIA into two BCNF relations LOTSlAX and LOTS lAy,

shown in Figure 10.12a. This decomposition loses the functional dependency Fo2 because
its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if X -1 A
holds in a relation schema R with X not being a superkey and A being a prime attribute
will R be in 3NF but not in BCNF. The relation schema R shown in Figure lO.l2b
illustrates the general case of such a relation. Ideally, relational database design should
strive to achieve BCNF or 3NF for every relation schema. Achieving the normalization
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(a) LOTS1A

FD5

PROPERTY ID# COUNTY_NA_M_E ~

FD1 I t ~
+ I I t

; I

FD2

LOTS1AX LOTS1AY

PROPERTY ID# AREA LOT#

(b) R

~
FD1 ! I

FD2 't-.J

FIGURE 10.12 Boyce-Codd normal form. (a) BCNF normal ization of LOTS1A with the
functional dependency FD2 being lost in the decomposition. (b) A schematic
relation with FDS; it is in 3NF, but not in BCNF.

status of just 1NF or 2NF is not considered adequate, since they were developed
historically as stepping stones to 3NF and BCNF.

As another example, consider Figure 10.13, which shows a relation TEACH with the
following dependencies:

FDl: {STUDENT, COURSE} ~ INSTRUCTOR

FD2: 16 INSTRUCTOR ~ COURSE

Note that {STUOENT, COURSE} is a candidate key for this relation and that the
dependencies shown follow the pattern in Figure 10.12b, with STUDENT as A, COURSE as B,
and INSTRUCTOR as C. Hence this relation is in 3NF but not BCNF. Decomposition of this
relation schema into two schemas is not straightforward because it may be decomposed
into one of the three following possible pairs:

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.

2. {COURSE. INSTRUCTOR} and {COURSE, STUDENT}.

3. {INSTRUCTOR. COURSE} and {INSTRUCTOR, STUDENT}.

16. Thisdependency means that "each instructor teaches one course" is a constraint for this application.
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TEACH

[iTUDENT COURSE INSTRUCTOR

Narayan Database Mark

Smith Database Navathe

Smith OperatingSystems Ammar

Smith Theory Schulman

Wallace Database Mark

Wallace OperatingSystems Ahamad

Wong Database Omiecinski

Zelaya Database Navathe

FIGURE 10.13 A relation TEACH that is in 3NF but not BCNF.

All three decompositions "lose" the functional dependency F01. The desirable
decomposition of those just shown is 3, because it will not generate spurious tuples after a join.

A test to determine whether a decomposition is nonadditive (lossless) is discussed in
Section 11.1.4 under Property L] 1. In general, a relation not in BCNF should be
decomposed so as to meet this property, while possibly forgoing the preservation of all
functional dependencies in the decomposed relations, as is the case in this example.
Algorithm 11.3 does that and could be used above to give decomposition 3 for TEACH.

10.6 SUMMARY
In this chapter we first discussed several pitfalls in relational database design using intui
tive arguments. We identified informally some of the measures for indicating whether a
relation schema is "good" or "bad," and provided informal guidelines for a good design.
We then presented some formal concepts that allow us to do relational design in a top
down fashion by analyzing relations individually. We defined this process of design by
analysis and decomposition by introducing the process of normalization.

We discussed the problems of update anomalies that occur when redundancies are
present in relations. Informal measures of good relation schemas include simple and clear
attribute semantics and few nulls in the extensions (states) of relations. A good
decomposition should also avoid the problem of generation of spurious tuples as a result of
the join operation.

We defined the concept of functional dependency and discussed some of its
properties. Functional dependencies specify semantic constraints among the attributes of
a relation schema. We showed how from a given set of functional dependencies,
additional dependencies can be inferred using a set of inference rules. We defined the
concepts of closure and cover related to functional dependencies. We then defined
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minimal cover of a set of dependencies, and provided an algorithm to compute a minimal
cover. We also showed how to check whether two sets of functional dependencies are
equivalent.

We then described the normalization process for achieving good designs by testing
relations for undesirable types of "problematic" functional dependencies. We provided a
treatment of successive normalization based on a predefined primary key in each relation,
thenrelaxed this requirement and provided more general definitions of second normal form
(2NF) and third normal form (3NF) that take all candidate keys of a relation into account.
We presented examples to illustrate how by using the general definition of 3NF a given
relation may be analyzed and decomposed to eventually yield a set of relations in 3NF.

Finally, we presented Boyce-Codd normal form (BCNF) and discussed how it is a
stronger form of 3NF. We also illustrated how the decomposition of a non-BCNF relation
must be done by considering the nonadditive decomposition requirement.

Chapter 11 presents synthesis as well as decomposition algorithms for relational
database design based on functional dependencies. Related to decomposition, we discuss
the concepts of lossless (nonadditive) join and dependency preservation, which are enforced
by some of these algorithms. Other topics in Chapter 11 include multivalued
dependencies, join dependencies, and fourth and fifth normal forms, which take these
dependencies into account.

Review Questions
10.1. Discuss attribute semantics as an informal measure of goodness for a relation

schema.
10.2. Discuss insertion, deletion, and modification anomalies. Why are they considered

bad? Illustrate with examples.
10.3. Why should nulls in a relation be avoided as far as possible? Discuss the problem

of spurious tuples and how we may prevent it.
lOA. State the informal guidelines for relation schema design that we discussed. Illus

trate how violation of these guidelines may be harmful.
10.5. What is a functional dependency? What are the possible sources of the informa

tion that defines the functional dependencies that hold among the attributes of a
relation schema?

10.6. Why can we not infer a functional dependency automatically from a particular
relation state?

10.7. What role do Armstrong's inference rules-the three inference rules IRI through
IR3-play in the development of the theory of relational design?

10.8. What is meant by the completeness and soundness of Armstrong's inference rules?
10.9. What is meant by the closure of a set of functional dependencies? Illustrate with

an example.
10.10. When are two sets of functional dependencies equivalent? How can we determine

their equivalence?
10.11. What is a minimal set of functional dependencies? Does every set of dependencies

have a minimal equivalent set? Is it always unique?
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10.12. What does the term unnormalized relation refer to? How did the normal forms
develop historically from first normal form up to Boyce-Codd normal form?

10.13. Define first, second, and third normal forms when only primary keys are consid
ered. How do the general definitions of 2NFand 3NF, which consider all keys of a
relation, differ from those that consider only primary keys?

