
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Database Management Systems

Chapter 1

Instructor: Raghu Ramakrishnan
raghu@cs.wisc.edu

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

What Is a DBMS?

� A very large, integrated collection of data.
� Models real-world enterprise.

� Entities (e.g., students, courses)
� Relationships (e.g., Madonna is taking CS564)

� A Database Management System (DBMS) is a
software package designed to store and
manage databases.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Files vs. DBMS

� Application must stage large datasets
between main memory and secondary
storage (e.g., buffering, page-oriented access,
32-bit addressing, etc.)

� Special code for different queries
� Must protect data from inconsistency due to

multiple concurrent users
� Crash recovery
� Security and access control

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Why Use a DBMS?

� Data independence and efficient access.
� Reduced application development time.
� Data integrity and security.
� Uniform data administration.
� Concurrent access, recovery from crashes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Why Study Databases??

� Shift from computation to information
� at the “low end”: scramble to webspace (a mess!)
� at the “high end”: scientific applications

� Datasets increasing in diversity and volume.
� Digital libraries, interactive video, Human

Genome project, EOS project
� ... need for DBMS exploding

� DBMS encompasses most of CS
� OS, languages, theory, “A”I, multimedia, logic

?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Data Models
� A data model is a collection of concepts for

describing data.
� A schema is a description of a particular

collection of data, using the a given data
model.

� The relational model of data is the most widely
used model today.

� Main concept: relation, basically a table with rows
and columns.

� Every relation has a schema, which describes the
columns, or fields.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Levels of Abstraction
� Many views, single

conceptual (logical) schema
and physical schema.

� Views describe how users
see the data.

� Conceptual schema defines
logical structure

� Physical schema describes
the files and indexes used.

* Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Example: University Database

� Conceptual schema:
� Students(sid: string, name: string, login: string,

age: integer, gpa:real)
� Courses(cid: string, cname:string, credits:integer)
� Enrolled(sid:string, cid:string, grade:string)

� Physical schema:
� Relations stored as unordered files.
� Index on first column of Students.

� External Schema (View):
� Course_info(cid:string,enrollment:integer)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Data Independence *

� Applications insulated from how data is
structured and stored.

� Logical data independence: Protection from
changes in logical structure of data.

� Physical data independence: Protection from
changes in physical structure of data.

* One of the most important benefits of using a DBMS!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Concurrency Control
� Concurrent execution of user programs

is essential for good DBMS performance.
� Because disk accesses are frequent, and relatively

slow, it is important to keep the cpu humming by
working on several user programs concurrently.

� Interleaving actions of different user programs
can lead to inconsistency: e.g., check is cleared
while account balance is being computed.

� DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Transaction: An Execution of a DB Program
� Key concept is transaction, which is an atomic

sequence of database actions (reads/writes).
� Each transaction, executed completely, must

leave the DB in a consistent state if DB is
consistent when the transaction begins.

� Users can specify some simple integrity constraints on
the data, and the DBMS will enforce these constraints.

� Beyond this, the DBMS does not really understand the
semantics of the data. (e.g., it does not understand
how the interest on a bank account is computed).

� Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Scheduling Concurrent Transactions
� DBMS ensures that execution of {T1, ... , Tn} is

equivalent to some serial execution T1’ ... Tn’.
� Before reading/writing an object, a transaction requests

a lock on the object, and waits till the DBMS gives it the
lock. All locks are released at the end of the transaction.
(Strict 2PL locking protocol.)

� Idea: If an action of Ti (say, writing X) affects Tj (which
perhaps reads X), one of them, say Ti, will obtain the
lock on X first and Tj is forced to wait until Ti completes;
this effectively orders the transactions.

� What if Tj already has a lock on Y and Ti later requests a
lock on Y? (Deadlock!) Ti or Tj is aborted and restarted!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Ensuring Atomicity

� DBMS ensures atomicity (all-or-nothing property)
even if system crashes in the middle of a Xact.

� Idea: Keep a log (history) of all actions carried out
by the DBMS while executing a set of Xacts:

� Before a change is made to the database, the
corresponding log entry is forced to a safe location.
(WAL protocol; OS support for this is often inadequate.)

� After a crash, the effects of partially executed
transactions are undone using the log. (Thanks to WAL, if
log entry wasn’t saved before the crash, corresponding
change was not applied to database!)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

The Log
� The following actions are recorded in the log:

� Ti writes an object: the old value and the new value.
• Log record must go to disk before the changed page!

� Ti commits/aborts: a log record indicating this action.
� Log records chained together by Xact id, so it’s easy to

undo a specific Xact (e.g., to resolve a deadlock).
� Log is often duplexed and archived on “stable” storage.
� All log related activities (and in fact, all CC related

activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Databases make these folks happy ...

� End users and DBMS vendors
� DB application programmers

� E.g. smart webmasters
� Database administrator (DBA)

� Designs logical /physical schemas
� Handles security and authorization
� Data availability, crash recovery
� Database tuning as needs evolve

Must understand how a DBMS works!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Structure of a DBMS

� A typical DBMS has a
layered architecture.

� The figure does not
show the concurrency
control and recovery
components.

� This is one of several
possible architectures;
each system has its own
variations.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Summary
� DBMS used to maintain, query large datasets.
� Benefits include recovery from system crashes,

concurrent access, quick application
development, data integrity and security.

� Levels of abstraction give data independence.
� A DBMS typically has a layered architecture.
� DBAs hold responsible jobs

and are well-paid!
� DBMS R&D is one of the broadest,

most exciting areas in CS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

The Entity-Relationship Model

Chapter 2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview of Database Design

� Conceptual design: (ER Model is used at this stage.)
� What are the entities and relationships in the

enterprise?
� What information about these entities and

relationships should we store in the database?
� What are the integrity constraints or business rules that

hold?
� A database `schema’ in the ER Model can be

represented pictorially (ER diagrams).
� Can map an ER diagram into a relational schema.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

ER Model Basics

� Entity: Real-world object distinguishable
from other objects. An entity is described
(in DB) using a set of attributes.

� Entity Set: A collection of similar entities.
E.g., all employees.

� All entities in an entity set have the same set of
attributes. (Until we consider ISA hierarchies,
anyway!)

� Each entity set has a key.
� Each attribute has a domain.

Employees

ssn
name

lot

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

ER Model Basics (Contd.)

� Relationship: Association among two or more entities.
E.g., Attishoo works in Pharmacy department.

� Relationship Set: Collection of similar relationships.
� An n-ary relationship set R relates n entity sets E1 ... En;

each relationship in R involves entities e1 E1, ..., en En
• Same entity set could participate in different

relationship sets, or in different “roles” in same set.

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Reports_To

lot

name

Employees

subor-
dinate

super-
visor

ssn

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Key Constraints

� Consider Works_In:
An employee can
work in many
departments; a dept
can have many
employees.

� In contrast, each
dept has at most
one manager,
according to the
key constraint on
Manages.

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Participation Constraints
� Does every department have a manager?

� If so, this is a participation constraint: the participation of
Departments in Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a row of
the Manages table (with a non-null ssn value!)

lot
name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Weak Entities
� A weak entity can be identified uniquely only by considering

the primary key of another (owner) entity.
� Owner entity set and weak entity set must participate in a one-to-

many relationship set (one owner, many weak entities).
� Weak entity set must have total participation in this identifying

relationship set.

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

ISA (`is a’) Hierarchies

Contract _Emps

name
ssn

Employees

lot

hour ly_wages
ISA

Hour ly_Emps

contractid

hours_workedvAs in C++, or other PLs,
attributes are inherited.
vIf we declare A ISA B, every A
entity is also considered to be a B
entity.

� Overlap constraints: Can Joe be an Hourly_Emps as well as
a Contract_Emps entity? (Allowed/disallowed)

� Covering constraints: Does every Employees entity also have
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

� Reasons for using ISA:
� To add descriptive attributes specific to a subclass.
� To identify entitities that participate in a relationship.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Aggregation
� Used when we have

to model a
relationship
involving (entitity
sets and) a
relationship set.

� Aggregation allows us
to treat a relationship
set as an entity set
for purposes of
participation in
(other) relationships.

* Aggregation vs. ternary relationship:
v Monitors is a distinct relationship,
with a descriptive attribute.
v Also, can say that each sponsorship
is monitored by at most one employee.

budgetdidpid

started_on

pbudget
dname

until

DepartmentsProjects Sponsors

Employees

Monitors

lot
name

ssn

since

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Conceptual Design Using the ER Model
� Design choices:

� Should a concept be modeled as an entity or an
attribute?

� Should a concept be modeled as an entity or a
relationship?

� Identifying relationships: Binary or ternary?
Aggregation?

� Constraints in the ER Model:
� A lot of data semantics can (and should) be captured.
� But some constraints cannot be captured in ER

diagrams.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Entity vs. Attribute
� Should address be an attribute of Employees or an

entity (connected to Employees by a relationship)?
� Depends upon the use we want to make of address

information, and the semantics of the data:
• If we have several addresses per employee, address

must be an entity (since attributes cannot be set-
valued).

• If the structure (city, street, etc.) is important, e.g., we
want to retrieve employees in a given city, address
must be modeled as an entity (since attribute values
are atomic).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Entity vs. Attribute (Contd.)

� Works_In4 does not
allow an employee to
work in a department
for two or more periods.

� Similar to the problem of
wanting to record several
addresses for an employee:
We want to record several
values of the descriptive
attributes for each instance of
this relationship.
Accomplished by
introducing new entity set,
Duration.

name

Employees

ssn lot

Works_In4

from to
dname

budgetdid

Departments

dname
budgetdid

name

Departments

ssn lot

Employees Works_In4

Durationfrom to

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Entity vs. Relationship
� First ER diagram OK if

a manager gets a
separate discretionary
budget for each dept.

� What if a manager gets
a discretionary
budget that covers
all managed depts?

� Redundancy: dbudget
stored for each dept
managed by manager.

� Misleading: Suggests
dbudget associated with
department-mgr
combination.

Manages2

name dname
budgetdid

Employees Departments

ssn lot

dbudgetsince

dname
budgetdid

DepartmentsManages2

Employees

name
ssn lot

since

Managers dbudget

ISA

This fixes the
problem!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Binary vs. Ternary Relationships
� If each policy is

owned by just 1
employee, and
each dependent
is tied to the
covering policy,
first diagram is
inaccurate.

� What are the
additional
constraints in the
2nd diagram?

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Binary vs. Ternary Relationships (Contd.)
� Previous example illustrated a case when two

binary relationships were better than one ternary
relationship.

� An example in the other direction: a ternary
relation Contracts relates entity sets Parts,
Departments and Suppliers, and has descriptive
attribute qty. No combination of binary
relationships is an adequate substitute:

� S “can-supply” P, D “needs” P, and D “deals-with” S
does not imply that D has agreed to buy P from S.

� How do we record qty?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Summary of Conceptual Design
� Conceptual design follows requirements analysis,

� Yields a high-level description of data to be stored
� ER model popular for conceptual design

� Constructs are expressive, close to the way people think
about their applications.

� Basic constructs: entities, relationships, and attributes
(of entities and relationships).

� Some additional constructs: weak entities, ISA
hierarchies, and aggregation.

� Note: There are many variations on ER model.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Summary of ER (Contd.)
� Several kinds of integrity constraints can be expressed

in the ER model: key constraints, participation
constraints, and overlap/covering constraints for ISA
hierarchies. Some foreign key constraints are also
implicit in the definition of a relationship set.

� Some constraints (notably, functional dependencies) cannot be
expressed in the ER model.

� Constraints play an important role in determining the best
database design for an enterprise.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Summary of ER (Contd.)
� ER design is subjective. There are often many ways

to model a given scenario! Analyzing alternatives
can be tricky, especially for a large enterprise.
Common choices include:

� Entity vs. attribute, entity vs. relationship, binary or n-
ary relationship, whether or not to use ISA hierarchies,
and whether or not to use aggregation.

� Ensuring good database design: resulting
relational schema should be analyzed and refined
further. FD information and normalization
techniques are especially useful.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

The Relational Model

Chapter 3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Why Study the Relational Model?

� Most widely used model.
� Vendors: IBM, Informix, Microsoft, Oracle,

Sybase, etc.
� “Legacy systems” in older models

� E.G., IBM’s IMS
� Recent competitor: object-oriented model

� ObjectStore, Versant, Ontos
� A synthesis emerging: object-relational model

• Informix Universal Server, UniSQL, O2, Oracle, DB2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Relational Database: Definitions

� Relational database: a set of relations
� Relation: made up of 2 parts:

� Instance : a table, with rows and columns.
#Rows = cardinality, # fields = degree / arity.

� Schema : specifies name of relation, plus name and
type of each column.

• E.G. Students(sid: string, name: string, login: string,
age: integer, gpa: real).

� Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Example Instance of Students Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

� Cardinality = 3, degree = 5, all rows distinct
� Do all columns in a relation instance have to

be distinct?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Relational Query Languages

� A major strength of the relational model:
supports simple, powerful querying of data.

� Queries can be written intuitively, and the
DBMS is responsible for efficient evaluation.

� The key: precise semantics for relational queries.
� Allows the optimizer to extensively re-order

operations, and still ensure that the answer does
not change.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

The SQL Query Language

� Developed by IBM (system R) in the 1970s
� Need for a standard since it is used by many

vendors
� Standards:

� SQL-86
� SQL-89 (minor revision)
� SQL-92 (major revision)
� SQL-99 (major extensions, current standard)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

The SQL Query Language

� To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Querying Multiple Relations
� What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instance
of Enrolled (is this possible if
the DBMS ensures referential
integrity?):

we get:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Creating Relations in SQL
� Creates the Students

relation. Observe that the
type (domain) of each field
is specified, and enforced by
the DBMS whenever tuples
are added or modified.

� As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Destroying and Altering Relations

� Destroys the relation Students. The schema
information and the tuples are deleted.

DROP TABLE Students

� The schema of Students is altered by adding a
new field; every tuple in the current instance
is extended with a null value in the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Adding and Deleting Tuples

� Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

� Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

* Powerful variants of these commands are available; more later!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Integrity Constraints (ICs)
� IC: condition that must be true for any instance

of the database; e.g., domain constraints.
� ICs are specified when schema is defined.
� ICs are checked when relations are modified.

� A legal instance of a relation is one that satisfies
all specified ICs.

� DBMS should not allow illegal instances.
� If the DBMS checks ICs, stored data is more

faithful to real-world meaning.
� Avoids data entry errors, too!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Primary Key Constraints

� A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all

key fields, and
2. This is not true for any subset of the key.

� Part 2 false? A superkey.
� If there’s >1 key for a relation, one of the keys is

chosen (by DBA) to be the primary key.
� E.g., sid is a key for Students. (What about

name?) The set {sid, gpa} is a superkey.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Primary and Candidate Keys in SQL
� Possibly many candidate keys (specified using

UNIQUE), one of which is chosen as the primary key.
CREATE TABLE Enrolled

(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

� “For a given student and course,
there is a single grade.” vs.
“Students can take only one
course, and receive a single grade
for that course; further, no two
students in a course receive the
same grade.”

� Used carelessly, an IC can prevent
the storage of database instances
that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)

cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Foreign Keys, Referential Integrity

� Foreign key : Set of fields in one relation that is used
to `refer’ to a tuple in another relation. (Must
correspond to primary key of the second relation.)
Like a `logical pointer’.

� E.g. sid is a foreign key referring to Students:
� Enrolled(sid: string, cid: string, grade: string)
� If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
� Can you name a data model w/o referential integrity?

• Links in HTML!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Foreign Keys in SQL
� Only students listed in the Students relation should

be allowed to enroll for courses.
CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Enforcing Referential Integrity
� Consider Students and Enrolled; sid in Enrolled is a

foreign key that references Students.
� What should be done if an Enrolled tuple with a

non-existent student id is inserted? (Reject it!)
� What should be done if a Students tuple is deleted?

� Also delete all Enrolled tuples that refer to it.
� Disallow deletion of a Students tuple that is referred to.
� Set sid in Enrolled tuples that refer to it to a default sid.
� (In SQL, also: Set sid in Enrolled tuples that refer to it to a

special value null, denoting `unknown’ or `inapplicable’.)
� Similar if primary key of Students tuple is updated.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Referential Integrity in SQL

� SQL/92 and SQL:1999
support all 4 options on
deletes and updates.

� Default is NO ACTION
(delete/update is rejected)

� CASCADE (also delete
all tuples that refer to
deleted tuple)

� SET NULL / SET DEFAULT
(sets foreign key value
of referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Where do ICs Come From?
� ICs are based upon the semantics of the real-

world enterprise that is being described in the
database relations.

� We can check a database instance to see if an
IC is violated, but we can NEVER infer that
an IC is true by looking at an instance.

� An IC is a statement about all possible instances!
� From example, we know name is not a key, but the

assertion that sid is a key is given to us.
� Key and foreign key ICs are the most

common; more general ICs supported too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Logical DB Design: ER to Relational

� Entity sets to tables:

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))Employees

ssn
name

lot

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Relationship Sets to Tables

� In translating a relationship
set to a relation, attributes of
the relation must include:

� Keys for each
participating entity set
(as foreign keys).

• This set of attributes
forms a superkey for
the relation.

� All descriptive attributes.

CREATE TABLE Works_In(
ssn CHAR(1),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Review: Key Constraints

� Each dept has at
most one manager,
according to the
key constraint on
Manages.

Translation to
relational model?

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Translating ER Diagrams with Key Constraints

� Map relationship to a
table:

� Note that did is
the key now!

� Separate tables for
Employees and
Departments.

� Since each
department has a
unique manager, we
could instead
combine Manages
and Departments.

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Review: Participation Constraints
� Does every department have a manager?

� If so, this is a participation constraint: the participation of
Departments in Manages is said to be total (vs. partial).

• Every did value in Departments table must appear in a
row of the Manages table (with a non-null ssn value!)

lot
name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Participation Constraints in SQL
� We can capture participation constraints involving

one entity set in a binary relationship, but little else
(without resorting to CHECK constraints).

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Review: Weak Entities
� A weak entity can be identified uniquely only by

considering the primary key of another (owner) entity.
� Owner entity set and weak entity set must participate in a

one-to-many relationship set (1 owner, many weak entities).
� Weak entity set must have total participation in this

identifying relationship set.

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Translating Weak Entity Sets
� Weak entity set and identifying relationship

set are translated into a single table.
� When the owner entity is deleted, all owned weak

entities must also be deleted.
CREATE TABLE Dep_Policy (

pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Review: ISA Hierarchies

Contract _Emps

name
ssn

Employees

lot

hour ly_wages
ISA

Hour ly_Emps

contractid

hours_worked

� As in C++, or other PLs,
attributes are inherited.

� If we declare A ISA B, every A
entity is also considered to be a B
entity.

� Overlap constraints: Can Joe be an Hourly_Emps as well as
a Contract_Emps entity? (Allowed/disallowed)

� Covering constraints: Does every Employees entity also have
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Translating ISA Hierarchies to Relations
� General approach:

� 3 relations: Employees, Hourly_Emps and Contract_Emps.
• Hourly_Emps: Every employee is recorded in

Employees. For hourly emps, extra info recorded in
Hourly_Emps (hourly_wages, hours_worked, ssn); must
delete Hourly_Emps tuple if referenced Employees
tuple is deleted).

• Queries involving all employees easy, those involving
just Hourly_Emps require a join to get some attributes.

� Alternative: Just Hourly_Emps and Contract_Emps.
� Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked.
� Each employee must be in one of these two subclasses.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Review: Binary vs. Ternary
Relationships

� What are the
additional
constraints in
the 2nd
diagram?

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Binary vs. Ternary Relationships (Contd.)
� The key

constraints allow
us to combine
Purchaser with
Policies and
Beneficiary with
Dependents.