10.14. What undesirable dependencies are avoided when a relation is in 2NF?
10.15. What undesirable dependencies are avoided when a relation is in 3NF?
10.16. Define Boyce-Codd normal form. How does it differ from 3NF?Why is it consid

ered a stronger form of 3NF?

Exercises
10.17. Suppose that we have the following requirements for a university database that is

used to keep track of students' transcripts:
a. The university keeps track of each student's name (SNAME), student number

(SNUM), social security number (SSN), current address (SCADDR) and phone
(SCPHONE), permanent address (SPADDR) and phone (SPPHoNE), birth date (BOATE),

sex (SEX), class (CLASS) (freshman, sophomore, ... , graduate), major depart
ment (MAJORCODE), minor department (MINORCOOE) (if any), and degree program
(PROG) (B. A., B. S • , ••• , PH. D• ). Both SSSN and student number have unique val
ues for each student.

b. Each department is described by a name (DNAME), department code (DCOOE),

office number (DOFFICE), office phone (DPHONE), and college (OCOLLEGE). Both
name and code have unique values for each department.

c. Each course has a course name (CNAME), description (CDESC), course number
(CNUM), number of semester hours (CREDIT), level (LEVEL), and offering depart
ment (CDEPT). The course number is unique for each course.

d. Each section has an instructor (INAME), semester (SEMESTER), year (YEAR), course
(SECCOURSE), and section number (SECNUM). The section number distinguishes
different sections of the same course that are taught during the same semester/
year; its values are 1, 2, 3, ... , up to the total number of sections taught during
each semester.

e. A grade record refers to a student (SSN), a particular section, and a grade (GRADE).

Design a relational database schema for this database application. First show all
the functional dependencies that should hold among the attributes. Then design
relation schemas for the database that are each in 3NF or BCNF. Specify the key
attributes of each relation. Note any unspecified requirements, and make
appropriate assumptions to render the specification complete.

10.18. Prove or disprove the following inference rules for functional dependencies. A
proof can be made either by a proof argument or by using inference rules lRl
through IR3. A disproof should be performed by demonstrating a relation instance
that satisfies the conditions and functional dependencies in the left-hand side of
the inference rule but does not satisfy the dependencies in the right-hand side.
a. {W -7 Y, X -7 Z} F {WX -7 Y}
b. {X -7 Y} and Y :2 Z F {X -7 Z}



c. {X -7 Y, X -7 \v, WY -7 Z} F {X -7 Z}
d. {XY -7 Z, Y -7 W} F {XW -7 Z}
e. {X -7 Z, Y -7 Z} F {X -7 Y}
f. {X -7 Y, XY -7 Z} F {X -7 Z}
g. IX -7 Y, Z -7 W} F {XZ -7 YW}
h. {XY -7 Z, Z -7 X} F {Z -7 Y}
i. {X -7 Y, Y -7 Z} F {X -7 YZ}
j. {XY -7 Z, Z -7 W} F {X -7 W}

10.19. Consider the following two sets of functional dependencies: F = {A -7 C, AC -7
D, E -7 AD, E -7 H} and G = {A -7 CD, E -7 AH}. Check whether they are
equivalent.

10.20. Consider the relation schema EMP_DEPT in Figure lO.3a and the following set G of
functional dependencies on EMP_DEPT: G = {SSN -7 {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER -7 {DNAME, DMGRSSNn. Calculate the closures {SSN}+ and {DNUMBER}+ with respect
toG.

10.21. Is the set of functional dependencies G in Exercise 10.20 minimal? If not, try to
find a minimal set offunctional dependencies that is equivalent to G. Prove that
your set is equivalent to G.

10.22. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of Figures
10.3 and lOA?

10.23. In what normal form is the LOTS relation schema in Figure 1O.11a with respect to
the restrictive interpretations of normal form that take only the primary key into
account? Would it be in the same normal form if the general definitions of normal
form were used?

10.24. Prove that any relation schema with two attributes is in BCNF.
10.25. Why do spurious tuples occur in the result of joining the EMP_PROJI and EMP_ LaCS

relations of Figure 10.5 (result shown in Figure 1O.6)?
10,26. Consider the universal relation R = {A, B, C, D, E, F, G, H, I,}} and the set of func

tional dependencies F = HA, B} -7 {C}, {A} -7 {D, E}, {B} -7 {F}, {F} -7 {G, H},{D}-7
{I, }n. What is the key for R? Decompose R into 2NFand then 3NFrelations.

10,27. Repeat Exercise 10.26 for the following different set of functional dependencies
G = HA, B} -7 {C}, {B, D} -7 {E, F}, {A, D} -7 {G, H}, {A} -7 {l}, {H} -7 {l}}.

10,28, Consider the following relation:

A B C TUPLE#

10 b1 c1 #1
10 b2 c2 #2
11 b4 c1 #3
12 b3 c4 #4
13 b1 c1 #5
14 b3 c4 #6
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a. Given the previous extension (state), which of the following dependencies
may hold in the above relation? If the dependency cannot hold, explain why by
specifying the tuples that cause the violation.

i. A ~ B, ii. B~ C, iii. C ~ B, iv. B~ A, v. C ~ A

b. Does the above relation have a potential candidate key? If it does, what is it? If
it does not, why not?

10.29. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB ~ C, CD ~ E, DE ~ B

Is AB a candidate key of this relation? If not, is ABD? Explain your answer.
10.30. Consider the relation R, which has attributes that hold schedules of courses and

sections at a university; R = {CourseNo, SecNo, OfferingDept, Credit-Hours,
CourseLevel, InstructorSSN, Semester, Year, Days_Hours, RoomNo, NoOfStu
dents}. Suppose that the following functional dependencies hold on R:

{CourseNo} ~ {OfferingDept, CreditHours, CourseLevel}

{CourseNo, SecNo, Semester, Year} ~ {Days_Hours, RoomNo, NoOfStudents,
InstructorSSN}

{RoomNo, Days_Hours, Semester, Year} ~ [Instructorssn, CourseNo, SecNo}

Try to determine which sets of attributes form keys of R. How would you
normalize this relation?

10.31. Consider the following relations for an order-processing application database at
ABC, Inc.

ORDER (0#, Odate, Cust», Totaljimount)

ORDER-ITEM(O#, 1#, Qty_ordered, Totaljprice, Discount%)

Assume that each item has a different discount. The TOTAL_PRICE refers to one
item, OOATE is the date on which the order was placed, and the TOTAL_AMOUNT is the
amount of the order. If we apply a natural join on the relations ORDER-ITEM and
ORDER in this database, what does the resulting relation schema look like? What
will be its key? Show the FDs in this resulting relation. Is it in 2NF? Is it in 3NF!
Why or why not? (State assumptions, if you make any.)

10.32. Consider the following relation:

CAR_SALE(Car#, Date_sold, Salesmans, Commission%, Discountjamt)

Assume that a car may be sold by multiple salesmen, and hence {CAR#, SALESMAN#}

is the primary key. Additional dependencies are

Date_sold ~ Discountjimt

and

Salesman# ~ Commission%

Based on the given primary key, is this relation in INF, 2NF, or 3NF? Why or why
not? How would you successively normalize it completely?
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10.33. Consider the following relation for published books:

BOOK (Book_title, Authorname, Booktvpe, Listprice, Author_affil, Publisher)

Author_affil refers to the affiliation of author. Suppose the following dependencies
exist:

Book_title ~ Publisher, Book_type

Book_type ~ Listprice

Authorname ~ Author-affil

a. What normal form is the relation in? Explain your answer.
b. Apply normalization until you cannot decompose the relations further. State

the reasons behind each decomposition.

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original defini
tions of first, second, and third normal form were also defined in Codd (1972a), where a
discussion on update anomalies can be found. Boyce-Codd normal form was defined in
Codd (1974). The alternative definition of third normal form is given in Ullman (1988),
as is the definition of BCNF that we give here. Ullman (1988), Maier (1983), and Atzeni
and De Antonellis (1993) contain many of the theorems and proofs concerning func
tional dependencies.

Armstrong (1974) shows the soundness and completeness of the inference rules IRI

through IR3. Additional references to relational design theory are given in Chapter 11.



























Normalization…Motivation 
 We saw how we can derive logical DB design (initial 

DB schema) from ER diagram. 
 But how can we measure our work to be good…or 

better than other? 
 

 How can we be sure that this schema is better than 
other one 
 

 We need a formal way for doing so..!!! 
 

 IC can be used to refine the conceptual schema 
produced 

1 



Motivation…2 
 We will concentrate on special class of IC which is 

Functional Dependencies 
 

 We will start with an overview of the problems that 
normalization should address: 

2 



Redundancy 
 Redundancy of storage is the root 

 
 Problem 1: Redundant Storage: information is 

stored repeatedly 
 

 Problem 2: Update Anomalies: if one copy of one 
repeated data is updated, all other copies should be 
updated as well 
 

3 



 Problem 3: Insertion Anomalies it will be 
impossible to insert some data without inserting other, 
unrelated information as well 
 

 Problem 3:Delete Anomalies it may be not possible 
to delete some information without deleting other, 
unrelated one. 

4 



5 



Decomposition 
 In general, redundancy arises when a relational 

schema forces an association between attributes that is 
not natural. 
 

 Functional Dependencies can be used 
 

 Main idea is to decompose the relation into smaller 
relations. 

6 



Problems Related to Decomposition 

 Do we need to decompose the relation?  
◦ Several normal forms have been found 

 
 What problems are associated with 

decomposition? 
 

 



Functional Dependencies 
 A functional dependency (FD) is a kind of IC 

that generalizes the concept of a key 
 

 Let R be a relation schema and let X and Y be 
nonempty sets of attributes in R. We 

say that an instance r of R satisfies the 
 FD X  Y if the following holds for every 

pair of tuples t1 and t2 in r: 
If t1:X = t2:X, then t1:Y = t2:Y . 

 



Example 

 In the following relation: FD ABC holds 
 But if we add {a1; b1; c2; d1} it wont hold 

 
 



 A primary key constraint is a special case 
of an FD. 

 Note,however, that the denition of an FD 
does not require that the set X be 
minimal; 
 

 The additional minimality condition must 
be met for X to be a key 
 
 



SuperKey 

 If X Y holds, where 
 Y is the set of all attributes, and there is 

some subset V of X such that V Y holds, 
 then X is a superkey; 

 



Another Example 
 Consider the Hourly Emps relation again. 

The constraint that attribute ssn is a key 
 can be expressed as an FD: 
 {ssn}  {ssn; name; lot; rating; hourly wages; 

hours worked} 
 

 FD as S  SNLRWH, for simplicity 
 Also RW 



 legal relation states) of R, obey the functional 
dependency constraints.  

 Ex: 
 



◦ Consider the relation schema EMP_PROJ in from the 
semantics of the attributes, we know that the 
following functional dependencies should hold:  
◦ SSN  ENAME  
◦ PNUMBER  {PNAME, PLOCATION}  
◦ {SSN, PNUMBER}  HOURS  

 



S# CITY P# QTY 
S1 London P1 100 
S1 London P2 100 
S2 Paris P1 200 
S2 Paris P2 200 
S3 Paris P2 300 
S4 London P2 400 
S4 London P4 400 
S4 London P5 400 



 S#  CITY 
 S#  QTY 
 QTY  S# 
 {S#, P#}  QTY 



Inference Rules for Functional 
Dependencies  
 We denote by F the set of functional 

dependencies that are specified on 
relation schema R  
 

 We usually specify the FDs that are 
semantically obvious 

 But there are other FDs that can be 
detucted 



 The set of all such dependencies is called the 
closure of F and is denoted by F* 
 

 To determine a systematic way to infer 
dependencies, we must discover a set of 
inference rules that can be used to infer 
new dependencies from a given set of 
dependencies.  