� Participation
constraints lead to
NOT NULL
constraints.

� What if Policies is
a weak entity set?

CREATE TABLE Policies (
policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid).
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

CREATE TABLE Dependents (
pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Views

� A view is just a relation, but we store a
definition, rather than a set of tuples.

CREATE VIEW YoungActiveStudents (name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

� Views can be dropped using the DROP VIEW command.
� How to handle DROP TABLE if there’s a view on the table?

• DROP TABLE command has options to let the user specify
this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Views and Security

� Views can be used to present necessary
information (or a summary), while hiding
details in underlying relation(s).

� Given YoungStudents, but not Students or
Enrolled, we can find students s who have are
enrolled, but not the cid’s of the courses they are
enrolled in.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Relational Model: Summary

� A tabular representation of data.
� Simple and intuitive, currently the most widely used.
� Integrity constraints can be specified by the DBA,

based on application semantics. DBMS checks for
violations.

� Two important ICs: primary and foreign keys
� In addition, we always have domain constraints.

� Powerful and natural query languages exist.
� Rules to translate ER to relational model

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Relational Algebra

Chapter 4, Part A

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Relational Query Languages
� Query languages: Allow manipulation and retrieval

of data from a database.
� Relational model supports simple, powerful QLs:

� Strong formal foundation based on logic.
� Allows for much optimization.

� Query Languages != programming languages!
� QLs not expected to be “Turing complete”.
� QLs not intended to be used for complex calculations.
� QLs support easy, efficient access to large data sets.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Formal Relational Query Languages

� Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL), and
for implementation:

� Relational Algebra: More operational, very useful
for representing execution plans.

� Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
operational, declarative.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Preliminaries
� A query is applied to relation instances, and the

result of a query is also a relation instance.
� Schemas of input relations for a query are fixed (but

query will run regardless of instance!)
� The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

� Positional vs. named-field notation:
� Positional notation easier for formal definitions,

named-field notation more readable.
� Both used in SQL

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example Instances

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

� “Sailors” and “Reserves”
relations for our examples.

� We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Relational Algebra
� Basic operations:

� Selection () Selects a subset of rows from relation.
� Projection () Deletes unwanted columns from relation.
� Cross-product () Allows us to combine two relations.
� Set-difference () Tuples in reln. 1, but not in reln. 2.
� Union () Tuples in reln. 1 and in reln. 2.

� Additional operations:
� Intersection, join, division, renaming: Not essential, but

(very!) useful.
� Since each operation returns a relation, operations

can be composed! (Algebra is “closed”.)

σ
π

−
×

�

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Projection
sname rating

yuppy 9
lubber 8
guppy 5
rusty 10

π
sname rating

S
,

()2

age
35.0
55.5

πage S()2

� Deletes attributes that are not in
projection list.

� Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

� Projection operator has to
eliminate duplicates! (Why??)

� Note: real systems typically
don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Selection

σ
rating

S>8
2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σ
sname rating rating

S
,

(())>8
2

� Selects rows that satisfy
selection condition.

� No duplicates in result!
(Why?)

� Schema of result
identical to schema of
(only) input relation.

� Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Union, Intersection, Set-Difference

� All of these operations take
two input relations, which
must be union-compatible:

� Same number of fields.
� `Corresponding’ fields

have the same type.
� What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Cross-Product
� Each row of S1 is paired with each row of R1.
� Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
� Conflict: Both S1 and R1 have a field called sid.

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

� Renaming operator:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Joins
� Condition Join:

� Result schema same as that of cross-product.
� Fewer tuples than cross-product, might be

able to compute more efficiently
� Sometimes called a theta-join.

R c S c R S
� �

= ×σ ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1

� �

. .<

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Joins
� Equi-Join: A special case of condition join where

the condition c contains only equalities.

� Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

� Natural Join: Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1
� �

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Division
� Not supported as a primitive operator, but useful for

expressing queries like:
Find sailors who have reserved all boats.

� Let A have 2 fields, x and y; B have only field y:
� A/B =
� i.e., A/B contains all x tuples (sailors) such that for every y

tuple (boat) in B, there is an xy tuple in A.
� Or: If the set of y values (boats) associated with an x value

(sailor) in A contains all y values in B, the x value is in A/B.
� In general, x and y can be any lists of fields; y is the

list of fields in B, and x y is the list of fields of A.

{ }x x y A y B| ,∃ ∈ ∀ ∈

∪

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Expressing A/B Using Basic Operators

� Division is not essential op; just a useful shorthand.
� (Also true of joins, but joins are so common that systems

implement joins specially.)
� Idea: For A/B, compute all x values that are not

`disqualified’ by some y value in B.
� x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.

Disqualified x values:

A/B:

π πx x A B A((()))× −

π x A() − all disqualified tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Find names of sailors who’ve reserved boat #103

� Solution 1: π σsname bid
serves Sailors((Re))=103

� �

� Solution 2: ρ σ(, Re)Temp serves
bid

1
103=

ρ (,)Temp Temp Sailors2 1 � �

π sname Temp()2

� Solution 3: π σsname bid
serves Sailors((Re))=103

� �

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Find names of sailors who’ve reserved a red boat

� Information about boat color only available in
Boats; so need an extra join:

π σsname color red
Boats serves Sailors((

' '
) Re)=

� � � �

� A more efficient solution:

π π π σsname sid bid color red
Boats s Sailors(((

' '
) Re))=

� � � �

A query optimizer can find this, given the first solution!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Find sailors who’ve reserved a red or a green boat
� Can identify all red or green boats, then find

sailors who’ve reserved one of these boats:

ρ σ(, (
' ' ' '

))Tempboats
color red color green

Boats= ∨ =

π sname Tempboats serves Sailors(Re)
� � � �

� Can also define Tempboats using union! (How?)
� What happens if is replaced by in this query?∨ ∧

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Find sailors who’ve reserved a red and a green boat

� Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ(, ((
' '

) Re))Tempred
sid color red

Boats serves=
� �

π sname Tempred Tempgreen Sailors(())∩ � �

ρ π σ(, ((
' '

) Re))Tempgreen
sid color green

Boats serves=
� �

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Find the names of sailors who’ve reserved all boats

� Uses division; schemas of the input relations
to / must be carefully chosen:

ρ π π(, (
,

Re) / ())Tempsids
sid bid

serves
bid

Boats

π sname Tempsids Sailors()
� �

� To find sailors who’ve reserved all ‘Interlake’ boats:

/ (
' '

)π σ
bid bname Interlake

Boats=.....

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Summary

� The relational model has rigorously defined
query languages that are simple and
powerful.

� Relational algebra is more operational; useful
as internal representation for query
evaluation plans.

� Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

SQL: Queries, Programming,
Triggers

Chapter 5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Example Instances

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day

22 101 10/10/96
58 103 11/12/96

R1

S1

S2

� We will use these
instances of the
Sailors and
Reserves relations
in our examples.

� If the key for the
Reserves relation
contained only the
attributes sid and
bid, how would the
semantics differ?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Basic SQL Query

� relation-list A list of relation names (possibly with a
range-variable after each name).

� target-list A list of attributes of relations in relation-list
� qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of)
combined using AND, OR and NOT.

� DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

< > = ≤ ≥ ≠, , , , ,

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Conceptual Evaluation Strategy
� Semantics of an SQL query defined in terms of the

following conceptual evaluation strategy:
� Compute the cross-product of relation-list.
� Discard resulting tuples if they fail qualifications.
� Delete attributes that are not in target-list.
� If DISTINCT is specified, eliminate duplicate rows.

� This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

A Note on Range Variables

� Really needed only if the same relation
appears twice in the FROM clause. The
previous query can also be written as:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid

AND bid=103

It is good style,
however, to use
range variables
always!OR

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Find sailors who’ve reserved at least one boat

� Would adding DISTINCT to this query make a
difference?

� What is the effect of replacing S.sid by S.sname in
the SELECT clause? Would adding DISTINCT to
this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Expressions and Strings

� Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for sailors whose names
begin and end with B and contain at least three characters.

� AS and = are two ways to name fields in result.
� LIKE is used for string matching. `_’ stands for any

one character and `%’ stands for 0 or more arbitrary
characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Find sid’s of sailors who’ve reserved a red or a green boat

� UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

� If we replace OR by AND in
the first version, what do
we get?

� Also available: EXCEPT
(What do we get if we
replace UNION by EXCEPT?)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Find sid’s of sailors who’ve reserved a red and a green boat

� INTERSECT: Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

� Included in the SQL/92
standard, but some
systems don’t support it.

� Contrast symmetry of the
UNION and INTERSECT
queries with how much
the other versions differ.

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=‘red’ AND B2.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Key field!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Nested Queries

� A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM
and HAVING clauses.)

� To find sailors who’ve not reserved #103, use NOT IN.
� To understand semantics of nested queries, think of a

nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

Find names of sailors who’ve reserved boat #103:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Nested Queries with Correlation

� EXISTS is another set comparison operator, like IN.
� If UNIQUE is used, and * is replaced by R.bid, finds

sailors with at most one reservation for boat #103.
(UNIQUE checks for duplicate tuples; * denotes all
attributes. Why do we have to replace * by R.bid?)

� Illustrates why, in general, subquery must be re-
computed for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

More on Set-Comparison Operators

� We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

� Also available: op ANY, op ALL, op IN
� Find sailors whose rating is greater than that of some

sailor called Horatio:

> < = ≥ ≤ ≠, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Rewriting INTERSECT Queries Using IN

� Similarly, EXCEPT queries re-written using NOT IN.
� To find names (not sid’s) of Sailors who’ve reserved

both red and green boats, just replace S.sid by S.sname
in SELECT clause. (What about INTERSECT query?)

Find sid’s of sailors who’ve reserved both a red and a green boat:

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=‘green’)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Division in SQL

� Let’s do it the hard
way, without EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS

((SELECT B.bid
FROM Boats B)

EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

(1)

(2)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Aggregate Operators
� Significant extension of

relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Find name and age of the oldest sailor(s)

� The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)

� The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

GROUP BY and HAVING
� So far, we’ve applied aggregate operators to all

(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

� Consider: Find the age of the youngest sailor for each
rating level.

� In general, we don’t know how many rating levels
exist, and what the rating values for these levels are!

� Suppose we know that rating values go from 1 to 10;
we can write 10 queries that look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Queries With GROUP BY and HAVING

� The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).

� The attribute list (i) must be a subset of grouping-list.
Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Conceptual Evaluation
� The cross-product of relation-list is computed, tuples

that fail qualification are discarded, `unnecessary’ fields
are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

� The group-qualification is then applied to eliminate
some groups. Expressions in group-qualification must
have a single value per group!

� In effect, an attribute in group-qualification that is not an
argument of an aggregate op also appears in grouping-list.
(SQL does not exploit primary key semantics here!)

� One answer tuple is generated per qualifying group.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

� Only S.rating and S.age are
mentioned in the SELECT,
GROUP BY or HAVING clauses;
other attributes `unnecessary’.

� 2nd column of result is
unnamed. (Use AS to name it.)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

Answer relation

≥

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

For each red boat, find the number of
reservations for this boat

� Grouping over a join of three relations.
� What do we get if we remove B.color=‘red’

from the WHERE clause and add a HAVING
clause with this condition?

� What if we drop Sailors and the condition
involving S.sid?

SELECT B.bid, COUNT (*) AS scount
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Find the age of the youngest sailor with age > 18,
for each rating with at least 2 sailors (of any age)

� Shows HAVING clause can also contain a subquery.
� Compare this with the query where we considered

only ratings with 2 sailors over 18!
� What if HAVING clause is replaced by:

� HAVING COUNT(*) >1

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Find those ratings for which the average
age is the minimum over all ratings

� Aggregate operations cannot be nested! WRONG:
SELECT S.rating
FROM Sailors S
WHERE S.age = (SELECT MIN (AVG (S2.age)) FROM Sailors S2)

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp.avgage)
FROM Temp)

v Correct solution (in SQL/92):

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Null Values
� Field values in a tuple are sometimes unknown (e.g., a

rating has not been assigned) or inapplicable (e.g., no
spouse’s name).

� SQL provides a special value null for such situations.
� The presence of null complicates many issues. E.g.:

� Special operators needed to check if value is/is not null.
� Is rating>8 true or false when rating is equal to null? What

about AND, OR and NOT connectives?
� We need a 3-valued logic (true, false and unknown).
� Meaning of constructs must be defined carefully. (e.g.,

WHERE clause eliminates rows that don’t evaluate to true.)
� New operators (in particular, outer joins) possible/needed.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Integrity Constraints (Review)
� An IC describes conditions that every legal instance

of a relation must satisfy.
� Inserts/deletes/updates that violate IC’s are disallowed.
� Can be used to ensure application semantics (e.g., sid is a

key), or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)

� Types of IC’s: Domain constraints, primary key
constraints, foreign key constraints, general
constraints.

� Domain constraints: Field values must be of right type.
Always enforced.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

General Constraints

� Useful when
more general
ICs than keys
are involved.

� Can use queries
to express
constraint.

� Constraints can
be named.

CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1

AND rating <= 10)
CREATE TABLE Reserves

(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Constraints Over Multiple Relations
CREATE TABLE Sailors

(sid INTEGER,
sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

� Awkward and
wrong!

� If Sailors is
empty, the
number of Boats
tuples can be
anything!

� ASSERTION is the
right solution;
not associated
with either table.

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Triggers

� Trigger: procedure that starts automatically if
specified changes occur to the DBMS

� Three parts:
� Event (activates the trigger)
� Condition (tests whether the triggers should run)
� Action (what happens if the trigger runs)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Triggers: Example (SQL:1999)

CREATE TRIGGER youngSailorUpdate
AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Summary
� SQL was an important factor in the early acceptance

of the relational model; more natural than earlier,
procedural query languages.

� Relationally complete; in fact, significantly more
expressive power than relational algebra.

� Even queries that can be expressed in RA can often
be expressed more naturally in SQL.

� Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.

� In practice, users need to be aware of how queries are
optimized and evaluated for best results.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Summary (Contd.)
� NULL for unknown field values brings many

complications
� SQL allows specification of rich integrity

constraints
� Triggers respond to changes in the database

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Database Application Development

Chapter 6

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview

Concepts covered in this lecture:
SQL in application code
Embedded SQL
Cursors
Dynamic SQL
JDBC
SQLJ
Stored procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

SQL in Application Code
SQL commands can be called from within a
host language (e.g., C++ or Java) program.

SQL statements can refer to host variables
(including special variables used to return status).
Must include a statement to connect to the right
database.

Two main integration approaches:
Embed SQL in the host language (Embedded SQL,
SQLJ)
Create special API to call SQL commands (JDBC)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

SQL in Application Code (Contd.)

Impedance mismatch:
SQL relations are (multi-) sets of records, with
no a priori bound on the number of records.
No such data structure exist traditionally in
procedural programming languages such as
C++. (Though now: STL)

SQL supports a mechanism called a cursor to
handle this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Embedded SQL
Approach: Embed SQL in the host language.

A preprocessor converts the SQL statements into
special API calls.
Then a regular compiler is used to compile the
code.

Language constructs:
Connecting to a database:
EXEC SQL CONNECT
Declaring variables:
EXEC SQL BEGIN (END) DECLARE SECTION
Statements:
EXEC SQL Statement;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Embedded SQL: Variables

EXEC SQL BEGIN DECLARE SECTION
char c_sname[20];
long c_sid;
short c_rating;
float c_age;
EXEC SQL END DECLARE SECTION

Two special “error” variables:
SQLCODE (long, is negative if an error has occurred)
SQLSTATE (char[6], predefined codes for common errors)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Cursors

Can declare a cursor on a relation or query
statement (which generates a relation).
Can open a cursor, and repeatedly fetch a tuple then
move the cursor, until all tuples have been retrieved.

Can use a special clause, called ORDER BY, in queries that
are accessed through a cursor, to control the order in
which tuples are returned.
• Fields in ORDER BY clause must also appear in SELECT clause.

The ORDER BY clause, which orders answer tuples, is only
allowed in the context of a cursor.

Can also modify/delete tuple pointed to by a cursor.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Cursor that gets names of sailors who’ve
reserved a red boat, in alphabetical order

Note that it is illegal to replace S.sname by, say,
S.sid in the ORDER BY clause! (Why?)
Can we add S.sid to the SELECT clause and
replace S.sname by S.sid in the ORDER BY clause?

EXEC SQL DECLARE sinfo CURSOR FOR
SELECT S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
ORDER BY S.sname

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Embedding SQL in C: An Example
char SQLSTATE[6];
EXEC SQL BEGIN DECLARE SECTION
char c_sname[20]; short c_minrating; float c_age;
EXEC SQL END DECLARE SECTION
c_minrating = random();
EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age FROM Sailors S
WHERE S.rating > :c_minrating
ORDER BY S.sname;

do {
EXEC SQL FETCH sinfo INTO :c_sname, :c_age;
printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’);
EXEC SQL CLOSE sinfo;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Dynamic SQL

SQL query strings are now always known at compile
time (e.g., spreadsheet, graphical DBMS frontend):
Allow construction of SQL statements on-the-fly

Example:
char c_sqlstring[]=

{“DELETE FROM Sailors WHERE raiting>5”};
EXEC SQL PREPARE readytogo FROM :c_sqlstring;
EXEC SQL EXECUTE readytogo;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Database APIs: Alternative to
embedding

Rather than modify compiler, add library with database
calls (API)
Special standardized interface: procedures/objects
Pass SQL strings from language, presents result sets
in a language-friendly way
Sun’s JDBC: Java API
Supposedly DBMS-neutral

a “driver” traps the calls and translates them into DBMS-
specific code
database can be across a network

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

JDBC: Architecture

Four architectural components:
Application (initiates and terminates connections,
submits SQL statements)
Driver manager (load JDBC driver)
Driver (connects to data source, transmits requests
and returns/translates results and error codes)
Data source (processes SQL statements)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

JDBC Architecture (Contd.)
Four types of drivers:
Bridge:

Translates SQL commands into non-native API.
Example: JDBC-ODBC bridge. Code for ODBC and JDBC
driver needs to be available on each client.

Direct translation to native API, non-Java driver:
Translates SQL commands to native API of data source.
Need OS-specific binary on each client.

Network bridge:
Send commands over the network to a middleware server
that talks to the data source. Needs only small JDBC driver
at each client.

Direction translation to native API via Java driver:
Converts JDBC calls directly to network protocol used by
DBMS. Needs DBMS-specific Java driver at each client.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

JDBC Classes and Interfaces

Steps to submit a database query:
Load the JDBC driver
Connect to the data source
Execute SQL statements

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

JDBC Driver Management

All drivers are managed by the
DriverManager class
Loading a JDBC driver:

In the Java code:
Class.forName(“oracle/jdbc.driver.Oracledriver”);
When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Connections in JDBC

We interact with a data source through sessions. Each
connection identifies a logical session.
JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:
String url=“jdbc:oracle:www.bookstore.com:3083”;
Connection con;
try{

con = DriverManager.getConnection(url,usedId,password);
} catch SQLException excpt { …}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Connection Class Interface
public int getTransactionIsolation() and
void setTransactionIsolation(int level)
Sets isolation level for the current connection.
public boolean getReadOnly() and
void setReadOnly(boolean b)
Specifies whether transactions in this connection are read-
only
public boolean getAutoCommit() and
void setAutoCommit(boolean b)
If autocommit is set, then each SQL statement is
considered its own transaction. Otherwise, a transaction is
committed using commit(), or aborted using rollback().
public boolean isClosed()
Checks whether connection is still open.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Executing SQL Statements
Three different ways of executing SQL
statements:

Statement (both static and dynamic SQL
statements)
PreparedStatement (semi-static SQL statements)
CallableStatment (stored procedures)

PreparedStatement class:
Precompiled, parametrized SQL statements:

Structure is fixed
Values of parameters are determined at run-time

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Executing SQL Statements (Contd.)
String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;
PreparedStatment pstmt=con.prepareStatement(sql);
pstmt.clearParameters();
pstmt.setInt(1,sid);
pstmt.setString(2,sname);
pstmt.setInt(3, rating);
pstmt.setFloat(4,age);

// we know that no rows are returned, thus we use
executeUpdate()

int numRows = pstmt.executeUpdate();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

ResultSets

PreparedStatement.executeUpdate only returns the
number of affected records
PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);
// rs is now a cursor
While (rs.next()) {

// process the data
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

ResultSets (Contd.)