 Reflexivity:   
 Y is a subset of X 

 
 Augmentation: if X  Y, then XZ  YZ for any Z 

 
 

 Transitivity : if X  Y and Y Z then X  Z 
 Union: If X Y and X Z, then XYZ 
 Decomposition: if XYZ then XY and XZ 





Normalization 
 Having studied functional dependencies and some of 

their properties, we are now ready to use them as 
information about the semantics of the relation 
schemas  
 

 We assume that: 
-- a set of functional dependencies is given for each 
relation,  
--and that each relation has a designated primary key; 
 --this information combined with the tests (conditions) 
for normal forms drives the normalization process  



 takes a relation schema through a series of tests 
to "certify" whether it satisfies a certain normal 
form  

 We have 3 normal forms 
 All these normal forms are based on the 

functional dependencies among the attributes of 
a relation  

 Unsatisfactory relation schemas that do not 
meet certain conditions—the normal form 
tests—are decomposed into smaller relation 
schemas that meet the tests and hence possess 
the desirable properties  



First Normal Form  
 historically, it was defined to disallow multivalued 

attributes, composite attributes, and their 
combinations  
 

 It states that the domain of an attribute must 
include only atomic (simple, indivisible) values and 
that the value of any attribute in a tuple must be 
a single value from the domain of that attribute.  



Consider the DEPARTMENT relation schema shown  



 As we can see, this is not in 1NF because 
DLOCATIONS is not an atomic attribute  
 

 DLOCATIONS is not functionally dependent on 
DNUMBER.  



 here are three main techniques to achieve first 
normal form for such a relation  

1. Remove the attribute DLOCATIONS that 
violates 1NF and place it in a separate relation 
DEPT_LOCATIONS along with the primary 
key DNUMBER of DEPARTMENT  
 
--The primary key of this relation is the 
combination {DNUMBER, DLOCATION}  



2. Expand the key , In this case, the primary key 
becomes the combination {DNUMBER, 
DLOCATION}. This solution has the 
disadvantage of introducing redundancy in the 
relation. As in the prevous diagram (c) 

 
 



3. If a maximum number of values is known for 
the attribute—for example, if it is known 
that at most three locations can exist for a 
department—replace the DLOCATIONS 
attribute by three atomic attributes: 
DLOCATION1, DLOCATION2, and 
DLOCATION3. This solution has the 
disadvantage of introducing null values if most 
departments have fewer than three locations.  
 



1 NF 
 The first normal form also disallows multivalued 

attributes that are themselves composite.  
 

 These are called nested relations because each 
tuple can have a relation within it. 
 

 Take a look at the following diagram:   





 To normalize this into 1NF, we remove the 
nested relation attributes into a new relation and 
propagate the primary key into it;  
 

 This procedure can be applied recursively to a 
relation with multiple-level nesting to unnest 
the relation into a set of 1NF relations  



2 NF 
 Second normal form (2NF) is based on the 

concept of full functional dependency.  
 

 A functional dependency X  Y is a full 
functional dependency if removal of any 
attribute A from X means that the dependency 
does not hold any more;  



 A functional dependency X  Y is a partial 
dependency if some attribute A   X can be removed 
from X and the dependency still holds  
 
 



 {SSN, PNUMBER} HOURS is a full 
dependency (neither SSN  HOURS nor 
PNUMBER  HOURS holds).  
 

 However, the dependency {SSN, PNUMBER}  
ENAME is partial because SSN  ENAME holds. 



 The test for 2NF involves testing for functional 
dependencies whose left-hand side attributes are 
part of the primary key. 
 

  If the primary key contains a single attribute, the 
test need not be applied at all.  
 

 A relation schema R is in 2NF if every nonprime 
attribute A in R is fully functionally dependent on 
the primary key of R  



•The EMP_PROJ relation is in 1NF but is not 
in 2NF. 

•The nonprime attribute ENAME violates 2NF             
.  because of FD2, as do the nonprime .    
attributes PNAME and PLOCATION because 
of FD3  



 If a relation schema is not in 2NF, it can be 
"second normalized" or "2NF normalized" into a 
number of 2NF relations in which nonprime 
attributes are associated only with the part of 
the primary key on which they are fully 
functionally dependent.  
 

 The functional dependencies FD1, FD2, and FD3 
in hence lead to the decomposition of 
EMP_PROJ into the three relation schemas EP1, 
EP2, and EP3 shown in  





3 NF 
 Third normal form (3NF) is based on the 

concept of transitive dependency  
 

 A functional dependency X  Y in a relation 
schema R is a transitive dependency if there 
is a set of attributes Z that is neither a candidate 
key nor a subset of any key of R , and both X  
Z and Z Y hold.  





 The dependency SSN  DMGRSSN is transitive 
through DNUMBER in EMP_DEPT  
 
 

 because both the dependencies SSN  DNUMBER and 
DNUMBER  DMGRSSN hold and DNUMBER is 
neither a key itself nor a subset of the key of 
EMP_DEPT.  
 

 we can see that the dependency of DMGRSSN on 
DNUMBER is undesirable in EMP_DEPT since 
DNUMBER is not a key of EMP_DEPT.  



 According to Codd’s original definition, a relation 
schema R is in 3NF if it satisfies 2NF and no 
nonprime attribute of R is transitively dependent 
on the primary key.  
 

 The relation schema EMP_DEPT in is in 2NF, 
since no partial dependencies on a key exist.  

 However, EMP_DEPT is not in 3NF because of 
the transitive dependency of DMGRSSN (and 
also DNAME) on SSN via DNUMBER.  



 We can normalize EMP_DEPT by decomposing 
it into the two 3NF relation schemas ED1 and 
ED2  
 
 





General definition of normal forms 

 The steps for normalization into 3NF relations that we 
discussed so far disallow partial and transitive 
dependencies on the primary key.  
 

 These definitions, however, do not take other candidate 
keys of a relation, if any, into account.  
 

 In this section we give the more general definitions of 
2NF and 3NF that take all candidate keys of a relation 
into account  



 As a general definition of prime attribute, 
an attribute that is part of any candidate key 
will be considered as prime. 
 

  Partial and full functional dependencies and 
transitive dependencies will now be with 
respect to all candidate keys of a relation.  



 A relation schema R is in second normal 
form (2NF) if every nonprime attribute A in 
R is not partially dependent on any key of R  
 

 Consider the following relation 





 The LOTS relation schema violates the 
general definition of 2NF  
 
 

 because TAX_RATE is partially dependent on 
the candidate key {COUNTY_NAME, LOT#}, 
due to FD3  



 To normalize LOTS into 2NF, we decompose it into 
the two relations LOTS1 and LOTS2,  
 



General Definition of Third Normal Form  

 A relation schema R is in third normal form 
(3NF) if, whenever a nontrivial functional 
dependency X   A holds in R, either  
 

 (a) X is a (candidate key)of R, or  
 

 (b) A is a prime attribute of R.  



 LOTS2 is in 3NF. However, FD4 in LOTS1 
violates 3NF because AREA is not a candidate 
key and PRICE is not a prime attribute in 
LOTS1 
 

 To normalize LOTS1 into 3NF, we decompose 
it into the relation schemas LOTS1A and 
LOTS1B   





 Boyce-Codd normal form (BCNF) was 
proposed as a simpler form of 3NF,  
 

 but it was found to be stricter than 3NF,  
 

 because every relation in BCNF is also in 3NF; 
however, a relation in 3NF is not necessarily in 
BCNF  



And let us add this FD AREA  County_Name 

 Lets go back to this schema 
 
 
 



 the relation schema LOTS1A still is in 3NF 
because COUNTY_NAME is a prime 
attribute.  
 

 Definition: A relation schema R is in 
BCNF if whenever a nontrivial functional 
dependency X  A holds in R, then X is a 
superkey (candidate key)of R.  



 In our example, AREA County_name 
violates BCNF in LOTS1A because AREA 
is not a superkey of LOTS1A  
 

 Note that FD5 satisfies 3NF in LOTS1A 
because COUNTY_NAME is a prime 
attribute  



 We can decompose LOTS1A into two BCNF 
relations LOTS1AX and LOTS1AY,  
 
 



Examples on Armstrong Axioms 

 Prove Union: 
 X  Y, XZ 
 XYZ 

 
 Prove 

Decomposition 
 XYZ, XY, XZ 

 ABCDEFGHIJ 
 ABE 
 AGJ 
 BEI 
 EG 
 GIH 
 Prove ABGH 
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QUERY-BY-EXAMPLE (QBE)

Example is always more efficacious than precept.

—Samuel Johnson

6.1 INTRODUCTION

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating
and modifying) relational data. It is different from SQL, and from most other database
query languages, in having a graphical user interface that allows users to write queries
by creating example tables on the screen. A user needs minimal information to get
started and the whole language contains relatively few concepts. QBE is especially
suited for queries that are not too complex and can be expressed in terms of a few
tables.

QBE, like SQL, was developed at IBM and QBE is an IBM trademark, but a number
of other companies sell QBE-like interfaces, including Paradox. Some systems, such as
Microsoft Access, offer partial support for form-based queries and reflect the influence
of QBE. Often a QBE-like interface is offered in addition to SQL, with QBE serving as
a more intuitive user-interface for simpler queries and the full power of SQL available
for more complex queries. An appreciation of the features of QBE offers insight into
the more general, and widely used, paradigm of tabular query interfaces for relational
databases.

This presentation is based on IBM’s Query Management Facility (QMF) and the QBE
version that it supports (Version 2, Release 4). This chapter explains how a tabular
interface can provide the expressive power of relational calculus (and more) in a user-
friendly form. The reader should concentrate on the connection between QBE and
domain relational calculus (DRC), and the role of various important constructs (e.g.,
the conditions box), rather than on QBE-specific details. We note that every QBE
query can be expressed in SQL; in fact, QMF supports a command called CONVERT
that generates an SQL query from a QBE query.

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

177



178 Chapter 6

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates)

The key fields are underlined, and the domain of each field is listed after the field name.

We introduce QBE queries in Section 6.2 and consider queries over multiple relations
in Section 6.3. We consider queries with set-difference in Section 6.4 and queries
with aggregation in Section 6.5. We discuss how to specify complex constraints in
Section 6.6. We show how additional computed fields can be included in the answer in
Section 6.7. We discuss update operations in QBE in Section 6.8. Finally, we consider
relational completeness of QBE and illustrate some of the subtleties of QBE queries
with negation in Section 6.9.

6.2 BASIC QBE QUERIES

A user writes queries by creating example tables. QBE uses domain variables, as in
the DRC, to create example tables. The domain of a variable is determined by the
column in which it appears, and variable symbols are prefixed with underscore ( ) to
distinguish them from constants. Constants, including strings, appear unquoted, in
contrast to SQL. The fields that should appear in the answer are specified by using
the command P., which stands for print. The fields containing this command are
analogous to the target-list in the SELECT clause of an SQL query.

We introduce QBE through example queries involving just one relation. To print the
names and ages of all sailors, we would create the following example table:

Sailors sid sname rating age
P. N P. A

A variable that appears only once can be omitted; QBE supplies a unique new name
internally. Thus the previous query could also be written by omitting the variables
N and A, leaving just P. in the sname and age columns. The query corresponds to
the following DRC query, obtained from the QBE query by introducing existentially
quantified domain variables for each field.

{〈N, A〉 | ∃I, T (〈I, N, T, A〉 ∈ Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course,
queries containing features such as aggregate operators cannot be expressed in DRC.)
We will present DRC versions of several QBE queries. Although we will not define the
translation from QBE to DRC formally, the idea should be clear from the examples;
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intuitively, there is a term in the DRC query for each row in the QBE query, and the
terms are connected using ∧.1

A convenient shorthand notation is that if we want to print all fields in some relation,
we can place P. under the name of the relation. This notation is like the SELECT *
convention in SQL. It is equivalent to placing a P. in every field:

Sailors sid sname rating age
P.

Selections are expressed by placing a constant in some field:

Sailors sid sname rating age
P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This
query is very similar in form to the equivalent DRC query

{〈I, N, 10, A〉 | 〈I, N, 10, A〉 ∈ Sailors}
We can use other comparison operations (<, >, <=, >=,¬) as well. For example, we
could say < 10 to retrieve sailors with a rating less than 10 or say ¬10 to retrieve
sailors whose rating is not equal to 10. The expression ¬10 in an attribute column is
the same as �= 10. As we will see shortly, ¬ under the relation name denotes (a limited
form of) ¬∃ in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated
(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the .AO (for ascending
order) and .DO commands in conjunction with P. An optional integer argument allows
us to sort on more than one field. For example, we can display the names, ages, and
ratings of all sailors in ascending order by age, and for each age, in ascending order by
rating as follows:

Sailors sid sname rating age
P. P.AO(2) P.AO(1)

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows
that are not linked via shared variables to the row containing P. We will discuss such queries in Section
6.6.1.
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6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and
the Reserves relations. In particular we have to select tuples from the two relations
with the same value in the join column sid. We do this by placing the same variable
in the sid columns of the two example relations.