A ResultSet is a very powerful cursor:
previous(): moves one row back
absolute(int num): moves to the row with the
specified number
relative (int num): moves forward or
backward
first() and last()

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Matching Java and SQL Data Types

getTimestamp()java.sql.TimeStampTIMESTAMP
getTime()java.sql.TimeTIME
getDate()java.sql.DateDATE
getFloat()DoubleREAL
getInt()IntegerINTEGER
getDouble()DoubleFLOAT
getDouble()DoubleDOUBLE
getString()StringVARCHAR
getString()StringCHAR
getBoolean()BooleanBIT
ResultSet get methodJava classSQL Type

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

JDBC: Exceptions and Warnings

Most of java.sql can throw and SQLException
if an error occurs.
SQLWarning is a subclass of EQLException;
not as severe (they are not thrown and their
existence has to be explicitly tested)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Warning and Exceptions (Contd.)
try {

stmt=con.createStatement();
warning=con.getWarnings();
while(warning != null) {

// handle SQLWarnings;
warning = warning.getNextWarning():

}
con.clearWarnings();
stmt.executeUpdate(queryString);
warning = con.getWarnings();
…

} //end try
catch(SQLException SQLe) {

// handle the exception
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Examining Database Metadata

DatabaseMetaData object gives information
about the database system and the catalog.

DatabaseMetaData md = con.getMetaData();
// print information about the driver:
System.out.println(
“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Database Metadata (Contd.)
DatabaseMetaData md=con.getMetaData();
ResultSet trs=md.getTables(null,null,null,null);
String tableName;
While(trs.next()) {

tableName = trs.getString(“TABLE_NAME”);
System.out.println(“Table: “ + tableName);
//print all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.println(crs.getString(“COLUMN_NAME” + “, “);
}

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

A (Semi-)Complete Example
Connection con = // connect

DriverManager.getConnection(url, ”login", ”pass");
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT name, rating FROM Sailors";
ResultSet rs = stmt.executeQuery(query);
try { // handle exceptions

// loop through result tuples
while (rs.next()) {

String s = rs.getString(“name");
Int n = rs.getFloat(“rating");
System.out.println(s + " " + n);

}
} catch(SQLException ex) {

System.out.println(ex.getMessage ()
+ ex.getSQLState () + ex.getErrorCode ());

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

SQLJ
Complements JDBC with a (semi-)static query model:

Compiler can perform syntax checks, strong type
checks, consistency of the query with the schema

All arguments always bound to the same variable:
#sql = {

SELECT name, rating INTO :name, :rating
FROM Books WHERE sid = :sid;

Compare to JDBC:
sid=rs.getInt(1);
if (sid==1) {sname=rs.getString(2);}
else { sname2=rs.getString(2);}

SQLJ (part of the SQL standard) versus embedded
SQL (vendor-specific)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

SQLJ Code
Int sid; String name; Int rating;
// named iterator
#sql iterator Sailors(Int sid, String name, Int rating);
Sailors sailors;
// assume that the application sets rating
#sailors = {

SELECT sid, sname INTO :sid, :name
FROM Sailors WHERE rating = :rating

};
// retrieve results
while (sailors.next()) {

System.out.println(sailors.sid + “ “ + sailors.sname));
}
sailors.close();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

SQLJ Iterators
Two types of iterators (“cursors”):

Named iterator
Need both variable type and name, and then allows retrieval
of columns by name.
See example on previous slide.

Positional iterator
Need only variable type, and then uses FETCH .. INTO
construct:
#sql iterator Sailors(Int, String, Int);
Sailors sailors;
#sailors = …
while (true) {

#sql {FETCH :sailors INTO :sid, :name} ;
if (sailors.endFetch()) { break; }
// process the sailor

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Stored Procedures

What is a stored procedure:
Program executed through a single SQL statement
Executed in the process space of the server

Advantages:
Can encapsulate application logic while staying
“close” to the data
Reuse of application logic by different users
Avoid tuple-at-a-time return of records through
cursors

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Stored Procedures: Examples
CREATE PROCEDURE ShowNumReservations

SELECT S.sid, S.sname, COUNT(*)
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sid, S.sname

Stored procedures can have parameters:
Three different modes: IN, OUT, INOUT

CREATE PROCEDURE IncreaseRating(
IN sailor_sid INTEGER, IN increase INTEGER)

UPDATE Sailors
SET rating = rating + increase
WHERE sid = sailor_sid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Stored Procedures: Examples
(Contd.)
Stored procedure do not have to be written in

SQL:

CREATE PROCEDURE TopSailors(
IN num INTEGER)

LANGUAGE JAVA
EXTERNAL NAME “file:///c:/storedProcs/rank.jar”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Calling Stored Procedures

EXEC SQL BEGIN DECLARE SECTION
Int sid;
Int rating;
EXEC SQL END DECLARE SECTION

// now increase the rating of this sailor
EXEC CALL IncreaseRating(:sid,:rating);

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Calling Stored Procedures (Contd.)

JDBC:
CallableStatement cstmt=

con.prepareCall(“{call
ShowSailors});

ResultSet rs =
cstmt.executeQuery();

while (rs.next()) {
…

}

SQLJ:
#sql iterator

ShowSailors(…);
ShowSailors showsailors;
#sql showsailors={CALL

ShowSailors};
while (showsailors.next()) {
…

}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

SQL/PSM
Most DBMSs allow users to write stored procedures in a

simple, general-purpose language (close to SQL) à
SQL/PSM standard is a representative

Declare a stored procedure:
CREATE PROCEDURE name(p1, p2, …, pn)

local variable declarations
procedure code;

Declare a function:
CREATE FUNCTION name (p1, …, pn) RETURNS

sqlDataType
local variable declarations
function code;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Main SQL/PSM Constructs
CREATE FUNCTION rate Sailor

(IN sailorId INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER
DECLARE numRes INTEGER
SET numRes = (SELECT COUNT(*)

FROM Reserves R
WHERE R.sid = sailorId)

IF (numRes > 10) THEN rating =1;
ELSE rating = 0;
END IF;
RETURN rating;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Main SQL/PSM Constructs (Contd.)

Local variables (DECLARE)
RETURN values for FUNCTION
Assign variables with SET
Branches and loops:

IF (condition) THEN statements;
ELSEIF (condition) statements;
… ELSE statements; END IF;
LOOP statements; END LOOP

Queries can be parts of expressions
Can use cursors naturally without “EXEC SQL”

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Summary
Embedded SQL allows execution of
parametrized static queries within a host
language
Dynamic SQL allows execution of completely ad-
hoc queries within a host language
Cursor mechanism allows retrieval of one record
at a time and bridges impedance mismatch
between host language and SQL
APIs such as JDBC introduce a layer of
abstraction between application and DBMS

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Summary (Contd.)

SQLJ: Static model, queries checked a
compile-time.
Stored procedures execute application logic
directly at the server
SQL/PSM standard for writing stored
procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Internet Applications

Chapter 7

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Uniform Resource Identifiers

Uniform naming schema to identify resources on the
Internet
A resource can be anything:

Index.html
mysong.mp3
picture.jpg

Example URIs:
http://www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Structure of URIs

http://www.cs.wisc.edu/~dbbook/index.html

URI has three parts:
Naming schema (http)
Name of the host computer (www.cs.wisc.edu)
Name of the resource (~dbbook/index.html)

URLs are a subset of URIs

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Hypertext Transfer Protocol

What is a communication protocol?
Set of standards that defines the structure of messages
Examples: TCP, IP, HTTP

What happens if you click on
www.cs.wisc.edu/~dbbook/index.html?

Client (web browser) sends HTTP request to server
Server receives request and replies
Client receives reply; makes new requests

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

HTTP (Contd.)
Client to Server:

GET ~/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/html, image/gif,

image/jpeg

Server replies:

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002

09:23:24 GMT
Content-Length: 1024
Content-Type: text/html
<HTML> <HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet

Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

HTTP Protocol Structure

HTTP Requests
Request line: GET ~/index.html HTTP/1.1

GET: Http method field (possible values are GET and POST,
more later)
~/index.html: URI field
HTTP/1.1: HTTP version field

Type of client: User-agent: Mozilla/4.0
What types of files will the client accept:

Accept: text/html, image/gif, image/jpeg

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

HTTP Protocol Structure (Contd.)
HTTP Responses

Status line: HTTP/1.1 200 OK
HTTP version: HTTP/1.1
Status code: 200
Server message: OK
Common status code/server message combinations:

• 200 OK: Request succeeded
• 400 Bad Request: Request could not be fulfilled by the server
• 404 Not Found: Requested object does not exist on the server
• 505 HTTP Version not Supported

Date when the object was created:
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

Number of bytes being sent: Content-Length: 1024
What type is the object being sent: Content-Type: text/html
Other information such as the server type, server time, etc.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Some Remarks About HTTP

HTTP is stateless
No “sessions”
Every message is completely self-contained
No previous interaction is “remembered” by the protocol
Tradeoff between ease of implementation and ease of
application development: Other functionality has to be built
on top

Implications for applications:
Any state information (shopping carts, user login-information)
need to be encoded in every HTTP request and response!
Popular methods on how to maintain state:

• Cookies (later this lecture)
• Dynamically generate unique URL’s at the server level (later this

lecture)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Web Data Formats

HTML
The presentation language for the Internet

Xml
A self-describing, hierarchal data model

DTD
Standardizing schemas for Xml

XSLT (not covered in the book)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

HTML: An Example
<HTML>

<HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet

Bookstore</h1>
Our inventory:

<h3>Science</h3>
The Character of Physical

Law

Author: Richard
Feynman
Published 1980
Hardcover

<h3>Fiction</h3>
Waiting for the Mahatma

Author: R.K. Narayan
Published 1981

The English Teacher

Author: R.K. Narayan
Published 1980
Paperback

</BODY>
</HTML>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

HTML: A Short Introduction

HTML is a markup language
Commands are tags:

Start tag and end tag
Examples:

• <HTML> … </HTML>
• …

Many editors automatically generate HTML
directly from your document (e.g., Microsoft
Word has an “Save as html” facility)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

HTML: Sample Commands

<HTML>:
: unordered list
: list entry
<h1>: largest heading
<h2>: second-level heading, <h3>, <h4>
analogous
Title: Bold

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

XML: An Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BOOKLIST>

<BOOK genre="Science" format="Hardcover">
<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>
<PUBLISHED>1981</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
</BOOKLIST>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

XML – The Extensible Markup Language

Language
A way of communicating information

Markup
Notes or meta-data that describe your data or
language

Extensible
Limitless ability to define new languages or data
sets

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

XML – What’s The Point?

You can include your data and a description of what
the data represents

This is useful for defining your own language or protocol
Example: Chemical Markup Language

<molecule>
<weight>234.5</weight>
<Spectra>…</Spectra>
<Figures>…</Figures>

</molecule>
XML design goals:

XML should be compatible with SGML
It should be easy to write XML processors
The design should be formal and precise

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

XML – Structure

XML: Confluence of SGML and HTML
Xml looks like HTML
Xml is a hierarchy of user-defined tags called
elements with attributes and data
Data is described by elements, elements are
described by attributes
<BOOK genre="Science" format="Hardcover">…</BOOK>

closing tag

attribute

attribute value
data

open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

XML – Elements

<BOOK genre="Science" format="Hardcover">…</BOOK>

Xml is case and space sensitive
Element opening and closing tag names must be identical
Opening tags: “<” + element name + “>”
Closing tags: “</” + element name + “>”
Empty Elements have no data and no closing tag:

They begin with a “<“ and end with a “/>”
<BOOK/>

closing tag
attribute

attribute value dataopen tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

XML – Attributes

<BOOK genre="Science" format="Hardcover">…</BOOK>

Attributes provide additional information for element tags.
There can be zero or more attributes in every element; each one
has the the form:

attribute_name=‘attribute_value’
- There is no space between the name and the “=‘”
- Attribute values must be surrounded by “ or ‘ characters

Multiple attributes are separated by white space (one or more
spaces or tabs).

closing tag
attribute

attribute value data
open tag

element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

XML – Data and Comments

<BOOK genre="Science" format="Hardcover">…</BOOK>

Xml data is any information between an opening and closing tag
Xml data must not contain the ‘<‘ or ‘>’ characters

Comments:
<!- comment ->

closing tag
attribute

attribute value
data

open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

XML – Nesting & Hierarchy

Xml tags can be nested in a tree hierarchy
Xml documents can have only one root tag
Between an opening and closing tag you can insert:

1. Data
2. More Elements
3. A combination of data and elements

<root>
<tag1>

Some Text
<tag2>More</tag2>

</tag1>
</root>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Xml – Storage

Storage is done just like an n-ary tree (DOM)

<root>

<tag1>

Some Text

<tag2>More</tag2>

</tag1>

</root>

Node
Type: Element_Node
Name: Element
Value: Root

Node
Type: Element_Node
Name: Element
Value: tag1

Node
Type: Text_Node
Name: Text
Value: More

Node
Type: Element_Node
Name: Element
Value: tag2

Node
Type: Text_Node
Name: Text
Value: Some Text

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

DTD – Document Type Definition

A DTD is a schema for Xml data
Xml protocols and languages can be
standardized with DTD files
A DTD says what elements and attributes are
required or optional

Defines the formal structure of the language

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

DTD – An Example
<?xml version='1.0'?>
<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

<!ELEMENT Cherry EMPTY>
<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ELEMENT Apple EMPTY>
<!ATTLIST Apple color CDATA #REQUIRED>

<!ELEMENT Orange EMPTY>
<!ATTLIST Orange location ‘Florida’>

--

<Basket>
<Apple/>
<Cherry flavor=‘good’/>
<Orange/>

</Basket>

<Basket>
<Cherry flavor=‘good’/>
<Apple color=‘red’/>
<Apple color=‘green’/>

</Basket>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

DTD - !ELEMENT

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

!ELEMENT declares an element name, and
what children elements it should have
Content types:

Other elements
#PCDATA (parsed character data)
EMPTY (no content)
ANY (no checking inside this structure)
A regular expression

Name Children

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

DTD - !ELEMENT (Contd.)

A regular expression has the following
structure:

exp1, exp2, exp3, …, expk: A list of regular
expressions
exp*: An optional expression with zero or more
occurrences
exp+: An optional expression with one or more
occurrences
exp1 | exp2 | … | expk: A disjunction of expressions

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

DTD - !ATTLIST

<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ATTLIST Orange location CDATA #REQUIRED
color ‘orange’>

!ATTLIST defines a list of attributes for an
element
Attributes can be of different types, can be
required or not required, and they can have
default values.

Element Attribute Type Flag

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

DTD – Well-Formed and Valid
<?xml version='1.0'?>
<!ELEMENT Basket (Cherry+)>

<!ELEMENT Cherry EMPTY>
<!ATTLIST Cherry flavor CDATA #REQUIRED>

--

Well-Formed and Valid
<Basket>

<Cherry flavor=‘good’/>
</Basket>

Not Well-Formed
<basket>

<Cherry flavor=good>
</Basket>

Well-Formed but Invalid
<Job>

<Location>Home</Location>
</Job>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

XML and DTDs

More and more standardized DTDs will be developed
MathML
Chemical Markup Language

Allows light-weight exchange of data with the same
semantics

Sophisticated query languages for XML are available:
Xquery
XPath

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Components of Data-Intensive
Systems
Three separate types of functionality:

Data management
Application logic
Presentation

The system architecture determines whether
these three components reside on a single
system (“tier) or are distributed across several
tiers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Single-Tier Architectures

All functionality combined into a
single tier, usually on a
mainframe

User access through dumb
terminals

Advantages:
Easy maintenance and
administration

Disadvantages:
Today, users expect
graphical user interfaces.
Centralized computation of
all of them is too much for a
central system

GRAPHIC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Client-Server Architectures

Work division: Thin client
Client implements only the
graphical user interface
Server implements business
logic and data management

Work division: Thick client
Client implements both the
graphical user interface and the
business logic
Server implements data
management

GRAPHIC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Client-Server Architectures (Contd.)

Disadvantages of thick clients
No central place to update the business logic
Security issues: Server needs to trust clients

• Access control and authentication needs to be managed at
the server

• Clients need to leave server database in consistent state
• One possibility: Encapsulate all database access into stored

procedures
Does not scale to more than several 100s of clients

• Large data transfer between server and client
• More than one server creates a problem: x clients, y

servers: x*y connections

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

The Three-Tier Architecture

Database System

Application Server

Client Program (Web Browser)Presentation tier

Middle tier

Data management
tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

The Three Layers

Presentation tier
Primary interface to the user
Needs to adapt to different display devices (PC, PDA, cell
phone, voice access?)

Middle tier
Implements business logic (implements complex actions,
maintains state between different steps of a workflow)
Accesses different data management systems

Data management tier
One or more standard database management systems

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Example 1: Airline reservations

Build a system for making airline reservations
What is done in the different tiers?
Database System

Airline info, available seats, customer info, etc.
Application Server

Logic to make reservations, cancel reservations,
add new airlines, etc.

Client Program
Log in different users, display forms and human-
readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Example 2: Course Enrollment

Build a system using which students can enroll
in courses
Database System

Student info, course info, instructor info, course
availability, pre-requisites, etc.

Application Server
Logic to add a course, drop a course, create a new
course, etc.