Sailors sid sname rating age
Id P. S

Reserves sid bid day
Id

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we
could write:2

Sailors sid sname rating age
Id P. S > 25

Reserves sid bid day
Id ‘8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by
sailors who have reserved a boat for 8/24/96 and who are older than 25:

Sailors sid sname rating age
Id > 25

Reserves sid bid day
Id B ‘8/24/96’

Boats bid bname color
B Interlake P.

As another example, the following query prints the names and ages of sailors who have
reserved some boat that is also reserved by the sailor with id 22:

Sailors sid sname rating age
Id P. N

Reserves sid bid day
Id B

22 B

Each of the queries in this section can be expressed in DRC. For example, the previous
query can be written as follows:

{〈N〉 | ∃Id, T, A, B, D1, D2(〈Id, N, T, A〉 ∈ Sailors

∧〈Id, B, D1〉 ∈ Reserves ∧ 〈22, B, D2〉 ∈ Reserves)}
2Incidentally, note that we have quoted the date value. In general, constants are not quoted in

QBE. The exceptions to this rule include date values and string values with embedded blanks or
special characters.
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Notice how the only free variable (N) is handled and how Id and B are repeated, as
in the QBE query.

6.4 NEGATION IN THE RELATION-NAME COLUMN

We can print the names of sailors who do not have a reservation by using the ¬
command in the relation name column:

Sailors sid sname rating age
Id P. S

Reserves sid bid day
¬ Id

This query can be read as follows: “Print the sname field of Sailors tuples such that
there is no tuple in Reserves with the same value in the sid field.” Note the importance
of sid being a key for Sailors. In the relational model, keys are the only available means
for unique identification (of sailors, in this case). (Consider how the meaning of this
query would change if the Reserves schema contained sname—which is not a key!—
rather than sid, and we used a common variable in this column to effect the join.)

All variables in a negative row (i.e., a row that is preceded by ¬) must also appear
in positive rows (i.e., rows not preceded by ¬). Intuitively, variables in positive rows
can be instantiated in many ways, based on the tuples in the input instances of the
relations, and each negative row involves a simple check to see if the corresponding
relation contains a tuple with certain given field values.

The use of ¬ in the relation-name column gives us a limited form of the set-difference
operator of relational algebra. For example, we can easily modify the previous query
to find sailors who are not (both) younger than 30 and rated higher than 4:

Sailors sid sname rating age
Id P. S

Sailors sid sname rating age
¬ Id > 4 < 30

This mechanism is not as general as set-difference, because there is no way to control
the order in which occurrences of ¬ are considered if a query contains more than one
occurrence of ¬. To capture full set-difference, views can be used. (The issue of QBE’s
relational completeness, and in particular the ordering problem, is discussed further in
Section 6.9.)

6.5 AGGREGATES

Like SQL, QBE supports the aggregate operations AVG., COUNT., MAX., MIN., and SUM.
By default, these aggregate operators do not eliminate duplicates, with the exception
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of COUNT., which does eliminate duplicates. To eliminate duplicate values, the variants
AVG.UNQ. and SUM.UNQ. must be used. (Of course, this is irrelevant for MIN. and MAX.)
Curiously, there is no variant of COUNT. that does not eliminate duplicates.

Consider the instance of Sailors shown in Figure 6.1. On this instance the following

sid sname rating age
22 dustin 7 45.0
58 rusty 10 35.0
44 horatio 7 35.0

Figure 6.1 An Instance of Sailors

query prints the value 38.3:

Sailors sid sname rating age
A P.AVG. A

Thus, the value 35.0 is counted twice in computing the average. To count each age
only once, we could specify P.AVG.UNQ. instead, and we would get 40.0.

QBE supports grouping, as in SQL, through the use of the G. command. To print
average ages by rating, we could use:

Sailors sid sname rating age
G.P. A P.AVG. A

To print the answers in sorted order by rating, we could use G.P.AO or G.P.DO. instead.
When an aggregate operation is used in conjunction with P., or there is a use of the
G. operator, every column to be printed must specify either an aggregate operation or
the G. operator. (Note that SQL has a similar restriction.) If G. appears in more than
one column, the result is similar to placing each of these column names in the GROUP
BY clause of an SQL query. If we place G. in the sname and rating columns, all tuples
in each group have the same sname value and also the same rating value.

We consider some more examples using aggregate operations after introducing the
conditions box feature.
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6.6 THE CONDITIONS BOX

Simple conditions can be expressed directly in columns of the example tables. For
more complex conditions QBE provides a feature called a conditions box.

Conditions boxes are used to do the following:

Express a condition involving two or more columns, such as R/ A > 0.2.

Express a condition involving an aggregate operation on a group, for example,
AVG. A > 30. Notice that this use of a conditions box is similar to the HAVING
clause in SQL. The following query prints those ratings for which the average age
is more than 30:

Sailors sid sname rating age
G.P. A

Conditions

AVG. A > 30

As another example, the following query prints the sids of sailors who have reserved
all boats for which there is some reservation:

Sailors sid sname rating age
P.G. Id

Reserves sid bid day
Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

For each Id value (notice the G. operator), we count all B1 values to get the
number of (distinct) bid values reserved by sailor Id. We compare this count
against the count of all B2 values, which is simply the total number of (distinct)
bid values in the Reserves relation (i.e., the number of boats with reservations).
If these counts are equal, the sailor has reserved all boats for which there is some
reservation. Incidentally, the following query, intended to print the names of such
sailors, is incorrect:

Sailors sid sname rating age
P.G. Id P.

Reserves sid bid day
Id B1

B2

Conditions

COUNT. B1 = COUNT. B2
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The problem is that in conjunction with G., only columns with either G. or an
aggregate operation can be printed. This limitation is a direct consequence of the
SQL definition of GROUPBY, which we discussed in Section 5.5.1; QBE is typically
implemented by translating queries into SQL. If P.G. replaces P. in the sname
column, the query is legal, and we then group by both sid and sname, which
results in the same groups as before because sid is a key for Sailors.

Express conditions involving the AND and OR operators. We can print the names
of sailors who are younger than 20 or older than 30 as follows:

Sailors sid sname rating age
P. A

Conditions

A < 20 OR 30 < A

We can print the names of sailors who are both younger than 20 and older than
30 by simply replacing the condition with A < 20 AND 30 < A; of course, the
set of such sailors is always empty! We can print the names of sailors who are
either older than 20 or have a rating equal to 8 by using the condition 20 < A OR
R = 8, and placing the variable R in the rating column of the example table.