Client Program
Log in different users (students, staff, faculty),
display forms and human-readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Technologies

Database System
(DB2)

Application Server
(Tomcat, Apache)

Client Program
(Web Browser)

HTML
Javascript
XSLT

JSP
Servlets
Cookies
CGI

XML
Stored Procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Advantages of the Three-Tier
Architecture

Heterogeneous systems
Tiers can be independently maintained, modified, and replaced

Thin clients
Only presentation layer at clients (web browsers)

Integrated data access
Several database systems can be handled transparently at the middle
tier
Central management of connections

Scalability
Replication at middle tier permits scalability of business logic

Software development
Code for business logic is centralized
Interaction between tiers through well-defined APIs: Can reuse
standard components at each tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Overview of the Presentation Tier

Recall: Functionality of the presentation tier
Primary interface to the user
Needs to adapt to different display devices (PC,
PDA, cell phone, voice access?)
Simple functionality, such as field validity checking

We will cover:
HTML Forms: How to pass data to the middle tier
JavaScript: Simple functionality at the presentation
tier
Style sheets: Separating data from formatting

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

HTML Forms

Common way to communicate data from client to
middle tier
General format of a form:

<FORM ACTION=“page.jsp” METHOD=“GET”
NAME=“LoginForm”>

…
</FORM>

Components of an HTML FORM tag:
ACTION: Specifies URI that handles the content
METHOD: Specifies HTTP GET or POST method
NAME: Name of the form; can be used in client-side scripts to
refer to the form

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

Inside HTML Forms

INPUT tag
Attributes:

• TYPE: text (text input field), password (text input field where
input is, reset (resets all input fields)

• NAME: symbolic name, used to identify field value at the middle
tier

• VALUE: default value
Example: <INPUT TYPE=“text” Name=“title”>

Example form:
<form method="POST" action="TableOfContents.jsp">

<input type="text" name="userid">
<input type="password" name="password">
<input type="submit" value="Login“ name="submit">
<input type=“reset” value=“Clear”>

</form>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

Passing Arguments

Two methods: GET and POST
GET

Form contents go into the submitted URI
Structure:
action?name1=value1&name2=value2&name3=value3

• Action: name of the URI specified in the form
• (name,value)-pairs come from INPUT fields in the form; empty

fields have empty values (“name=“)
Example from previous password form:
TableOfContents.jsp?userid=john&password=johnpw
Note that the page named action needs to be a program, script,
or page that will process the user input

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

HTTP GET: Encoding Form Fields

Form fields can contain general ASCII
characters that cannot appear in an URI
A special encoding convention converts such
field values into “URI-compatible” characters:

Convert all “special” characters to %xyz, were xyz
is the ASCII code of the character. Special
characters include &, =, +, %, etc.
Convert all spaces to the “+” character
Glue (name,value)-pairs from the form INPUT
tags together with “&” to form the URI

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

HTML Forms: A Complete Example
<form method="POST" action="TableOfContents.jsp">

<table align = "center" border="0" width="300">
<tr>

<td>Userid</td>
<td><input type="text" name="userid" size="20"></td>

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="password" size="20"></td>

</tr>
<tr>

<td align = "center"><input type="submit" value="Login“
name="submit"></td>

</tr>
</table>

</form>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

JavaScript
Goal: Add functionality to the presentation tier.
Sample applications:

Detect browser type and load browser-specific page
Form validation: Validate form input fields
Browser control: Open new windows, close existing windows
(example: pop-up ads)

Usually embedded directly inside the HTML with the
<SCRIPT> … </SCRIPT> tag.
<SCRIPT> tag has several attributes:

LANGUAGE: specifies language of the script (such as
javascript)
SRC: external file with script code
Example:
<SCRIPT LANGUAGE=“JavaScript” SRC=“validate.js>
</SCRIPT>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

JavaScript (Contd.)

If <SCRIPT> tag does not have a SRC attribute, then
the JavaScript is directly in the HTML file.
Example:
<SCRIPT LANGUAGE=“JavaScript”>
<!-- alert(“Welcome to our bookstore”)
//-->
</SCRIPT>
Two different commenting styles

<!-- comment for HTML, since the following JavaScript code
should be ignored by the HTML processor
// comment for JavaScript in order to end the HTML
comment

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50

JavaScript (Contd.)

JavaScript is a complete scripting language
Variables
Assignments (=, +=, …)
Comparison operators (<,>,…), boolean operators
(&&, ||, !)
Statements

• if (condition) {statements;} else {statements;}
• for loops, do-while loops, and while-loops

Functions with return values
• Create functions using the function keyword
• f(arg1, …, argk) {statements;}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 51

JavaScript: A Complete Example

HTML Form:

<form method="POST“
action="TableOfContents.jsp">
<input type="text"

name="userid">
<input type="password"

name="password">
<input type="submit"

value="Login“
name="submit">

<input type=“reset”
value=“Clear”>

</form>

Associated JavaScript:

<script language="javascript">
function testLoginEmpty()
{
loginForm = document.LoginForm
if ((loginForm.userid.value == "") ||

(loginForm.password.value == ""))
{
alert('Please enter values for userid and
password.');

return false;
}
else return true;

}
</script>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 52

Stylesheets

Idea: Separate display from contents, and adapt
display to different presentation formats
Two aspects:

Document transformations to decide what parts of the
document to display in what order
Document rending to decide how each part of the document is
displayed

Why use stylesheets?
Reuse of the same document for different displays
Tailor display to user’s preferences
Reuse of the same document in different contexts

Two stylesheet languages
Cascading style sheets (CSS): For HTML documents
Extensible stylesheet language (XSL): For XML documents

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 53

CSS: Cascading Style Sheets

Defines how to display HTML documents
Many HTML documents can refer to the same CSS

Can change format of a website by changing a single style sheet
Example:
<LINK REL=“style sheet” TYPE=“text/css” HREF=“books.css”/>

Each line consists of three parts:
selector {property: value}
Selector: Tag whose format is defined
Property: Tag’s attribute whose value is set
Value: value of the attribute

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 54

CSS: Cascading Style Sheets

Example style sheet:

body {background-color: yellow}
h1 {font-size: 36pt}
h3 {color: blue}
p {margin-left: 50px; color: red}

The first line has the same effect as:
<body background-color=“yellow>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 55

XSL

Language for expressing style sheets
More at: http://www.w3.org/Style/XSL/

Three components
XSLT: XSL Transformation language

• Can transform one document to another
• More at http://www.w3.org/TR/xslt

XPath: XML Path Language
• Selects parts of an XML document
• More at http://www.w3.org/TR/xpath

XSL Formatting Objects
• Formats the output of an XSL transformation
• More at http://www.w3.org/TR/xsl/

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 56

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 57

Overview of the Middle Tier

Recall: Functionality of the middle tier
Encodes business logic
Connects to database system(s)
Accepts form input from the presentation tier
Generates output for the presentation tier

We will cover
CGI: Protocol for passing arguments to programs running at
the middle tier
Application servers: Runtime environment at the middle tier
Servlets: Java programs at the middle tier
JavaServerPages: Java scripts at the middle tier
Maintaining state: How to maintain state at the middle tier.
Main focus: Cookies.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 58

CGI: Common Gateway Interface

Goal: Transmit arguments from HTML forms to
application programs running at the middle tier
Details of the actual CGI protocol unimportant à
libraries implement high-level interfaces

Disadvantages:
The application program is invoked in a new process at every
invocation (remedy: FastCGI)
No resource sharing between application programs (e.g.,
database connections)
Remedy: Application servers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 59

CGI: Example

HTML form:
<form action=“findbooks.cgi” method=POST>
Type an author name:
<input type=“text” name=“authorName”>
<input type=“submit” value=“Send it”>
<input type=“reset” value=“Clear form”>
</form>

Perl code:
use CGI;
$dataIn=new CGI;
$dataIn->header();
$authorName=$dataIn->param(‘authorName’);
print(“<HTML><TITLE>Argument passing test</TITLE>”);
print(“The author name is “ + $authorName);
print(“</HTML>”);
exit;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 60

Application Servers

Idea: Avoid the overhead of CGI
Main pool of threads of processes
Manage connections
Enable access to heterogeneous data sources
Other functionality such as APIs for session
management

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 61

Application Server: Process Structure

Process Structure

Web Browser Web Server

Application Server

C++ Application

JavaBeans

DBMS 1

DBMS 2

Pool of Servlets

HTTP

JDBC

ODBC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 62

Servlets

Java Servlets: Java code that runs on the middle tier
Platform independent
Complete Java API available, including JDBC

Example:
import java.io.*;
import java.servlet.*;
import java.servlet.http.*;

public class ServetTemplate extends HttpServlet {
public void doGet(HTTPServletRequest request,

HTTPServletResponse response)
throws SerletExpection, IOException {

PrintWriter out=response.getWriter();
out.println(“Hello World”);

}
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 63

Servlets (Contd.)

Life of a servlet?
Webserver forwards request to servlet container
Container creates servlet instance (calls init()
method; deallocation time: calls destroy() method)
Container calls service() method

• service() calls doGet() for HTTP GET or doPost() for HTTP
POST

• Usually, don’t override service(), but override doGet() and
doPost()

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 64

Servlets: A Complete Example
public class ReadUserName extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpSevletResponse response)

throws ServletException, IOException {
reponse.setContentType(“text/html”);
PrintWriter out=response.getWriter();
out.println(“<HTML><BODY>\n \n” +

“” + request.getParameter(“userid”) + “\n” +
“” + request.getParameter(“password”) + “\n” +
“\n<BODY></HTML>”);

}
public void doPost(HttpServletRequest request,

HttpSevletResponse response)
throws ServletException, IOException {
doGet(request,response);

}
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 65

Java Server Pages

Servlets
Generate HTML by writing it to the “PrintWriter”
object
Code first, webpage second

JavaServerPages
Written in HTML, Servlet-like code embedded in
the HTML
Webpage first, code second
They are usually compiled into a Servlet

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 66

JavaServerPages: Example

<html>
<head><title>Welcome to B&N</title></head>
<body>

<h1>Welcome back!</h1>
<% String name=“NewUser”;

if (request.getParameter(“username”) != null) {
name=request.getParameter(“username”);

}
%>
You are logged on as user <%=name%>
<p>

</body>
</html>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 67

Maintaining State

HTTP is stateless.
Advantages

Easy to use: don’t need anything
Great for static-information applications
Requires no extra memory space

Disadvantages
No record of previous requests means

• No shopping baskets
• No user logins
• No custom or dynamic content
• Security is more difficult to implement

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 68

Application State

Server-side state
Information is stored in a database, or in the
application layer’s local memory

Client-side state
Information is stored on the client’s computer in the
form of a cookie

Hidden state
Information is hidden within dynamically created
web pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 69

Application State

So many kinds of
state…

…how will I choose?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 70

Server-Side State

Many types of Server side state:
1. Store information in a database

Data will be safe in the database
BUT: requires a database access to query or update
the information

2. Use application layer’s local memory
Can map the user’s IP address to some state
BUT: this information is volatile and takes up lots of
server main memory

5 million IPs = 20 MB

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 71

Server-Side State

Should use Server-side state maintenance for
information that needs to persist

Old customer orders
“Click trails” of a user’s movement through a site
Permanent choices a user makes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 72

Client-side State: Cookies

Storing text on the client which will be passed
to the application with every HTTP request.

Can be disabled by the client.
Are wrongfully perceived as "dangerous", and
therefore will scare away potential site visitors if
asked to enable cookies1

Are a collection of (Name, Value) pairs

1http://www.webdevelopersjournal.com/columns/stateful.html

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 73

Client State: Cookies
Advantages

Easy to use in Java Servlets / JSP
Provide a simple way to persist non-essential data on the client even
when the browser has closed

Disadvantages
Limit of 4 kilobytes of information
Users can (and often will) disable them

Should use cookies to store interactive state
The current user’s login information
The current shopping basket
Any non-permanent choices the user has made

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 74

Creating A Cookie
Cookie myCookie =

new Cookie(“username", “jeffd");
response.addCookie(userCookie);

You can create a cookie at any time

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 75

Accessing A Cookie
Cookie[] cookies = request.getCookies();
String theUser;
for(int i=0; i<cookies.length; i++) {

Cookie cookie = cookies[i];
if(cookie.getName().equals(“username”)) theUser =
cookie.getValue();

}
// at this point theUser == “username”

Cookies need to be accessed BEFORE you set your response header:
response.setContentType("text/html");
PrintWriter out = response.getWriter();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 76

Cookie Features

Cookies can have
A duration (expire right away or persist even after
the browser has closed)
Filters for which domains/directory paths the
cookie is sent to

See the Java Servlet API and Servlet Tutorials
for more information

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 77

Hidden State

Often users will disable cookies
You can “hide” data in two places:

Hidden fields within a form
Using the path information

Requires no “storage” of information because
the state information is passed inside of each
web page

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 78

Hidden State: Hidden Fields

Declare hidden fields within a form:
<input type=‘hidden’ name=‘user’
value=‘username’/>

Users will not see this information (unless they
view the HTML source)
If used prolifically, it’s a killer for performance
since EVERY page must be contained within a
form.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 79

Hidden State: Path Information

Path information is stored in the URL request:
http://server.com/index.htm?user=jeffd

Can separate ‘fields’ with an & character:
index.htm?user=jeffd&preference=pepsi

There are mechanisms to parse this field in
Java. Check out the javax.servlet.http.HttpUtils

parserQueryString() method.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 80

Multiple state methods

Typically all methods of state maintenance are
used:

User logs in and this information is stored in a
cookie
User issues a query which is stored in the path
information
User places an item in a shopping basket cookie
User purchases items and credit-card information
is stored/retrieved from a database
User leaves a click-stream which is kept in a log
on the web server (which can later be analyzed)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 81

Summary

We covered:
Internet Concepts (URIs, HTTP)
Web data formats

HTML, XML, DTDs
Three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding; Javascript;
Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages, passing
arguments, maintaining state (cookies)

8-1

Transaction
n A transaction is a collection of actions that make

consistent transformations of system states while
preserving system consistency.
l concurrency transparency
l failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

8-2

Transaction Example –
A Simple SQL Query

…
main() {
…
EXEC SQL UPDATE Project

SET Budget = Budget * 1.1
WHERE Pname = `CAD/CAM’;

EXEC SQL COMMIT RELEASE;
return(0);
…}

8-3

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

8-4

Example Reservation Transaction

…
main {
…
EXEC SQL BEGIN DECLARE SECTION;

char flight_no[6], customer_name[20];
char day;

EXEC SQL END DECLARE SECTION;
scanf(flight_no, day, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE = :day;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES(:flight_no,:day,:customer_name, null);

printf(“Reservation completed”);
EXEC SQL COMMIT RELEASE;
return(0);}

8-5

Termination of Transactions…
main {
…

EXEC SQL BEGIN DECLARE SECTION;
char flight_no[6], customer_name[20];
char day; int temp1, temp2;

EXEC SQL END DECLARE SECTION;
scanf(flight_no, day, customer_name);
EXEC SQL SELECT STSOLD,CAP INTO :temp1,:temp2

FROM FLIGHT
WHERE FNO = :flight_no AND DATE = :day;

if temp1 = temp2 then {
printf(“no free seats”);
EXEC SQL ROLLBACK RELEASE;
return(-1);}

else {
EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE = :day;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (:flight_no, :day, :customer_name, null);

EXEC SQL COMMIT RELEASE;
printf(“Reservation completed”);
return(0);}

}

8-6

Characterization

n Read set (RS)
l The set of data items that are read by a transaction

n Write set (WS)
l The set of data items whose values are changed by

this transaction
n Base set (BS)

l RS ∪ WS

8-7

Let
l oij(x) be some operation oj of transaction Ti operating on data

item x, where oj ∈ {read,write} and oj is atomic

l OSi = ∪j oij

l Ni ∈ {abort,commit}

Transaction Ti is a partial order Ti = {Σi, <i} where

¶ Σi = OSi ∪ {Ni }

· For any two operations oij, oik ∈ OSi , if oij = R(x) and
oik=W(x) for any data item x, then either oij<ioik or oik<ioij

¸ ∀oij ∈ OSi, oij <i Ni

Formalization

8-8

Consider a transaction T:
Read(x)
Read(y)
x ←x + y
Write(x)
Commit

Then
Σ = {R(x), R(y), W(x), C}
< = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Example

8-9

Assume
< = {(R(x),W(x)), (R(y),W(x)), (R(x), C), (R(y), C), (W(x), C)}

DAG Representation

R(x)

C

R(y)

W(x)

8-10

Properties of Transactions

ATOMICITY
l all or nothing

CONSISTENCY
l no violation of integrity constraints

ISOLATION
l concurrent changes invisible ⇒ serializable

DURABILITY
l committed updates persist

8-11

n Either all or none of the transaction's operations are
performed.

n Atomicity requires that if a transaction is interrupted by a
failure, its partial results must be undone.

n The activity of preserving the transaction's atomicity in
presence of transaction aborts due to input errors, system
overloads, or deadlocks is called transaction recovery.

n The activity of ensuring atomicity in the presence of system
crashes is called crash recovery.

Atomicity

8-12

n Internal consistency
l A transaction which executes alone against a

consistent database leaves it in a consistent
state.

l Transactions do not violate database integrity
constraints.

n Transactions are correct programs

Consistency

8-13

Isolation

n Serializability
l If several transactions are executed concurrently, the

results must be the same as if they were executed
serially in some order.

n Incomplete results
l An incomplete transaction cannot reveal its results to

other transactions before its commitment.
l Necessary to avoid cascading aborts.

8-14

Isolation Example

n Consider the following two transactions:
T1: Read(x) T2: Read(x)

x ←x+1 x ←x+1
Write(x) Write(x)
Commit Commit

n Possible execution sequences:
T1: Read(x) T1: Read(x)
T1: x ←x+1 T1: x ←x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x ←x+1
T2: x ←x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

8-15

Consistency Degrees
(due to Jim Gray)

n Degree 0
l Transaction T does not overwrite dirty data of other

transactions
l Dirty data refers to data values that have been updated

by a transaction prior to its commitment

n Degree 1
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT

8-16

Consistency Degrees (cont’d)
(due to Jim Gray)

n Degree 2
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
l T does not read dirty data from other transactions

n Degree 3
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
l T does not read dirty data from other transactions
l Other transactions do not dirty any data read by T

before T completes.

8-17

SQL-92 Isolation Levels

Phenomena:
n Dirty read

l T1 modifies x which is then read by T2 before T1 terminates; T1
aborts ⇒ T2 has read value which never exists in the database.

n Non-repeatable (fuzzy) read
l T1 reads x; T2 then modifies or deletes x and commits. T1 tries to

read x again but reads a different value or can’t find it.

n Phantom
l T1 searches the database according to a predicate while T2 inserts

new tuples that satisfy the predicate.

8-18

SQL-92 Isolation Levels (cont’d)

n Read Uncommitted
l For transactions operating at this level, all three phenomena are

possible.

n Read Committed
l Fuzzy reads and phantoms are possible, but dirty reads are not.

n Repeatable Read
l Only phantoms possible.

n Anomaly Serializable
l None of the phenomena are possible.

8-19

n Once a transaction commits, the system must
guarantee that the results of its operations will
never be lost, in spite of subsequent failures.

n Database recovery

Durability

8-20

Transactions Provide…

n Atomic and reliable execution in the presence of failures

n Correct execution in the presence of multiple user accesses

n Correct management of replicas (if they support it)

8-21

Architecture

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Transaction
Monitor

Begin_transaction,
Read, Write,
Commit, Abort

To execution
engine

Results

Scheduler
(SC)

8-22

Transaction Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

MySQL and Java

Ömer Erdem Demir

January 25, 2006

1 Requirements

You will need:

1. java and javac

2. MySQL installed. Directions for installing MySQL on CSIF machines can be found at
http://csifdocs.cs.ucdavis.edu/tiki-index.php?page=CSIF+MySQL+4.x+Install

3. MySQL JDBC driver. You can download it from http://dev.mysql.com/downloads/con-
nector/j/3.1.html
Extract mysql-connector-java-3.1.12-bin.jar (or the latest version you have)
from the Connector/J archive to your home directory, you will not need the other
files.

2 Setting up the tutorial database

In this section we will create a new database, a new user, and a very simple table. MySQL
has a two level directory like hierarchy for keeping databases and tables. At the root there
is MySQL; under root you can only create “databases.” Database is almost like a directory,
you can create “tables” under a database. Follow the steps listed below.

1. Start the mysql server (follow the CSIF MySQL tutorial).

2. Check if mysql server is running.

$ mysqladmin -u root -p status

Uptime: 434 Threads: 1 Questions: 86 Slow queries: 0 . . .

3. Start the mysql client. We will use the command line client to create a new database,
a new user and a table in the new database.

1

http://csifdocs.cs.ucdavis.edu/tiki-index.php?page=CSIF+MySQL+4.x+Install
http://dev.mysql.com/downloads/connector/j/3.1.html
http://dev.mysql.com/downloads/connector/j/3.1.html

(a) $ mysql -u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.
...
mysql>

(b) Create a new database named ecs160tutorial.

mysql> CREATE DATABASE ecs160tutorial;

Query OK, 1 row affected (0.06 sec)

(c) Create a user with all privileges on this database. The user name will be tutorialuser
and the password will be 123456. Although this is NOT good practice, it will
suffice.

mysql> GRANT ALL ON ecs160tutorial.* TO tutorialuser@’%’

-> IDENTIFIED BY ’123456’;

mysql> GRANT ALL ON ecs160tutorial.* TO tutorialuser@’localhost’

-> IDENTIFIED BY ’123456’;

(d) Quit mysql client. We’ll reconnect as tutorialuser to the ecs160tutorial

database to setup a table.

mysql> quit

Bye

$ mysql -u tutorialuser -p ecs160tutorial

Enter password:

Welcome. . .
...
mysql>

(e) Now we will create a simple table with two columns, name and last name.

mysql> CREATE TABLE simple_table (name CHAR(128), last_name CHAR(128));

Query OK, 0 rows affected (0.01 sec)

show tables command will list all the tables created in this database.

mysql> show tables;

+--------------------------+

| Tables_in_ecs160tutorial |

+--------------------------+

| simple_table |

+--------------------------+

1 row in set (0.00 sec)

So far we set up a new database for this tutorial, created a user and a very simple table.
I think it is a good idea to create a new database and user for your project as we did in this
tutorial. In the next section, I’ll describe how to connect to the ecs160tutorial database
from a Java program and execute simple queries.

2

3 Connecting to a MySQL database from a Java pro-

gram using the Connector/J JDBC driver

I assume that you downloaded and installed Connector/J. If you haven’t done so, read
section 1 for the requirements.

You can connect to the MySQL database in two steps. Those steps are detailed below.

1. First load the driver.

Class driver_class=null;

try {

driver_class = Class.forName("com.mysql.jdbc.Driver");

} catch (ClassNotFoundException e) {

e.printStackTrace();

}

System.out.println("Found driver " + driver_class);

We don’t need to register the driver, once it is loaded it will be used for connection
requests to mysql databases.

2. Next step is to connect to the MySQL server and the ecs160tutorial database. Recall
that the user name is tutorialuser and the password is 123456.

Connection connection=null;

try {

connection = DriverManager.getConnection

("jdbc:mysql://localhost:3306/ecs160tutorial","tutorialuser","123456");

} catch (SQLException e) {

e.printStackTrace();

}

try {

System.out.println

("Established connection to "+ connection.getMetaData().getURL());

} catch (SQLException e1) {

e1.printStackTrace();

}

You must have noticed that DriverManager.getConnection takes three arguments.
The first argument is the URL of the server; URLs always start with jdbc:mysql://

and followed by the server address and the database name. Therefore, if you are
running the MySQL server on a different machine you should replace localhost with
the correct machine address, either name or IP address. Moreover, you’ll need to

3

replace 3306 with the number of the port your MySQL server is listening on. Next
component of the URL is the database name. The second argument is the user name
and the last one is the password.

Next, we will switch back to the mysql client to populate simple_table.

1. Connect to the database using the mysql client.

$ mysql -u tutorialuser -p ecs160tutorial

Enter password:

Welcome. . .
...
mysql>

2. Now we will insert two items into our simple_table.

mysql> INSERT INTO simple_table VALUES ("omer","demir");

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO simple_table VALUES ("kivilcim","dogerlioglu-demir");

Query OK, 1 row affected (0.00 sec)

3. Run the following query, the output you see should be similar to the output given
below.

mysql> SELECT * from simple_table;

+----------+-------------------+

| name | last_name |

+----------+-------------------+

| omer | demir |

| kivilcim | dogerlioglu-demir |

+----------+-------------------+

2 rows in set (0.00 sec)

Now, we will execute the same SELECT query from our Java program.

1. We will use the connection to create an empty statement.

statement = connection.createStatement();

2. Execute the SELECT query.

statement.execute("SELECT * FROM simple_table");

3. Get the result set of the query.

4

ResultSet resset = statement.getResultSet();

See http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html for the API doc-
umentation.

4. We are ready to print the result of the query. The result set returned by the statement
initially points before the first row, thus you must call next to advance to the first
row. See the code snippet below.

System.out.println("Row Name Last_Name");

while(resset.next())

{

System.out.print(resset.getRow());

System.out.print(" " + resset.getString("name"));

System.out.println(" " + resset.getString("last_name"));

}

resset.close();

A row of the result set is made up of columns. We know the column names and the
types of the columns of simple_table; they are name and last_name and both are
type string. Therefore, we will use getString (remember column type) method with
the column names.

The output should be similar to the one below.

Row Name Last_Name

1 omer demir

2 kivilcim dogerlioglu-demir

4 Summary

In this tutorial I explained, using MySQL, how to create a database, a user, and a simple
table. I also explained how to connect to a MySQL database from a Java program and
execute queries. The Java program I used as the example can be found in the appendix.
You can use javac to compile the program. Don’t forget to change the host address and the
port number. To run it, you will need to pass -classpath option:

java -classpath /home/<user_name>/mysql-connector-java-3.1.12-bin.jar:$CLASSPATH:. Main

5

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

�����������	�
����� ���� ��� ������� �
����������� �!#"$!&%('*)$+,%.-�/�0�0*1�2*3�4#/�0�5
����������� �!#"$!&%('*)$+,%.6�784*"$197(:�!�0*!�;�197�5
����������� �!#"$!&%('*)$+,%�<#1='�>�+�3�?�1�3�5
����������� �!#"$!&%('*)$+,%.?#@	A�BDCE2*1�F�3$4#/�0�5
����������� �!#"$!&%('*)$+,%.?�3�!�3�1�G�1�0�3�5

��H�I�J���KLK*J�M�N�NO:�!$4$0QP

R�S�S
S T ��M��UM�� VXW8Y�Z
S�R
��H�I�J��$K '*3�!�3�4�2 "�/�4�[G$!�4�0 \]��^�
�$_a` bdce!�7U;='EfgP

h J�M=N�N [9784a"�1�7.i^2�+�!�'�'dj�_�H*J�J,5
�k�mlnP

[�784a"�197�i^2�+�!='�'oj h J�M�N�N % p�/�7Uq�!#G$1 \ rD2*/�G&%�G�s='*)�+t%(*[�u�2v%.6�784a"�197#r f$5
w K*M���K�xy\ h J�M=N�N*z�����{*��H$_a|=}d~	K*���#���*�=_ 19fgP

1t% FX784$0*3�?�3�!�2$�8�v7U!�2*1 *f�5
�U�$�$HX�d_�5

w
]alEN��#��� % /�>*3 % Fk784�0�3�+�0 \ ra�d/�>�0*[L[9784a"�1�7Lr ��[97�4*"$197.ik2#+#!='�'Ef�5

h �=_�_a�=K*������_ 2�/�0�0�1�2�3�4�/�0dj=_�H*J�Jv5
�k�mlnP

2*/�0�0�1�2*3�4�/�0�j
� �
�*�$�^����M=_*M�`��^� % ;�1�3�-�/�0�0�1�2�3�4�/�0 \ rD *[�u�2v��G�s	'a)$+t�����$+�/�2*!$+$��/='a3&������������1�2$'$�d����3�>*3�/�784#!�+^r � r�3�>�3�/9784�!$+$>$'*1�7�r � r*�d�
���$����r f�5

w K*M���K�xy\]#�E��}d~	K*���#���*�=_ 19fgP
1t% FX784$0*3�?�3�!�2$�8�v7U!�2*1 *f�5
�U�$�$HX�d_�5

w
�k�mlnP

]alEN*����� % /�>�3 % Fk7�4$0�3�+�0 \ rDB�'*3�!�u#+�4�'#��1�[�2*/�0�0*1�2*3�4#/�0�3�/�r �
2�/�0�0�1�2�3$4#/�0�% ;�1�3#:$1�3�!�6�!�3�! \�fE% ;�1�3$��<�A *f�f�5

w K*M���K�xy\]#�E��}d~	K*���#���*�=_ 1E�=fgP
1	�9% Fk784�0�3�?�3�!�2����,7U!�2�1 \�f�5

w
]#��M$�#�����=_�� 'a3�!�3�1�G�1�0�3�j=_#H�J�Jv5
�k�mlnP

'a3�!�3�1�G�1�0*3�j�2*/�0�0*1�2*3�4#/�0v% 2k7U1�!�3�1�?�3�!�3�1�G$1�0�3 \�f�5
'a3�!�3�1�G�1�0*3&% 1*C�1�2�>�3�1 \ r�?�B�A�B*-*�����*<# #: '#4*G=F�+�1di	3�!�u#+�1^r f$5
¡ �=N#H�J$��]#��� 7m1='�'*1�3¢j�'*3�!�3�1�G$1�0�3t% ;�1�3$<#1='�>�+�3�?�1�3 \�f$5
]alEN*����� % /�>�3 % Fk7�4$0�3�+�0 \ r8<#/d£�q�!#G$1¤A*!�'*3DiEq�!#G$1^r f�5
¥ x��*J��t*7U1�'�'*1�3&% 0�1�C�3 *f�fP

]*lEN*����� % /�>�3 % Fk7�4$0*3 \�7m1='�'*1�3t% ;�1�3$<#/d£ \�f�f$5
]*lEN*����� % /�>�3 % Fk7�4$0*3 \ rLr �y7U1�'�'*1�3&% ;�1�3�?�3�784$0*; \ rD0�!#G$1^r f�f$5
]*lEN*����� % /�>�3 % Fk7�4$0*3$+�0 \ rLr �y7U1='�'*1�3&% ;�1�3�?�397�4$0*; \ r�+�!�'*3dik0�!#G$1�r f�f$5

w
7m1='�'*1�3t% 2�+�/='a1 *f�5

w K*M���K�xy\]#�E��}d~	K*���#���*�=_ 19fgP
1t% FX784$0*3�?�3�!�2$�8�v7U!�2*1 *f�5

w
¦ �$_*M�J�J�lkP

� ¦ \�'*3�!�3�1�G$1�0�3¨§©j¤_#H�J�J�f
P

�^�mlnP
'*3�!�3�1#G$1�0�3&% 2#+#/='*1 \�f$5

w KaM$��K�xª\]��X��}D~EKa���#�$����_ 1�fgP
1&% Fk784�0�3�?�3�!�2����,7U!�2�1 \�f�5

�����������	�
����� ���� ��� ������� �
w

w
� ¦ \U2�/�0�0*1�2�3$4#/�0«§¬j¤_�H�J�J�f
P

�^�mlnP
2�/�0�0�1�2�3$4#/�0�% 2�+�/='a1 *f�5

w KaM$��K�xª\]��X��}D~EKa���#�$����_ 1�fgP
1&% Fk784�0�3�?�3�!�2����,7U!�2�1 \�f�5

w
w

w

w
w

10.3 Normal Forms Based on Primary Keys I 315

10.3.4 First Normal Form
First normal form (INF) is now considered to be part of the formal definition of a rela
tionin the basic (flat) relational model;12 historically, it was defined to disallow multival
ued attributes, composite attributes, and their combinations. It states that the domain of
anattribute must include only atomic (simple, indivisible) valuesand that the value of any
attribute in a tuple must be a single value from the domain of that attribute. Hence, INF

disallows having a set of values, a tuple of values, or a combination of both as an attribute
value for a single tuple. In other words, I NF disallows "relations within relations" or "rela
tions as attribute values within tuples." The only attribute values permitted by lNF are
single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 10.1, whose primary key is
DNUMBER, and suppose that we extend it by including the DLOCATIONS attribute as shown in
Figure 10.8a. We assume that each department can have a number of locations. The
DEPARTMENT schema and an example relation state are shown in Figure 10.8. As we can see,

DLOCATIONS

Bellaire
Sugarland
Houston
Stafford
Houston

{Bellaire, Sugarland, Houston}
{Stafford}
{Houston}

DLOCATION

333445555
987654321
888665555

333445555
333445555
333445555
987654321
888665555

DMGRSSN

DMGRSSN

_=~=~_L-=D.:.:.M:.::G~R=SS:::N~_I DLOCATIONS

______~ i j

(a) DEPARTMENT

DNAME
I

DNUMBER

t
(b) DEPARTMENT

DNAME I DNUMBER

Research 5
Administration 4
Headquarters 1

(e) DEPARTMENT

DNAME
I

DNUMBER

Research 5
Research 5
Research 5
Administration 4
Headquarters 1

FIGURE 10.8 Normalization into 1NF. (a) A relation schema that is not in 1NF.

(b) Example state of relation DEPARTMENT. (c) 1NF version of same relation with
redundancy.

12. This condition is removed in the nested relational model and in object-relational systems
(ORDBMSs), both of which allow unnormalized relations (see Chapter 22).

316 I Chapter 10 Functional Dependencies and Normal ization for Relational Databases

this is not in 1NF because DLOCATIONS is not an atomic attribute, as illustrated by the first
tuple in Figure 1O.8b. There are two ways we can look at the DLOCATIONS attribute:

• The domain of DLOCATIONS contains atomic values, but some tuples can have a set of
these values. In this case, DLOCATIONS is not functionally dependent on the primary key
DNUMBER.

• The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case,
DNUMBER ~ DLOCATIONS, because each set is considered a single member of the attribute
domain. 13

In either case, the DEPARTMENT relation of Figure 10.8 is not in 1NF; in fact, it does not
even qualify as a relation according to our definition of relation in Section 5.1. There are
three main techniques to achieve first normal form for such a relation:

1. Remove the attribute DLOCATIONS that violates 1NF and place it in a separate rela
tion DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT. The primary
key of this relation is the combination {DNUMBER, DLOCATION},as shown in Figure 10.2.
A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This
decomposes the non-1NF relation into two 1NFrelations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT, as shown in Figure 10.8c. In this case,
the primary key becomes the combination {DNUMBER, DLOCATION}. This solution has
the disadvantage of introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute-for example, if it is
known that at most three locations can exist for a department-replace the DLOCA·

TIONS attribute by three atomic attributes: DLOCATIONl, DLOCATION2, and DLOCATION3.

This solution has the disadvantage of introducing null values if most departments
have fewer than three locations. It further introduces a spurious semantics about
the ordering among the location values that is not originally intended. Querying
on this attribute becomes more difficult; for example, consider how you would
write the query: "List the departments that have "Bellaire" as one of their loca
tions" in this design.

Of the three solutions above, the first is generally considered best because it does not
suffer from redundancy and it is completely general, having no limit placed on a
maximum number of values. In fact, if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes that are themselves
composite. These are called nested relations because each tuple can have a relation
within it. Figure 10.9 shows how the EMP_PRO) relation could appear if nesting is allowed.
Each tuple represents an employee entity, and a relation PRO)S(PNUMBER, HOURS) within each

13. In this case we can consider the domain of OLOCATIONS to be the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the set of single locations.

10.3 Normal Forms Based on Primary Keys I 317

PROJS
SSN ENAME

PNUMBER !HOURS

SSN ENAME I PNUMBER I HOURS I

.. _-------_ .. _---------- _------------------

888665555 Borg,James E.

Smith,John B.

Wong,Franklin T.

Zelaya,Alicia J.

Jabbar,Ahmad V.

Wallace,Jennifer S.

999887777

123456789

333445555

987987987

987654321

1 32.5

2 L~ .
..~~~ f\J.a.ray1l.I1!BCI~~.~.~.~· 3 4:Q:Q .
453453453 English,JoyceA. 1 20.0

... ?- ?Q:Q .
2 10.0
3 10.0

10 10.0

............2.Q 1.Q,Q .
30 30.0

.......1.Q .1Q,Q .
10 35.0

..:3Q 5:Q .
30 20.0

20 J~:.Q .
20 null

(c) EMP_PROJ1

SSN I ENAME

EMP_PROJ2

§§tLJ PNUMBER HOURS I

FIGURE 10.9 Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ

relation with a "nested relation" attribute PROJS. (b) Example extension of the
EMUROJ relation showing nested relations within each tuple. (c) Decomposition
of EMP_PROJ into relations EMP_PROJI and EMP_PROJ2 by propagating the primary key.

tuple represents the employee's projects and the hours per week that employee works on
each project. The schema of this EMP_PROJ relation can be represented as follows:

EMP_PROJ (SSN, ENAME, {PROJS(PNUMBER, HOURS)})

The set braces { } identify the attribute PROJS as multivalued, and we list the
component attributes that form PROJS between parentheses (). Interestingly, recent trends
for supporting complex objects (see Chapter 20) and XMLdata (see Chapter 26) using the
relational model attempt to allow and formalize nested relations within relational
database systems, which were disallowed early on by iNF.

318 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

Notice that SSN is the primary key of the EMP_PROJ relation in Figures 10.9a and b,
while PNUMBER is the partial key of the nested relation; that is, within each tuple, the nested
relation must have unique values of PNUMBER. To normalize this into INF, we remove the
nested relation attributes into a new relation and propagate the primary key into it; the
primary key of the new relation will combine the partial key with the primary key of the
original relation. Decomposition and primary key propagation yield the schemas EMP_

PROJl and EMP_PROJ2 shown in Figure 10.9c.
This procedure can be applied recursively to a relation with multiple-level nesting to

unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-lNF relation:

PERSON (ss#, {CAR_LIC#}, {PHONE#})

This relation represents the fact that a person has multiple cars and multiple phones. If a
strategy like the second option above is followed, it results in an all-key relation:

PERSON_IN_INF (ss#, CAR_LIC#, PHONE#)

To avoid introducing any extraneous relationship between CAR_LIC# and PHONE#, all
possible combinations of values are represented for every 55#. giving rise to redundancy.
This leads to the problems handled by multivalued dependencies and 4NF, which we
discuss in Chapter 11. The right way to deal with the two multivalued attributes in PERSON

above is to decompose it into two separate relations, using strategy 1 discussed above:
Pl(55#, CAR_LIC#) and P2(55#, PHONE#).

10.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency. A func
tional dependency X -7 Y is a full functional dependency if removal of any attribute A
from X means that the dependency does not hold any more; that is, for any attribute A E

X, (X - {A}) does not functionally determine Y. A functional dependency X -7 Y is a par
tial dependency if some attribute A E X can be removed from X and the dependency still
holds; that is, for some A E X, (X - {A}) -7 Y. In Figure lO.3b, {SSN, PNUMBER} -7 HOURS is a
full dependency (neither SSN -7 HOURS nor PNUMBER -7 HOURS holds). However, the depen
dency {SSN, PNUMBER} -7 ENAME is partial because SSN -7 ENAME holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test need not be applied at all. The EMP_PROJ relation in Figure 10.3b is in INF but is not in
2NF. The nonprime attribute ENAME violates 2NF because of FD2, as do the nonprime
attributes PNAME and PLOCATION because of FD3. The functional dependencies FD2 and FD3
make ENAME, PNAME, and PLOCATION partially dependent on the primary key {SSN, PNUMBER} of
EMP_PROJ, thus violating the 2NF test.

10.3 Normal Forms Based on Primary Keys I 319

Ifa relation schema is not in 2NF, it can be "second normalized" or "2NFnormalized" into
a number of 2NF relations in which nonprime attributes are associated only with the part of
the primary key on which they are fully functionally dependent. The functional dependencies
FDI, m2, and FD3 in Figure IO.3b hence lead to the decomposition of EMP_PRO] into the three
relation schemas EPl, EP2, and EP3 shown in Figure 10.lOa, each of which is in 2NF.

10.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A functional
dependency X ~ Y in a relation schema R is a transitive dependency if there is a set of

(a)

PLOCATION

____t_t
'------- tFD2

FD3

J} 2NF '-'lRMAUZATION

ED1

J1- 3NF '-'lRMAUZATION

ED2

FIGURE 10.10 Normalizing into 2NF and 3NF. (a) Normalizing EMP_PRO] into 2NF
relations. (b) Normalizing EMP_DEPT into 3NF relations.

320 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

attributes Z that is neither a candidate key nor a subset of any key of R,14 and both X -7 Z
and Z -7 Y hold. The dependency SSN -7 DMGRSSN is transitive through DNUMBER in EMP_DEPTof
Figure 1O.3a because both the dependencies SSN -7 DNUMBER and DNUMBER -7 DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. Intuitively, we can see that
the dependency of DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER is not a key of
EMP_DEPT.