6.6.1 And/Or Queries

It is instructive to consider how queries involving AND and OR can be expressed in QBE
without using a conditions box. We can print the names of sailors who are younger
than 30 or older than 20 by simply creating two example rows:

Sailors sid sname rating age
P. < 30
P. > 20

To translate a QBE query with several rows containing P., we create subformulas for
each row with a P. and connect the subformulas through ∨. If a row containing P. is
linked to other rows through shared variables (which is not the case in this example),
the subformula contains a term for each linked row, all connected using ∧. Notice how
the answer variable N , which must be a free variable, is handled:

{〈N〉 | ∃I1, N1, T1, A1, I2, N2, T2, A2(

〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∨〈I2, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

To print the names of sailors who are both younger than 30 and older than 20, we use
the same variable in the key fields of both rows:
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Sailors sid sname rating age
Id P. < 30
Id > 20

The DRC formula for this query contains a term for each linked row, and these terms
are connected using ∧:

{〈N〉 | ∃I1, N1, T1, A1, N2, T2, A2

(〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∧〈I1, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}
Compare this DRC query with the DRC version of the previous query to see how
closely they are related (and how closely QBE follows DRC).

6.7 UNNAMED COLUMNS

If we want to display some information in addition to fields retrieved from a relation, we
can create unnamed columns for display.3 As an example—admittedly, a silly one!—we
could print the name of each sailor along with the ratio rating/age as follows:

Sailors sid sname rating age
P. R A P. R / A

All our examples thus far have included P. commands in exactly one table. This is a
QBE restriction. If we want to display fields from more than one table, we have to use
unnamed columns. To print the names of sailors along with the dates on which they
have a boat reserved, we could use the following:

Sailors sid sname rating age
Id P. P. D

Reserves sid bid day
Id D

Note that unnamed columns should not be used for expressing conditions such as
D >8/9/96; a conditions box should be used instead.

6.8 UPDATES

Insertion, deletion, and modification of a tuple are specified through the commands
I., D., and U., respectively. We can insert a new tuple into the Sailors relation as
follows:

3A QBE facility includes simple commands for drawing empty example tables, adding fields, and
so on. We do not discuss these features but assume that they are available.
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Sailors sid sname rating age
I. 74 Janice 7 41

We can insert several tuples, computed essentially through a query, into the Sailors
relation as follows:

Sailors sid sname rating age
I. Id N A

Students sid name login age
Id N A

Conditions

A > 18 OR N LIKE ‘C%’

We insert one tuple for each student older than 18 or with a name that begins with C.
(QBE’s LIKE operator is similar to the SQL version.) The rating field of every inserted
tuple contains a null value. The following query is very similar to the previous query,
but differs in a subtle way:

Sailors sid sname rating age
I. Id1 N1 A1
I. Id2 N2 A2

Students sid name login age
Id1 N1 A1 > 18
Id2 N2 LIKE ‘C%’ A2

The difference is that a student older than 18 with a name that begins with ‘C’ is
now inserted twice into Sailors. (The second insertion will be rejected by the integrity
constraint enforcement mechanism because sid is a key for Sailors. However, if this
integrity constraint is not declared, we would find two copies of such a student in the
Sailors relation.)

We can delete all tuples with rating > 5 from the Sailors relation as follows:

Sailors sid sname rating age
D. > 5

We can delete all reservations for sailors with rating < 4 by using:
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Sailors sid sname rating age
Id < 4

Reserves sid bid day
D. Id

We can update the age of the sailor with sid 74 to be 42 years by using:

Sailors sid sname rating age
74 U.42

The fact that sid is the key is significant here; we cannot update the key field, but we
can use it to identify the tuple to be modified (in other fields). We can also change
the age of sailor 74 from 41 to 42 by incrementing the age value:

Sailors sid sname rating age
74 U. A+1

6.8.1 Restrictions on Update Commands

There are some restrictions on the use of the I., D., and U. commands. First, we
cannot mix these operators in a single example table (or combine them with P.).
Second, we cannot specify I., D., or U. in an example table that contains G. Third,
we cannot insert, update, or modify tuples based on values in fields of other tuples in
the same table. Thus, the following update is incorrect:

Sailors sid sname rating age
john U. A+1
joe A

This update seeks to change John’s age based on Joe’s age. Since sname is not a key,
the meaning of such a query is ambiguous—should we update every John’s age, and
if so, based on which Joe’s age? QBE avoids such anomalies using a rather broad
restriction. For example, if sname were a key, this would be a reasonable request, even
though it is disallowed.

6.9 DIVISION AND RELATIONAL COMPLETENESS *

In Section 6.6 we saw how division can be expressed in QBE using COUNT. It is instruc-
tive to consider how division can be expressed in QBE without the use of aggregate
operators. If we don’t use aggregate operators, we cannot express division in QBE
without using the update commands to create a temporary relation or view. However,
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taking the update commands into account, QBE is relationally complete, even without
the aggregate operators. Although we will not prove these claims, the example that
we discuss below should bring out the underlying intuition.

We use the following query in our discussion of division:

Find sailors who have reserved all boats.

In Chapter 4 we saw that this query can be expressed in DRC as:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

The ∀ quantifier is not available in QBE, so let us rewrite the above without ∀:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈B, BN, C〉 ∈ Boats

(¬∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

This calculus query can be read as follows: “Find Sailors tuples (with sid I) for which
there is no Boats tuple (with bid B) such that no Reserves tuple indicates that sailor
I has reserved boat B.” We might try to write this query in QBE as follows:

Sailors sid sname rating age
Id P. S

Boats bid bname color
¬ B

Reserves sid bid day
¬ Id B

This query is illegal because the variable B does not appear in any positive row.
Going beyond this technical objection, this QBE query is ambiguous with respect to
the ordering of the two uses of ¬. It could denote either the calculus query that we
want to express or the following calculus query, which is not what we want:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈Ir, Br, D〉 ∈ Reserves

(¬∃〈B, BN, C〉 ∈ Boats(I = Ir ∧ Br = B))}

There is no mechanism in QBE to control the order in which the ¬ operations in
a query are applied. (Incidentally, the above query finds all Sailors who have made
reservations only for boats that exist in the Boats relation.)