Definition. According to Codd's original definition, a relation schema R is in 3NF if it
satisfies 2NFandno nonprime attribute of R is transitively dependent on the primary key.

The relation schema EMP_DEPT in Figure lO.3a is in 2NF, since no partial dependencies
on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of
DMGRSSN (and also DNAME) on SSN via DNUMBER. We can normalize EMP_DEPT by decomposing it
into the two 3NF relation schemas EDl and ED2 shown in Figure 10.lOb. Intuitively, we see
that EDl and ED2 represent independent entity facts about employees and departments. A
NATURAL JOIN operation on EDI and ED2 will recover the original relation EMP_DEPT without
generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (proper subset) of the primary key, or any functional dependency in which the left
hand side is a nonkey attribute is a "problematic" FD. 2NF and 3NF normalization remove
these problem FDs by decomposing the original relation into new relations. In terms of
the normalization process, it is not necessary to remove the partial dependencies before
the transitive dependencies, but historically, 3NF has been defined with the assumption
that a relation is tested for 2NF first before it is tested for 3NF. Table 10.1 informally
summarizes the three normal forms based on primary keys, the tests used in each case, and
the corresponding "remedy" or normalization performed to achieve the normal form.

10.4 GENERAL DEFINITIONS OF SECOND AND
THIRD NORMAL FORMS

In general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies, because these types of dependencies cause the update anomalies
discussed in Section 10.1.2. The steps for normalization into 3NF relations that we have
discussed so far disallow partial and transitive dependencies on the primary key. These
definitions, however, do not take other candidate keys of a relation, if any, into account.
In this section we give the more general definitions of 2NFand 3NF that take all candidate
keys of a relation into account. Notice that this does not affect the definition of 1NF,
since it is independent of keys and functional dependencies. As a general definition of
prime attribute, an attribute that is part of any candidate key will be considered as prime.

--~-------------------- ------------------- ---

14.This is the general definition of transitive dependency. Because we are concerned only with pri
marykeysin this section, we allow transitive dependencies where X is the primarykey but Z maybe
(a subsetof) a candidate key.

10.4 General Definitions of Second and Third Normal Forms I 321

TABLE 10.1 SUMMARY OF NORMAL FORMS BASED ON PRIMARY KEYS AND CORRESPONDING

NORMALIZATION

NORMAL FORM TEST REMEDY (NORMALIZATION)

First (lNF)

Second (2NF)

Third (3NF)

Relation should have no nonatomic
attributes or nested relations.
For relations where primary key contains
multiple attributes, no nonkey attribute
should be functionally dependent on a part
of the primary key.

Relation should not have a nonkey attribute
functionally determined by another nonkey
attribute (or by a set of nonkey attributes.)
That is, there should be no transitive depen
dency of a nonkey attribute on the primary
key.

Form new relations for each nonatomic
attribute or nested relation.
Decompose and set up a new relation for
each partial key with its dependent
attributets). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it.
Decompose and set up a relation that
includes the nonkey attributets) that
functionally determinets) other nonkey
attributets).

Partial and full functional dependencies and transitive dependencies will now be consid
ered with respect to all candidate keys of a relation.

10.4.1 General Definition of Second Normal Form

Definition. A relation schema R is in second normal form (2NF) if every nonprime
attribute A in R is not partially dependent on any key of R.15

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test neednot be applied at all. Consider the relation schema LOTS shown in Figure 10.11a,
which describes parcels of land for sale in various counties of a state. Suppose that there
are two candidate keys: PROPERTY_ID# and {COUNTY_NAME, LOT#}; that is, lot numbers are
unique only within each county, but PROPERTY_ID numbers are unique across counties for
the entire state.

Based on the two candidate keys PROPERTY_ID# and {cOUNTY_NAME, LOT#}, we know that
thefunctional dependencies FD1 and FD2 of Figure 1O.11a hold. We choose PROPERTY_ID#

as the primary key, so it is underlined in Figure 10.11a, but no special consideration will

15. This definition can be restated as follows: A relation schema R is in 2NF if every nonprime
attribute A in R isfullyfunctionally dependent on every key of R.

322 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

(a) LOTS

FD2 t t t t
FD3 t

FD4 t
(b) LOTS1

FD2 t t
FD4 t

LOTS2

COUNTY NAME TAX_RATE

FD3 t
(c) LOTS1A LOTS1B

AREA PRICE

FD4 I t
FD2

(d) LOTS 1NF

/ -,
LOTS1 LOTS2 2NF

/~ I
LOTS1A LOTS1B LOTS2 3NF

FIGURE 10.11 Normalization into 2NF and 3NF. (a) The LOTS relation with its func
tional dependencies FDl through FD4. (b) Decomposing into the 2NF relations
LOTsl and LOTS2. (c) Decomposing LOTsl into the 3NF relations LOTsIA and LOTsIB. (d)
Summary of the progressive normal ization of LOTS.

10.4 General Definitions of Second and Third Normal Forms I 323

be given to this key over the other candidate key. Suppose that the following two
additionalfunctional dependencies hold in LOTS:

FD3: COUNTY_NAME ~ TAX_RATE

FD4: AREA ~ PRICE

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), while FD4 says that the price of a lot is
determined by its area regardless of which county it is in. (Assume that this is the price of
thelot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because TAX_RATE is
partially dependent on the candidate key {COUNTY_NAME, LOT#}, due to FD3. To normalize LOTS

into 2NF, we decompose it into the two relations LOTSl and LOTS2, shown in Figure 10.11b.
We construct LOTSl by removing the attribute TAX_RATE that violates 2NF from LOTS and
placing it with COUNTCNAME (the left-hand side of FD3 that causes the partial dependency)
into another relation LOTS2. Both LOTSl and LOTS2 are in 2NF. Notice that FD4 does not
violate 2NF and is carried over to LOTSl.

10.4.2 General Definition of Third Normal Form

Definition. A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X ~ A holds in R, either (a) X is a superkey of R, or (b)
A isa prime attribute of R.

According to this definition, LOTS2 (Figure lO.l1b) is in 3NF. However, FD4 in LOTSl

violates 3NF because AREA is not a superkey and PRICE is not a prime attribute in LOTSl. To
normalize LOTSl into 3NF, we decompose it into the relation schemas LOTSlA and LOTSlB

shown in Figure 10.11e. We construct LOTSlA by removing the attribute PRICE that violates
3NF from LOTSl and placing it with AREA (the left-hand side of FD4 that causes the
transitive dependency) into another relation LOTSlB. Both LOTSlA and LOTSlB are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

I LOTSl violates 3NF because PRICE is transitively dependent on each of the candidate
keys of LOTSl via the nonprime attribute AREA.

I This general definition can be applied directly to test whether a relation schema is in
3NF; it does not have to go through 2NF first. If we apply the above 3NF definition to
LOTS with the dependencies FD1 through FD4, we find that both FD3 and FD4 violate
3NF. We could hence decompose LOTS into LOTSlA, LOTSlB, and LOTS2 directly. Hence
the transitive and partial dependencies that violate 3NF can be removed in any order.

10.4.3 Interpreting the General Definition of
Third Normal Form

A relation schema R violates the general definition of 3NF if a functional dependency X
--tA holds in R that violates both conditions (a) and (b) of 3NF. Violating (b) means that

324 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

A is a nonprime attribute. Violating (a) means that X is not a superset of any key of R;
hence, X could be nonprime or it could be a proper subset of a key of R. If X is nonprime,
we typically have a transitive dependency that violates 3NF, whereas if X is a proper sub
set of a key of R, we have a partial dependency that violates 3NF (and also 2NF). Hence,
we can state a general alternative definition of 3NF as follows: A relation schema R is in
3NF if every nonprime attribute of R meets both of the following conditions:

• It is fully functionally dependent on every key of R.

• It is nontransitively dependent on every key of R.

10.5 BOYCE-CODD NORMAL FORM
Bovce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found
to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation
in 3NF is not necessarily in BCNF. Intuitively, we can see the need for a stronger normal
form than 3NF by going back to the LOTS relation schema of Figure 1O.11a with its four
functional dependencies Fol through Fo4. Suppose that we have thousands oflots in the
relation but the lots are from only two counties: Dekalb and Fulton. Suppose also that lot
sizes in Dekalb County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in
Fulton County are restricted to 1.1, 1.2, ... , 1.9, and 2.0 acres. In such a situation we
would have the additional functional dependency FD5: AREA --7 COUNTY_NAME. If we add this
to the other dependencies, the relation schema LOTSIA still is in 3NF because COUNTY_NAME is
a prime attribute.

The area of a lot that determines the county, as specified by Fo5, can be represented
by 16 tuples in a separate relation R(AREA, COUNTCNAME), since there are only 16 possible
AREA values. This representation reduces the redundancy of repeating the same
information in the thousands of LOTSIA tuples. BCNF is a stronger normal form that would
disallow LOTslA and suggest the need for decomposing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X --7 A holds in R, then X is a superkey of R.

The formal definition of BCNF differs slightly from the definition of 3NF. The only
difference between the definitions of BCNF and 3NF is that condition (b) of 3NF, which
allows A to be prime, is absent from BCNF. In our example, Fo5 violates BCNF in LOTsIA

because AREA is not a superkey of LOTslA. Note that Fo5 satisfies 3NF in LOTSIA because
COUNTY_NAME is a prime attribute (condition b), but this condition does not exist in the
definition of BCNF. We can decompose LOTSIA into two BCNF relations LOTSlAX and LOTS lAy,

shown in Figure 10.12a. This decomposition loses the functional dependency Fo2 because
its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if X -1 A
holds in a relation schema R with X not being a superkey and A being a prime attribute
will R be in 3NF but not in BCNF. The relation schema R shown in Figure lO.l2b
illustrates the general case of such a relation. Ideally, relational database design should
strive to achieve BCNF or 3NF for every relation schema. Achieving the normalization

10.5 Boyce-Codd Normal Form I 325

(a) LOTS1A

FD5

PROPERTY ID# COUNTY_NA_M_E ~

FD1 I t ~
+ I I t

; I

FD2

LOTS1AX LOTS1AY

PROPERTY ID# AREA LOT#

(b) R

~
FD1 ! I

FD2 't-.J

FIGURE 10.12 Boyce-Codd normal form. (a) BCNF normal ization of LOTS1A with the
functional dependency FD2 being lost in the decomposition. (b) A schematic
relation with FDS; it is in 3NF, but not in BCNF.

status of just 1NF or 2NF is not considered adequate, since they were developed
historically as stepping stones to 3NF and BCNF.

As another example, consider Figure 10.13, which shows a relation TEACH with the
following dependencies:

FDl: {STUDENT, COURSE} ~ INSTRUCTOR

FD2: 16 INSTRUCTOR ~ COURSE

Note that {STUOENT, COURSE} is a candidate key for this relation and that the
dependencies shown follow the pattern in Figure 10.12b, with STUDENT as A, COURSE as B,
and INSTRUCTOR as C. Hence this relation is in 3NF but not BCNF. Decomposition of this
relation schema into two schemas is not straightforward because it may be decomposed
into one of the three following possible pairs:

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.

2. {COURSE. INSTRUCTOR} and {COURSE, STUDENT}.

3. {INSTRUCTOR. COURSE} and {INSTRUCTOR, STUDENT}.

16. Thisdependency means that "each instructor teaches one course" is a constraint for this application.

326 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

TEACH

[iTUDENT COURSE INSTRUCTOR

Narayan Database Mark

Smith Database Navathe

Smith OperatingSystems Ammar

Smith Theory Schulman

Wallace Database Mark

Wallace OperatingSystems Ahamad

Wong Database Omiecinski

Zelaya Database Navathe

FIGURE 10.13 A relation TEACH that is in 3NF but not BCNF.

All three decompositions "lose" the functional dependency F01. The desirable
decomposition of those just shown is 3, because it will not generate spurious tuples after a join.

A test to determine whether a decomposition is nonadditive (lossless) is discussed in
Section 11.1.4 under Property L] 1. In general, a relation not in BCNF should be
decomposed so as to meet this property, while possibly forgoing the preservation of all
functional dependencies in the decomposed relations, as is the case in this example.
Algorithm 11.3 does that and could be used above to give decomposition 3 for TEACH.

10.6 SUMMARY
In this chapter we first discussed several pitfalls in relational database design using intui
tive arguments. We identified informally some of the measures for indicating whether a
relation schema is "good" or "bad," and provided informal guidelines for a good design.
We then presented some formal concepts that allow us to do relational design in a top
down fashion by analyzing relations individually. We defined this process of design by
analysis and decomposition by introducing the process of normalization.

We discussed the problems of update anomalies that occur when redundancies are
present in relations. Informal measures of good relation schemas include simple and clear
attribute semantics and few nulls in the extensions (states) of relations. A good
decomposition should also avoid the problem of generation of spurious tuples as a result of
the join operation.

We defined the concept of functional dependency and discussed some of its
properties. Functional dependencies specify semantic constraints among the attributes of
a relation schema. We showed how from a given set of functional dependencies,
additional dependencies can be inferred using a set of inference rules. We defined the
concepts of closure and cover related to functional dependencies. We then defined

Review Questions I 327

minimal cover of a set of dependencies, and provided an algorithm to compute a minimal
cover. We also showed how to check whether two sets of functional dependencies are
equivalent.

We then described the normalization process for achieving good designs by testing
relations for undesirable types of "problematic" functional dependencies. We provided a
treatment of successive normalization based on a predefined primary key in each relation,
thenrelaxed this requirement and provided more general definitions of second normal form
(2NF) and third normal form (3NF) that take all candidate keys of a relation into account.
We presented examples to illustrate how by using the general definition of 3NF a given
relation may be analyzed and decomposed to eventually yield a set of relations in 3NF.

Finally, we presented Boyce-Codd normal form (BCNF) and discussed how it is a
stronger form of 3NF. We also illustrated how the decomposition of a non-BCNF relation
must be done by considering the nonadditive decomposition requirement.

Chapter 11 presents synthesis as well as decomposition algorithms for relational
database design based on functional dependencies. Related to decomposition, we discuss
the concepts of lossless (nonadditive) join and dependency preservation, which are enforced
by some of these algorithms. Other topics in Chapter 11 include multivalued
dependencies, join dependencies, and fourth and fifth normal forms, which take these
dependencies into account.

Review Questions
10.1. Discuss attribute semantics as an informal measure of goodness for a relation

schema.
10.2. Discuss insertion, deletion, and modification anomalies. Why are they considered

bad? Illustrate with examples.
10.3. Why should nulls in a relation be avoided as far as possible? Discuss the problem

of spurious tuples and how we may prevent it.
lOA. State the informal guidelines for relation schema design that we discussed. Illus

trate how violation of these guidelines may be harmful.
10.5. What is a functional dependency? What are the possible sources of the informa

tion that defines the functional dependencies that hold among the attributes of a
relation schema?

10.6. Why can we not infer a functional dependency automatically from a particular
relation state?

10.7. What role do Armstrong's inference rules-the three inference rules IRI through
IR3-play in the development of the theory of relational design?

10.8. What is meant by the completeness and soundness of Armstrong's inference rules?
10.9. What is meant by the closure of a set of functional dependencies? Illustrate with

an example.
10.10. When are two sets of functional dependencies equivalent? How can we determine

their equivalence?
10.11. What is a minimal set of functional dependencies? Does every set of dependencies

have a minimal equivalent set? Is it always unique?

328 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

10.12. What does the term unnormalized relation refer to? How did the normal forms
develop historically from first normal form up to Boyce-Codd normal form?

10.13. Define first, second, and third normal forms when only primary keys are consid
ered. How do the general definitions of 2NFand 3NF, which consider all keys of a
relation, differ from those that consider only primary keys?

10.14. What undesirable dependencies are avoided when a relation is in 2NF?
10.15. What undesirable dependencies are avoided when a relation is in 3NF?
10.16. Define Boyce-Codd normal form. How does it differ from 3NF?Why is it consid

ered a stronger form of 3NF?

Exercises
10.17. Suppose that we have the following requirements for a university database that is

used to keep track of students' transcripts:
a. The university keeps track of each student's name (SNAME), student number

(SNUM), social security number (SSN), current address (SCADDR) and phone
(SCPHONE), permanent address (SPADDR) and phone (SPPHoNE), birth date (BOATE),

sex (SEX), class (CLASS) (freshman, sophomore, ... , graduate), major depart
ment (MAJORCODE), minor department (MINORCOOE) (if any), and degree program
(PROG) (B. A., B. S • , ••• , PH. D•). Both SSSN and student number have unique val
ues for each student.

b. Each department is described by a name (DNAME), department code (DCOOE),

office number (DOFFICE), office phone (DPHONE), and college (OCOLLEGE). Both
name and code have unique values for each department.

c. Each course has a course name (CNAME), description (CDESC), course number
(CNUM), number of semester hours (CREDIT), level (LEVEL), and offering depart
ment (CDEPT). The course number is unique for each course.

d. Each section has an instructor (INAME), semester (SEMESTER), year (YEAR), course
(SECCOURSE), and section number (SECNUM). The section number distinguishes
different sections of the same course that are taught during the same semester/
year; its values are 1, 2, 3, ... , up to the total number of sections taught during
each semester.

e. A grade record refers to a student (SSN), a particular section, and a grade (GRADE).

Design a relational database schema for this database application. First show all
the functional dependencies that should hold among the attributes. Then design
relation schemas for the database that are each in 3NF or BCNF. Specify the key
attributes of each relation. Note any unspecified requirements, and make
appropriate assumptions to render the specification complete.

10.18. Prove or disprove the following inference rules for functional dependencies. A
proof can be made either by a proof argument or by using inference rules lRl
through IR3. A disproof should be performed by demonstrating a relation instance
that satisfies the conditions and functional dependencies in the left-hand side of
the inference rule but does not satisfy the dependencies in the right-hand side.
a. {W -7 Y, X -7 Z} F {WX -7 Y}
b. {X -7 Y} and Y :2 Z F {X -7 Z}

c. {X -7 Y, X -7 \v, WY -7 Z} F {X -7 Z}
d. {XY -7 Z, Y -7 W} F {XW -7 Z}
e. {X -7 Z, Y -7 Z} F {X -7 Y}
f. {X -7 Y, XY -7 Z} F {X -7 Z}
g. IX -7 Y, Z -7 W} F {XZ -7 YW}
h. {XY -7 Z, Z -7 X} F {Z -7 Y}
i. {X -7 Y, Y -7 Z} F {X -7 YZ}
j. {XY -7 Z, Z -7 W} F {X -7 W}

10.19. Consider the following two sets of functional dependencies: F = {A -7 C, AC -7
D, E -7 AD, E -7 H} and G = {A -7 CD, E -7 AH}. Check whether they are
equivalent.

10.20. Consider the relation schema EMP_DEPT in Figure lO.3a and the following set G of
functional dependencies on EMP_DEPT: G = {SSN -7 {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER -7 {DNAME, DMGRSSNn. Calculate the closures {SSN}+ and {DNUMBER}+ with respect
toG.

10.21. Is the set of functional dependencies G in Exercise 10.20 minimal? If not, try to
find a minimal set offunctional dependencies that is equivalent to G. Prove that
your set is equivalent to G.

10.22. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of Figures
10.3 and lOA?

10.23. In what normal form is the LOTS relation schema in Figure 1O.11a with respect to
the restrictive interpretations of normal form that take only the primary key into
account? Would it be in the same normal form if the general definitions of normal
form were used?

10.24. Prove that any relation schema with two attributes is in BCNF.
10.25. Why do spurious tuples occur in the result of joining the EMP_PROJI and EMP_ LaCS

relations of Figure 10.5 (result shown in Figure 1O.6)?
10,26. Consider the universal relation R = {A, B, C, D, E, F, G, H, I,}} and the set of func

tional dependencies F = HA, B} -7 {C}, {A} -7 {D, E}, {B} -7 {F}, {F} -7 {G, H},{D}-7
{I, }n. What is the key for R? Decompose R into 2NFand then 3NFrelations.

10,27. Repeat Exercise 10.26 for the following different set of functional dependencies
G = HA, B} -7 {C}, {B, D} -7 {E, F}, {A, D} -7 {G, H}, {A} -7 {l}, {H} -7 {l}}.

10,28, Consider the following relation:

A B C TUPLE#

10 b1 c1 #1
10 b2 c2 #2
11 b4 c1 #3
12 b3 c4 #4
13 b1 c1 #5
14 b3 c4 #6

Exercises I 329

330 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

a. Given the previous extension (state), which of the following dependencies
may hold in the above relation? If the dependency cannot hold, explain why by
specifying the tuples that cause the violation.

i. A ~ B, ii. B~ C, iii. C ~ B, iv. B~ A, v. C ~ A

b. Does the above relation have a potential candidate key? If it does, what is it? If
it does not, why not?

10.29. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB ~ C, CD ~ E, DE ~ B

Is AB a candidate key of this relation? If not, is ABD? Explain your answer.
10.30. Consider the relation R, which has attributes that hold schedules of courses and

sections at a university; R = {CourseNo, SecNo, OfferingDept, Credit-Hours,
CourseLevel, InstructorSSN, Semester, Year, Days_Hours, RoomNo, NoOfStu
dents}. Suppose that the following functional dependencies hold on R:

{CourseNo} ~ {OfferingDept, CreditHours, CourseLevel}

{CourseNo, SecNo, Semester, Year} ~ {Days_Hours, RoomNo, NoOfStudents,
InstructorSSN}

{RoomNo, Days_Hours, Semester, Year} ~ [Instructorssn, CourseNo, SecNo}

Try to determine which sets of attributes form keys of R. How would you
normalize this relation?

10.31. Consider the following relations for an order-processing application database at
ABC, Inc.

ORDER (0#, Odate, Cust», Totaljimount)

ORDER-ITEM(O#, 1#, Qty_ordered, Totaljprice, Discount%)

Assume that each item has a different discount. The TOTAL_PRICE refers to one
item, OOATE is the date on which the order was placed, and the TOTAL_AMOUNT is the
amount of the order. If we apply a natural join on the relations ORDER-ITEM and
ORDER in this database, what does the resulting relation schema look like? What
will be its key? Show the FDs in this resulting relation. Is it in 2NF? Is it in 3NF!
Why or why not? (State assumptions, if you make any.)

10.32. Consider the following relation:

CAR_SALE(Car#, Date_sold, Salesmans, Commission%, Discountjamt)

Assume that a car may be sold by multiple salesmen, and hence {CAR#, SALESMAN#}

is the primary key. Additional dependencies are

Date_sold ~ Discountjimt

and

Salesman# ~ Commission%

Based on the given primary key, is this relation in INF, 2NF, or 3NF? Why or why
not? How would you successively normalize it completely?

Selected Bibliography I 331

10.33. Consider the following relation for published books:

BOOK (Book_title, Authorname, Booktvpe, Listprice, Author_affil, Publisher)

Author_affil refers to the affiliation of author. Suppose the following dependencies
exist:

Book_title ~ Publisher, Book_type

Book_type ~ Listprice

Authorname ~ Author-affil

a. What normal form is the relation in? Explain your answer.
b. Apply normalization until you cannot decompose the relations further. State

the reasons behind each decomposition.

Selected Bibliography
Functional dependencies were originally introduced by Codd (1970). The original defini
tions of first, second, and third normal form were also defined in Codd (1972a), where a
discussion on update anomalies can be found. Boyce-Codd normal form was defined in
Codd (1974). The alternative definition of third normal form is given in Ullman (1988),
as is the definition of BCNF that we give here. Ullman (1988), Maier (1983), and Atzeni
and De Antonellis (1993) contain many of the theorems and proofs concerning func
tional dependencies.

Armstrong (1974) shows the soundness and completeness of the inference rules IRI

through IR3. Additional references to relational design theory are given in Chapter 11.

Normalization…Motivation
 We saw how we can derive logical DB design (initial

DB schema) from ER diagram.
 But how can we measure our work to be good…or

better than other?

 How can we be sure that this schema is better than
other one

 We need a formal way for doing so..!!!

 IC can be used to refine the conceptual schema
produced

1

Motivation…2
 We will concentrate on special class of IC which is

Functional Dependencies

 We will start with an overview of the problems that
normalization should address:

2

Redundancy
 Redundancy of storage is the root

 Problem 1: Redundant Storage: information is

stored repeatedly

 Problem 2: Update Anomalies: if one copy of one
repeated data is updated, all other copies should be
updated as well

3

 Problem 3: Insertion Anomalies it will be
impossible to insert some data without inserting other,
unrelated information as well

 Problem 3:Delete Anomalies it may be not possible
to delete some information without deleting other,
unrelated one.

4

5

Decomposition
 In general, redundancy arises when a relational

schema forces an association between attributes that is
not natural.

 Functional Dependencies can be used

 Main idea is to decompose the relation into smaller
relations.

6

Problems Related to Decomposition

 Do we need to decompose the relation?
◦ Several normal forms have been found

 What problems are associated with

decomposition?

Functional Dependencies
 A functional dependency (FD) is a kind of IC

that generalizes the concept of a key

 Let R be a relation schema and let X and Y be
nonempty sets of attributes in R. We

say that an instance r of R satisfies the
 FD X Y if the following holds for every

pair of tuples t1 and t2 in r:
If t1:X = t2:X, then t1:Y = t2:Y .

Example

 In the following relation: FD ABC holds
 But if we add {a1; b1; c2; d1} it wont hold

 A primary key constraint is a special case
of an FD.

 Note,however, that the denition of an FD
does not require that the set X be
minimal;

 The additional minimality condition must
be met for X to be a key

SuperKey

 If X Y holds, where
 Y is the set of all attributes, and there is

some subset V of X such that V Y holds,
 then X is a superkey;

Another Example
 Consider the Hourly Emps relation again.

The constraint that attribute ssn is a key
 can be expressed as an FD:
 {ssn} {ssn; name; lot; rating; hourly wages;

hours worked}

 FD as S SNLRWH, for simplicity
 Also RW

 legal relation states) of R, obey the functional
dependency constraints.

 Ex:

◦ Consider the relation schema EMP_PROJ in from the
semantics of the attributes, we know that the
following functional dependencies should hold:
◦ SSN ENAME
◦ PNUMBER {PNAME, PLOCATION}
◦ {SSN, PNUMBER} HOURS

S# CITY P# QTY
S1 London P1 100
S1 London P2 100
S2 Paris P1 200
S2 Paris P2 200
S3 Paris P2 300
S4 London P2 400
S4 London P4 400
S4 London P5 400

 S# CITY
 S# QTY
 QTY S#
 {S#, P#} QTY

Inference Rules for Functional
Dependencies
 We denote by F the set of functional

dependencies that are specified on
relation schema R

 We usually specify the FDs that are
semantically obvious

 But there are other FDs that can be
detucted

 The set of all such dependencies is called the
closure of F and is denoted by F*

 To determine a systematic way to infer
dependencies, we must discover a set of
inference rules that can be used to infer
new dependencies from a given set of
dependencies.

 Reflexivity:
 Y is a subset of X

 Augmentation: if X Y, then XZ YZ for any Z

 Transitivity : if X Y and Y Z then X Z
 Union: If X Y and X Z, then XYZ
 Decomposition: if XYZ then XY and XZ

Normalization
 Having studied functional dependencies and some of

their properties, we are now ready to use them as
information about the semantics of the relation
schemas

 We assume that:
-- a set of functional dependencies is given for each
relation,
--and that each relation has a designated primary key;
 --this information combined with the tests (conditions)
for normal forms drives the normalization process

 takes a relation schema through a series of tests
to "certify" whether it satisfies a certain normal
form

 We have 3 normal forms
 All these normal forms are based on the

functional dependencies among the attributes of
a relation

 Unsatisfactory relation schemas that do not
meet certain conditions—the normal form
tests—are decomposed into smaller relation
schemas that meet the tests and hence possess
the desirable properties

First Normal Form
 historically, it was defined to disallow multivalued

attributes, composite attributes, and their
combinations

 It states that the domain of an attribute must
include only atomic (simple, indivisible) values and
that the value of any attribute in a tuple must be
a single value from the domain of that attribute.

Consider the DEPARTMENT relation schema shown

 As we can see, this is not in 1NF because
DLOCATIONS is not an atomic attribute

 DLOCATIONS is not functionally dependent on
DNUMBER.

 here are three main techniques to achieve first
normal form for such a relation

1. Remove the attribute DLOCATIONS that
violates 1NF and place it in a separate relation
DEPT_LOCATIONS along with the primary
key DNUMBER of DEPARTMENT

--The primary key of this relation is the
combination {DNUMBER, DLOCATION}

2. Expand the key , In this case, the primary key
becomes the combination {DNUMBER,
DLOCATION}. This solution has the
disadvantage of introducing redundancy in the
relation. As in the prevous diagram (c)

3. If a maximum number of values is known for
the attribute—for example, if it is known
that at most three locations can exist for a
department—replace the DLOCATIONS
attribute by three atomic attributes:
DLOCATION1, DLOCATION2, and
DLOCATION3. This solution has the
disadvantage of introducing null values if most
departments have fewer than three locations.

1 NF
 The first normal form also disallows multivalued

attributes that are themselves composite.

 These are called nested relations because each
tuple can have a relation within it.

 Take a look at the following diagram:

 To normalize this into 1NF, we remove the
nested relation attributes into a new relation and
propagate the primary key into it;

 This procedure can be applied recursively to a
relation with multiple-level nesting to unnest
the relation into a set of 1NF relations

2 NF
 Second normal form (2NF) is based on the

concept of full functional dependency.

 A functional dependency X Y is a full
functional dependency if removal of any
attribute A from X means that the dependency
does not hold any more;

 A functional dependency X Y is a partial
dependency if some attribute A X can be removed
from X and the dependency still holds

 {SSN, PNUMBER} HOURS is a full
dependency (neither SSN HOURS nor
PNUMBER HOURS holds).

 However, the dependency {SSN, PNUMBER}
ENAME is partial because SSN ENAME holds.

 The test for 2NF involves testing for functional
dependencies whose left-hand side attributes are
part of the primary key.

 If the primary key contains a single attribute, the
test need not be applied at all.

 A relation schema R is in 2NF if every nonprime
attribute A in R is fully functionally dependent on
the primary key of R

•The EMP_PROJ relation is in 1NF but is not
in 2NF.

•The nonprime attribute ENAME violates 2NF
. because of FD2, as do the nonprime .
attributes PNAME and PLOCATION because
of FD3

 If a relation schema is not in 2NF, it can be
"second normalized" or "2NF normalized" into a
number of 2NF relations in which nonprime
attributes are associated only with the part of
the primary key on which they are fully
functionally dependent.

 The functional dependencies FD1, FD2, and FD3
in hence lead to the decomposition of
EMP_PROJ into the three relation schemas EP1,
EP2, and EP3 shown in

3 NF
 Third normal form (3NF) is based on the

concept of transitive dependency

 A functional dependency X Y in a relation
schema R is a transitive dependency if there
is a set of attributes Z that is neither a candidate
key nor a subset of any key of R , and both X
Z and Z Y hold.

 The dependency SSN DMGRSSN is transitive
through DNUMBER in EMP_DEPT

 because both the dependencies SSN DNUMBER and
DNUMBER DMGRSSN hold and DNUMBER is
neither a key itself nor a subset of the key of
EMP_DEPT.

 we can see that the dependency of DMGRSSN on
DNUMBER is undesirable in EMP_DEPT since
DNUMBER is not a key of EMP_DEPT.

 According to Codd’s original definition, a relation
schema R is in 3NF if it satisfies 2NF and no
nonprime attribute of R is transitively dependent
on the primary key.

 The relation schema EMP_DEPT in is in 2NF,
since no partial dependencies on a key exist.

 However, EMP_DEPT is not in 3NF because of
the transitive dependency of DMGRSSN (and
also DNAME) on SSN via DNUMBER.

 We can normalize EMP_DEPT by decomposing
it into the two 3NF relation schemas ED1 and
ED2

General definition of normal forms

 The steps for normalization into 3NF relations that we
discussed so far disallow partial and transitive
dependencies on the primary key.

 These definitions, however, do not take other candidate
keys of a relation, if any, into account.

 In this section we give the more general definitions of
2NF and 3NF that take all candidate keys of a relation
into account

 As a general definition of prime attribute,
an attribute that is part of any candidate key
will be considered as prime.

 Partial and full functional dependencies and
transitive dependencies will now be with
respect to all candidate keys of a relation.

 A relation schema R is in second normal
form (2NF) if every nonprime attribute A in
R is not partially dependent on any key of R

 Consider the following relation

 The LOTS relation schema violates the
general definition of 2NF

 because TAX_RATE is partially dependent on
the candidate key {COUNTY_NAME, LOT#},
due to FD3

 To normalize LOTS into 2NF, we decompose it into
the two relations LOTS1 and LOTS2,

General Definition of Third Normal Form

 A relation schema R is in third normal form
(3NF) if, whenever a nontrivial functional
dependency X A holds in R, either

 (a) X is a (candidate key)of R, or

 (b) A is a prime attribute of R.

 LOTS2 is in 3NF. However, FD4 in LOTS1
violates 3NF because AREA is not a candidate
key and PRICE is not a prime attribute in
LOTS1

 To normalize LOTS1 into 3NF, we decompose
it into the relation schemas LOTS1A and
LOTS1B

 Boyce-Codd normal form (BCNF) was
proposed as a simpler form of 3NF,

 but it was found to be stricter than 3NF,

 because every relation in BCNF is also in 3NF;
however, a relation in 3NF is not necessarily in
BCNF

And let us add this FD AREA County_Name

 Lets go back to this schema

 the relation schema LOTS1A still is in 3NF
because COUNTY_NAME is a prime
attribute.

 Definition: A relation schema R is in
BCNF if whenever a nontrivial functional
dependency X A holds in R, then X is a
superkey (candidate key)of R.

 In our example, AREA County_name
violates BCNF in LOTS1A because AREA
is not a superkey of LOTS1A

 Note that FD5 satisfies 3NF in LOTS1A
because COUNTY_NAME is a prime
attribute

 We can decompose LOTS1A into two BCNF
relations LOTS1AX and LOTS1AY,

Examples on Armstrong Axioms

 Prove Union:
 X Y, XZ
 XYZ

 Prove

Decomposition
 XYZ, XY, XZ

 ABCDEFGHIJ
 ABE
 AGJ
 BEI
 EG
 GIH
 Prove ABGH

6
QUERY-BY-EXAMPLE (QBE)

Example is always more efficacious than precept.

—Samuel Johnson

6.1 INTRODUCTION

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating
and modifying) relational data. It is different from SQL, and from most other database
query languages, in having a graphical user interface that allows users to write queries
by creating example tables on the screen. A user needs minimal information to get
started and the whole language contains relatively few concepts. QBE is especially
suited for queries that are not too complex and can be expressed in terms of a few
tables.

QBE, like SQL, was developed at IBM and QBE is an IBM trademark, but a number
of other companies sell QBE-like interfaces, including Paradox. Some systems, such as
Microsoft Access, offer partial support for form-based queries and reflect the influence
of QBE. Often a QBE-like interface is offered in addition to SQL, with QBE serving as
a more intuitive user-interface for simpler queries and the full power of SQL available
for more complex queries. An appreciation of the features of QBE offers insight into
the more general, and widely used, paradigm of tabular query interfaces for relational
databases.

This presentation is based on IBM’s Query Management Facility (QMF) and the QBE
version that it supports (Version 2, Release 4). This chapter explains how a tabular
interface can provide the expressive power of relational calculus (and more) in a user-
friendly form. The reader should concentrate on the connection between QBE and
domain relational calculus (DRC), and the role of various important constructs (e.g.,
the conditions box), rather than on QBE-specific details. We note that every QBE
query can be expressed in SQL; in fact, QMF supports a command called CONVERT
that generates an SQL query from a QBE query.

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

177

178 Chapter 6

Boats(bid: integer, bname: string, color: string)
Reserves(sid: integer, bid: integer, day: dates)

The key fields are underlined, and the domain of each field is listed after the field name.

We introduce QBE queries in Section 6.2 and consider queries over multiple relations
in Section 6.3. We consider queries with set-difference in Section 6.4 and queries
with aggregation in Section 6.5. We discuss how to specify complex constraints in
Section 6.6. We show how additional computed fields can be included in the answer in
Section 6.7. We discuss update operations in QBE in Section 6.8. Finally, we consider
relational completeness of QBE and illustrate some of the subtleties of QBE queries
with negation in Section 6.9.

6.2 BASIC QBE QUERIES

A user writes queries by creating example tables. QBE uses domain variables, as in
the DRC, to create example tables. The domain of a variable is determined by the
column in which it appears, and variable symbols are prefixed with underscore () to
distinguish them from constants. Constants, including strings, appear unquoted, in
contrast to SQL. The fields that should appear in the answer are specified by using
the command P., which stands for print. The fields containing this command are
analogous to the target-list in the SELECT clause of an SQL query.

We introduce QBE through example queries involving just one relation. To print the
names and ages of all sailors, we would create the following example table:

Sailors sid sname rating age
P. N P. A

A variable that appears only once can be omitted; QBE supplies a unique new name
internally. Thus the previous query could also be written by omitting the variables
N and A, leaving just P. in the sname and age columns. The query corresponds to
the following DRC query, obtained from the QBE query by introducing existentially
quantified domain variables for each field.

{〈N, A〉 | ∃I, T (〈I, N, T, A〉 ∈ Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course,
queries containing features such as aggregate operators cannot be expressed in DRC.)
We will present DRC versions of several QBE queries. Although we will not define the
translation from QBE to DRC formally, the idea should be clear from the examples;

Query-by-Example (QBE) 179

intuitively, there is a term in the DRC query for each row in the QBE query, and the
terms are connected using ∧.1

A convenient shorthand notation is that if we want to print all fields in some relation,
we can place P. under the name of the relation. This notation is like the SELECT *
convention in SQL. It is equivalent to placing a P. in every field:

Sailors sid sname rating age
P.

Selections are expressed by placing a constant in some field:

Sailors sid sname rating age
P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This
query is very similar in form to the equivalent DRC query

{〈I, N, 10, A〉 | 〈I, N, 10, A〉 ∈ Sailors}
We can use other comparison operations (<, >, <=, >=,¬) as well. For example, we
could say < 10 to retrieve sailors with a rating less than 10 or say ¬10 to retrieve
sailors whose rating is not equal to 10. The expression ¬10 in an attribute column is
the same as �= 10. As we will see shortly, ¬ under the relation name denotes (a limited
form of) ¬∃ in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated
(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the .AO (for ascending
order) and .DO commands in conjunction with P. An optional integer argument allows
us to sort on more than one field. For example, we can display the names, ages, and
ratings of all sailors in ascending order by age, and for each age, in ascending order by
rating as follows:

Sailors sid sname rating age
P. P.AO(2) P.AO(1)

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows
that are not linked via shared variables to the row containing P. We will discuss such queries in Section
6.6.1.

180 Chapter 6

6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and
the Reserves relations. In particular we have to select tuples from the two relations
with the same value in the join column sid. We do this by placing the same variable
in the sid columns of the two example relations.