One way to achieve such control is to break the query into several parts by using
temporary relations or views. As we saw in Chapter 4, we can accomplish division in
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two logical steps: first, identify disqualified candidates, and then remove this set from
the set of all candidates. In the query at hand, we have to first identify the set of sids
(called, say, BadSids) of sailors who have not reserved some boat (i.e., for each such
sailor, we can find a boat not reserved by that sailor), and then we have to remove
BadSids from the set of sids of all sailors. This process will identify the set of sailors
who’ve reserved all boats. The view BadSids can be defined as follows:

Sailors sid sname rating age
Id

Reserves sid bid day
¬ Id B

Boats bid bname color
B

BadSids sid
I. Id

Given the view BadSids, it is a simple matter to find sailors whose sids are not in this
view.

The ideas in this example can be extended to show that QBE is relationally complete.

6.10 POINTS TO REVIEW

QBE is a user-friendly query language with a graphical interface. The interface
depicts each relation in tabular form. (Section 6.1)

Queries are posed by placing constants and variables into individual columns and
thereby creating an example tuple of the query result. Simple conventions are
used to express selections, projections, sorting, and duplicate elimination. (Sec-
tion 6.2)

Joins are accomplished in QBE by using the same variable in multiple locations.
(Section 6.3)

QBE provides a limited form of set difference through the use of ¬ in the relation-
name column. (Section 6.4)

Aggregation (AVG., COUNT., MAX., MIN., and SUM.) and grouping (G.) can be
expressed by adding prefixes. (Section 6.5)

The condition box provides a place for more complex query conditions, although
queries involving AND or OR can be expressed without using the condition box.
(Section 6.6)

New, unnamed fields can be created to display information beyond fields retrieved
from a relation. (Section 6.7)
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QBE provides support for insertion, deletion and updates of tuples. (Section 6.8)

Using a temporary relation, division can be expressed in QBE without using ag-
gregation. QBE is relationally complete, taking into account its querying and
view creation features. (Section 6.9)

EXERCISES

Exercise 6.1 Consider the following relational schema. An employee can work in more than

one department.

Emp(eid: integer, ename: string, salary: real)

Works(eid: integer, did: integer)

Dept(did: integer, dname: string, managerid: integer, floornum: integer)

Write the following queries in QBE. Be sure to underline your variables to distinguish them

from your constants.

1. Print the names of all employees who work on the 10th floor and make less than $50,000.

2. Print the names of all managers who manage three or more departments on the same

floor.

3. Print the names of all managers who manage 10 or more departments on the same floor.

4. Give every employee who works in the toy department a 10 percent raise.

5. Print the names of the departments that employee Santa works in.

6. Print the names and salaries of employees who work in both the toy department and the

candy department.

7. Print the names of employees who earn a salary that is either less than $10,000 or more

than $100,000.

8. Print all of the attributes for employees who work in some department that employee

Santa also works in.

9. Fire Santa.

10. Print the names of employees who make more than $20,000 and work in either the video

department or the toy department.

11. Print the names of all employees who work on the floor(s) where Jane Dodecahedron

works.

12. Print the name of each employee who earns more than the manager of the department

that he or she works in.

13. Print the name of each department that has a manager whose last name is Psmith and

who is neither the highest-paid nor the lowest-paid employee in the department.

Exercise 6.2 Write the following queries in QBE, based on this schema:
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Suppliers(sid: integer, sname: string, city: string)

Parts(pid: integer, pname: string, color: string)

Orders(sid: integer, pid: integer, quantity: integer)

1. For each supplier from whom all of the following things have been ordered in quantities

of at least 150, print the name and city of the supplier: a blue gear, a red crankshaft,

and a yellow bumper.

2. Print the names of the purple parts that have been ordered from suppliers located in

Madison, Milwaukee, or Waukesha.

3. Print the names and cities of suppliers who have an order for more than 150 units of a

yellow or purple part.

4. Print the pids of parts that have been ordered from a supplier named American but have

also been ordered from some supplier with a different name in a quantity that is greater

than the American order by at least 100 units.

5. Print the names of the suppliers located in Madison. Could there be any duplicates in

the answer?

6. Print all available information about suppliers that supply green parts.

7. For each order of a red part, print the quantity and the name of the part.

8. Print the names of the parts that come in both blue and green. (Assume that no two

distinct parts can have the same name and color.)

9. Print (in ascending order alphabetically) the names of parts supplied both by a Madison

supplier and by a Berkeley supplier.

10. Print the names of parts supplied by a Madison supplier, but not supplied by any Berkeley

supplier. Could there be any duplicates in the answer?

11. Print the total number of orders.

12. Print the largest quantity per order for each sid such that the minimum quantity per

order for that supplier is greater than 100.

13. Print the average quantity per order of red parts.

14. Can you write this query in QBE? If so, how?

Print the sids of suppliers from whom every part has been ordered.

Exercise 6.3 Answer the following questions:

1. Describe the various uses for unnamed columns in QBE.

2. Describe the various uses for a conditions box in QBE.

3. What is unusual about the treatment of duplicates in QBE?

4. Is QBE based upon relational algebra, tuple relational calculus, or domain relational

calculus? Explain briefly.

5. Is QBE relationally complete? Explain briefly.

6. What restrictions does QBE place on update commands?
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PROJECT-BASED EXERCISES

Exercise 6.4 Minibase’s version of QBE, called MiniQBE, tries to preserve the spirit of

QBE but cheats occasionally. Try the queries shown in this chapter and in the exercises,

and identify the ways in which MiniQBE differs from QBE. For each QBE query you try in

MiniQBE, examine the SQL query that it is translated into by MiniQBE.

BIBLIOGRAPHIC NOTES

The QBE project was led by Moshe Zloof [702] and resulted in the first visual database query

language, whose influence is seen today in products such as Borland’s Paradox and, to a

lesser extent, Microsoft’s Access. QBE was also one of the first relational query languages

to support the computation of transitive closure, through a special operator, anticipating

much subsequent research into extensions of relational query languages to support recursive

queries. A successor called Office-by-Example [701] sought to extend the QBE visual interac-

tion paradigm to applications such as electronic mail integrated with database access. Klug

presented a version of QBE that dealt with aggregate queries in [377].
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