Sailors sid sname rating age
Id P. S

Reserves sid bid day
Id

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we
could write:2

Sailors sid sname rating age
Id P. S > 25

Reserves sid bid day
Id ‘8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by
sailors who have reserved a boat for 8/24/96 and who are older than 25:

Sailors sid sname rating age
Id > 25

Reserves sid bid day
Id B ‘8/24/96’

Boats bid bname color
B Interlake P.

As another example, the following query prints the names and ages of sailors who have
reserved some boat that is also reserved by the sailor with id 22:

Sailors sid sname rating age
Id P. N

Reserves sid bid day
Id B

22 B

Each of the queries in this section can be expressed in DRC. For example, the previous
query can be written as follows:

{〈N〉 | ∃Id, T, A, B, D1, D2(〈Id, N, T, A〉 ∈ Sailors

∧〈Id, B, D1〉 ∈ Reserves ∧ 〈22, B, D2〉 ∈ Reserves)}
2Incidentally, note that we have quoted the date value. In general, constants are not quoted in

QBE. The exceptions to this rule include date values and string values with embedded blanks or
special characters.

Query-by-Example (QBE) 181

Notice how the only free variable (N) is handled and how Id and B are repeated, as
in the QBE query.

6.4 NEGATION IN THE RELATION-NAME COLUMN

We can print the names of sailors who do not have a reservation by using the ¬
command in the relation name column:

Sailors sid sname rating age
Id P. S

Reserves sid bid day
¬ Id

This query can be read as follows: “Print the sname field of Sailors tuples such that
there is no tuple in Reserves with the same value in the sid field.” Note the importance
of sid being a key for Sailors. In the relational model, keys are the only available means
for unique identification (of sailors, in this case). (Consider how the meaning of this
query would change if the Reserves schema contained sname—which is not a key!—
rather than sid, and we used a common variable in this column to effect the join.)

All variables in a negative row (i.e., a row that is preceded by ¬) must also appear
in positive rows (i.e., rows not preceded by ¬). Intuitively, variables in positive rows
can be instantiated in many ways, based on the tuples in the input instances of the
relations, and each negative row involves a simple check to see if the corresponding
relation contains a tuple with certain given field values.

The use of ¬ in the relation-name column gives us a limited form of the set-difference
operator of relational algebra. For example, we can easily modify the previous query
to find sailors who are not (both) younger than 30 and rated higher than 4:

Sailors sid sname rating age
Id P. S

Sailors sid sname rating age
¬ Id > 4 < 30

This mechanism is not as general as set-difference, because there is no way to control
the order in which occurrences of ¬ are considered if a query contains more than one
occurrence of ¬. To capture full set-difference, views can be used. (The issue of QBE’s
relational completeness, and in particular the ordering problem, is discussed further in
Section 6.9.)

6.5 AGGREGATES

Like SQL, QBE supports the aggregate operations AVG., COUNT., MAX., MIN., and SUM.
By default, these aggregate operators do not eliminate duplicates, with the exception

182 Chapter 6

of COUNT., which does eliminate duplicates. To eliminate duplicate values, the variants
AVG.UNQ. and SUM.UNQ. must be used. (Of course, this is irrelevant for MIN. and MAX.)
Curiously, there is no variant of COUNT. that does not eliminate duplicates.

Consider the instance of Sailors shown in Figure 6.1. On this instance the following

sid sname rating age
22 dustin 7 45.0
58 rusty 10 35.0
44 horatio 7 35.0

Figure 6.1 An Instance of Sailors

query prints the value 38.3:

Sailors sid sname rating age
A P.AVG. A

Thus, the value 35.0 is counted twice in computing the average. To count each age
only once, we could specify P.AVG.UNQ. instead, and we would get 40.0.

QBE supports grouping, as in SQL, through the use of the G. command. To print
average ages by rating, we could use:

Sailors sid sname rating age
G.P. A P.AVG. A

To print the answers in sorted order by rating, we could use G.P.AO or G.P.DO. instead.
When an aggregate operation is used in conjunction with P., or there is a use of the
G. operator, every column to be printed must specify either an aggregate operation or
the G. operator. (Note that SQL has a similar restriction.) If G. appears in more than
one column, the result is similar to placing each of these column names in the GROUP
BY clause of an SQL query. If we place G. in the sname and rating columns, all tuples
in each group have the same sname value and also the same rating value.

We consider some more examples using aggregate operations after introducing the
conditions box feature.

Query-by-Example (QBE) 183

6.6 THE CONDITIONS BOX

Simple conditions can be expressed directly in columns of the example tables. For
more complex conditions QBE provides a feature called a conditions box.

Conditions boxes are used to do the following:

Express a condition involving two or more columns, such as R/ A > 0.2.

Express a condition involving an aggregate operation on a group, for example,
AVG. A > 30. Notice that this use of a conditions box is similar to the HAVING
clause in SQL. The following query prints those ratings for which the average age
is more than 30:

Sailors sid sname rating age
G.P. A

Conditions

AVG. A > 30

As another example, the following query prints the sids of sailors who have reserved
all boats for which there is some reservation:

Sailors sid sname rating age
P.G. Id

Reserves sid bid day
Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

For each Id value (notice the G. operator), we count all B1 values to get the
number of (distinct) bid values reserved by sailor Id. We compare this count
against the count of all B2 values, which is simply the total number of (distinct)
bid values in the Reserves relation (i.e., the number of boats with reservations).
If these counts are equal, the sailor has reserved all boats for which there is some
reservation. Incidentally, the following query, intended to print the names of such
sailors, is incorrect:

Sailors sid sname rating age
P.G. Id P.

Reserves sid bid day
Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

184 Chapter 6

The problem is that in conjunction with G., only columns with either G. or an
aggregate operation can be printed. This limitation is a direct consequence of the
SQL definition of GROUPBY, which we discussed in Section 5.5.1; QBE is typically
implemented by translating queries into SQL. If P.G. replaces P. in the sname
column, the query is legal, and we then group by both sid and sname, which
results in the same groups as before because sid is a key for Sailors.

Express conditions involving the AND and OR operators. We can print the names
of sailors who are younger than 20 or older than 30 as follows:

Sailors sid sname rating age
P. A

Conditions

A < 20 OR 30 < A

We can print the names of sailors who are both younger than 20 and older than
30 by simply replacing the condition with A < 20 AND 30 < A; of course, the
set of such sailors is always empty! We can print the names of sailors who are
either older than 20 or have a rating equal to 8 by using the condition 20 < A OR
R = 8, and placing the variable R in the rating column of the example table.

6.6.1 And/Or Queries

It is instructive to consider how queries involving AND and OR can be expressed in QBE
without using a conditions box. We can print the names of sailors who are younger
than 30 or older than 20 by simply creating two example rows:

Sailors sid sname rating age
P. < 30
P. > 20

To translate a QBE query with several rows containing P., we create subformulas for
each row with a P. and connect the subformulas through ∨. If a row containing P. is
linked to other rows through shared variables (which is not the case in this example),
the subformula contains a term for each linked row, all connected using ∧. Notice how
the answer variable N , which must be a free variable, is handled:

{〈N〉 | ∃I1, N1, T1, A1, I2, N2, T2, A2(

〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∨〈I2, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

To print the names of sailors who are both younger than 30 and older than 20, we use
the same variable in the key fields of both rows:

Query-by-Example (QBE) 185

Sailors sid sname rating age
Id P. < 30
Id > 20

The DRC formula for this query contains a term for each linked row, and these terms
are connected using ∧:

{〈N〉 | ∃I1, N1, T1, A1, N2, T2, A2

(〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∧〈I1, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}
Compare this DRC query with the DRC version of the previous query to see how
closely they are related (and how closely QBE follows DRC).

6.7 UNNAMED COLUMNS

If we want to display some information in addition to fields retrieved from a relation, we
can create unnamed columns for display.3 As an example—admittedly, a silly one!—we
could print the name of each sailor along with the ratio rating/age as follows:

Sailors sid sname rating age
P. R A P. R / A

All our examples thus far have included P. commands in exactly one table. This is a
QBE restriction. If we want to display fields from more than one table, we have to use
unnamed columns. To print the names of sailors along with the dates on which they
have a boat reserved, we could use the following:

Sailors sid sname rating age
Id P. P. D

Reserves sid bid day
Id D

Note that unnamed columns should not be used for expressing conditions such as
D >8/9/96; a conditions box should be used instead.

6.8 UPDATES

Insertion, deletion, and modification of a tuple are specified through the commands
I., D., and U., respectively. We can insert a new tuple into the Sailors relation as
follows:

3A QBE facility includes simple commands for drawing empty example tables, adding fields, and
so on. We do not discuss these features but assume that they are available.

186 Chapter 6

Sailors sid sname rating age
I. 74 Janice 7 41

We can insert several tuples, computed essentially through a query, into the Sailors
relation as follows:

Sailors sid sname rating age
I. Id N A

Students sid name login age
Id N A

Conditions

A > 18 OR N LIKE ‘C%’

We insert one tuple for each student older than 18 or with a name that begins with C.
(QBE’s LIKE operator is similar to the SQL version.) The rating field of every inserted
tuple contains a null value. The following query is very similar to the previous query,
but differs in a subtle way:

Sailors sid sname rating age
I. Id1 N1 A1
I. Id2 N2 A2

Students sid name login age
Id1 N1 A1 > 18
Id2 N2 LIKE ‘C%’ A2

The difference is that a student older than 18 with a name that begins with ‘C’ is
now inserted twice into Sailors. (The second insertion will be rejected by the integrity
constraint enforcement mechanism because sid is a key for Sailors. However, if this
integrity constraint is not declared, we would find two copies of such a student in the
Sailors relation.)

We can delete all tuples with rating > 5 from the Sailors relation as follows:

Sailors sid sname rating age
D. > 5

We can delete all reservations for sailors with rating < 4 by using:

Query-by-Example (QBE) 187

Sailors sid sname rating age
Id < 4

Reserves sid bid day
D. Id

We can update the age of the sailor with sid 74 to be 42 years by using:

Sailors sid sname rating age
74 U.42

The fact that sid is the key is significant here; we cannot update the key field, but we
can use it to identify the tuple to be modified (in other fields). We can also change
the age of sailor 74 from 41 to 42 by incrementing the age value:

Sailors sid sname rating age
74 U. A+1

6.8.1 Restrictions on Update Commands

There are some restrictions on the use of the I., D., and U. commands. First, we
cannot mix these operators in a single example table (or combine them with P.).
Second, we cannot specify I., D., or U. in an example table that contains G. Third,
we cannot insert, update, or modify tuples based on values in fields of other tuples in
the same table. Thus, the following update is incorrect:

Sailors sid sname rating age
john U. A+1
joe A

This update seeks to change John’s age based on Joe’s age. Since sname is not a key,
the meaning of such a query is ambiguous—should we update every John’s age, and
if so, based on which Joe’s age? QBE avoids such anomalies using a rather broad
restriction. For example, if sname were a key, this would be a reasonable request, even
though it is disallowed.

6.9 DIVISION AND RELATIONAL COMPLETENESS *

In Section 6.6 we saw how division can be expressed in QBE using COUNT. It is instruc-
tive to consider how division can be expressed in QBE without the use of aggregate
operators. If we don’t use aggregate operators, we cannot express division in QBE
without using the update commands to create a temporary relation or view. However,

188 Chapter 6

taking the update commands into account, QBE is relationally complete, even without
the aggregate operators. Although we will not prove these claims, the example that
we discuss below should bring out the underlying intuition.

We use the following query in our discussion of division:

Find sailors who have reserved all boats.

In Chapter 4 we saw that this query can be expressed in DRC as:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

The ∀ quantifier is not available in QBE, so let us rewrite the above without ∀:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈B, BN, C〉 ∈ Boats

(¬∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

This calculus query can be read as follows: “Find Sailors tuples (with sid I) for which
there is no Boats tuple (with bid B) such that no Reserves tuple indicates that sailor
I has reserved boat B.” We might try to write this query in QBE as follows:

Sailors sid sname rating age
Id P. S

Boats bid bname color
¬ B

Reserves sid bid day
¬ Id B

This query is illegal because the variable B does not appear in any positive row.
Going beyond this technical objection, this QBE query is ambiguous with respect to
the ordering of the two uses of ¬. It could denote either the calculus query that we
want to express or the following calculus query, which is not what we want:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈Ir, Br, D〉 ∈ Reserves

(¬∃〈B, BN, C〉 ∈ Boats(I = Ir ∧ Br = B))}

There is no mechanism in QBE to control the order in which the ¬ operations in
a query are applied. (Incidentally, the above query finds all Sailors who have made
reservations only for boats that exist in the Boats relation.)

One way to achieve such control is to break the query into several parts by using
temporary relations or views. As we saw in Chapter 4, we can accomplish division in

Query-by-Example (QBE) 189

two logical steps: first, identify disqualified candidates, and then remove this set from
the set of all candidates. In the query at hand, we have to first identify the set of sids
(called, say, BadSids) of sailors who have not reserved some boat (i.e., for each such
sailor, we can find a boat not reserved by that sailor), and then we have to remove
BadSids from the set of sids of all sailors. This process will identify the set of sailors
who’ve reserved all boats. The view BadSids can be defined as follows:

Sailors sid sname rating age
Id

Reserves sid bid day
¬ Id B

Boats bid bname color
B

BadSids sid
I. Id

Given the view BadSids, it is a simple matter to find sailors whose sids are not in this
view.

The ideas in this example can be extended to show that QBE is relationally complete.

6.10 POINTS TO REVIEW

QBE is a user-friendly query language with a graphical interface. The interface
depicts each relation in tabular form. (Section 6.1)

Queries are posed by placing constants and variables into individual columns and
thereby creating an example tuple of the query result. Simple conventions are
used to express selections, projections, sorting, and duplicate elimination. (Sec-
tion 6.2)

Joins are accomplished in QBE by using the same variable in multiple locations.
(Section 6.3)

QBE provides a limited form of set difference through the use of ¬ in the relation-
name column. (Section 6.4)

Aggregation (AVG., COUNT., MAX., MIN., and SUM.) and grouping (G.) can be
expressed by adding prefixes. (Section 6.5)

The condition box provides a place for more complex query conditions, although
queries involving AND or OR can be expressed without using the condition box.
(Section 6.6)

New, unnamed fields can be created to display information beyond fields retrieved
from a relation. (Section 6.7)

190 Chapter 6

QBE provides support for insertion, deletion and updates of tuples. (Section 6.8)

Using a temporary relation, division can be expressed in QBE without using ag-
gregation. QBE is relationally complete, taking into account its querying and
view creation features. (Section 6.9)

EXERCISES

Exercise 6.1 Consider the following relational schema. An employee can work in more than

one department.

Emp(eid: integer, ename: string, salary: real)

Works(eid: integer, did: integer)

Dept(did: integer, dname: string, managerid: integer, floornum: integer)

Write the following queries in QBE. Be sure to underline your variables to distinguish them

from your constants.

1. Print the names of all employees who work on the 10th floor and make less than $50,000.

2. Print the names of all managers who manage three or more departments on the same

floor.

3. Print the names of all managers who manage 10 or more departments on the same floor.

4. Give every employee who works in the toy department a 10 percent raise.

5. Print the names of the departments that employee Santa works in.

6. Print the names and salaries of employees who work in both the toy department and the

candy department.

7. Print the names of employees who earn a salary that is either less than $10,000 or more

than $100,000.

8. Print all of the attributes for employees who work in some department that employee

Santa also works in.

9. Fire Santa.

10. Print the names of employees who make more than $20,000 and work in either the video

department or the toy department.

11. Print the names of all employees who work on the floor(s) where Jane Dodecahedron

works.

12. Print the name of each employee who earns more than the manager of the department

that he or she works in.

13. Print the name of each department that has a manager whose last name is Psmith and

who is neither the highest-paid nor the lowest-paid employee in the department.

Exercise 6.2 Write the following queries in QBE, based on this schema:

Query-by-Example (QBE) 191

Suppliers(sid: integer, sname: string, city: string)

Parts(pid: integer, pname: string, color: string)

Orders(sid: integer, pid: integer, quantity: integer)

1. For each supplier from whom all of the following things have been ordered in quantities

of at least 150, print the name and city of the supplier: a blue gear, a red crankshaft,

and a yellow bumper.

2. Print the names of the purple parts that have been ordered from suppliers located in

Madison, Milwaukee, or Waukesha.

3. Print the names and cities of suppliers who have an order for more than 150 units of a

yellow or purple part.

4. Print the pids of parts that have been ordered from a supplier named American but have

also been ordered from some supplier with a different name in a quantity that is greater

than the American order by at least 100 units.

5. Print the names of the suppliers located in Madison. Could there be any duplicates in

the answer?

6. Print all available information about suppliers that supply green parts.

7. For each order of a red part, print the quantity and the name of the part.

8. Print the names of the parts that come in both blue and green. (Assume that no two

distinct parts can have the same name and color.)

9. Print (in ascending order alphabetically) the names of parts supplied both by a Madison

supplier and by a Berkeley supplier.

10. Print the names of parts supplied by a Madison supplier, but not supplied by any Berkeley

supplier. Could there be any duplicates in the answer?

11. Print the total number of orders.

12. Print the largest quantity per order for each sid such that the minimum quantity per

order for that supplier is greater than 100.

13. Print the average quantity per order of red parts.

14. Can you write this query in QBE? If so, how?

Print the sids of suppliers from whom every part has been ordered.

Exercise 6.3 Answer the following questions:

1. Describe the various uses for unnamed columns in QBE.

2. Describe the various uses for a conditions box in QBE.

3. What is unusual about the treatment of duplicates in QBE?

4. Is QBE based upon relational algebra, tuple relational calculus, or domain relational

calculus? Explain briefly.

5. Is QBE relationally complete? Explain briefly.

6. What restrictions does QBE place on update commands?

192 Chapter 6

PROJECT-BASED EXERCISES

Exercise 6.4 Minibase’s version of QBE, called MiniQBE, tries to preserve the spirit of

QBE but cheats occasionally. Try the queries shown in this chapter and in the exercises,

and identify the ways in which MiniQBE differs from QBE. For each QBE query you try in

MiniQBE, examine the SQL query that it is translated into by MiniQBE.

BIBLIOGRAPHIC NOTES

The QBE project was led by Moshe Zloof [702] and resulted in the first visual database query

language, whose influence is seen today in products such as Borland’s Paradox and, to a

lesser extent, Microsoft’s Access. QBE was also one of the first relational query languages

to support the computation of transitive closure, through a special operator, anticipating

much subsequent research into extensions of relational query languages to support recursive

queries. A successor called Office-by-Example [701] sought to extend the QBE visual interac-

tion paradigm to applications such as electronic mail integrated with database access. Klug

presented a version of QBE that dealt with aggregate queries in [377].

	Ch1_Intro
	Ch2_ER
	Ch3_Rel_Model
	Ch4_Algebra
	Ch5_SQL
	Ch6_DBApp
	Ch7-InternetApp
	ch8.Transactions-ho
	Normalization
	normalization_lecture
	Normalization_Revealed
	Normalization…Motivation
	Motivation…2
	Redundancy
	Slide Number 4
	Slide Number 5
	Decomposition

	Normalization_Revealed_2
	Problems Related to Decomposition
	Functional Dependencies
	Example
	Slide Number 4
	SuperKey
	Another Example
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Inference Rules for Functional Dependencies
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Normalization
	Slide Number 16
	First Normal Form
	Consider the DEPARTMENT relation schema shown
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	1 NF
	Slide Number 24
	Slide Number 25
	2 NF
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	3 NF
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	General definition of normal forms
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	General Definition of Third Normal Form
	Slide Number 46
	Slide Number 47
	Slide Number 48
	And let us add this FD AREA County_Name
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Examples on Armstrong Axioms

	qbe

