functional Dependencies
and Normalization for
Relational Databases

In Chapters 7 through 10, we presented various aspects of the relational model. Each rela-
tion schema consists of a number of artributes and the relational database schema consists of
a number of relation schemas. So far, we have assumed that areributes are grouped to form
a relation schema by using the common sense of the database designer or by mapping a
schema specified in the Entity-Relationship (ER) or Enhanced-ER (EER) model {or some
other similar conceprual data model} inro a relational schema. The EER model makes the
designer identify entity types and relacionship types and their respective actribures, which
leads to a natural and logical grouping of the atrributes into relations when the mapping
procedures in Sections 9.1 and 9.2 are followed. However, we still need some formal mea-
sure of why one grouping of atrributes into a relation schema may be better than another.
So far in our discussion of conceprual design in Chaprers 3 and 4 and its mapping into the
relational model in Chaprer 9, we have rot developed any measure of the appropriate-
ness, “goodness,” or quality of the design, other than the intuition of the designer.

In. this chapter we discuss some of the theory that has been developed in an attempt
to choose “good” relation schemas—that is, to measure formally why one set of groupings
of arrributes into relation schemas is better than another. There are two levels at which
we can discuss the “goodness” of zelation schemas. The first is the logical (or conceptual)
level—how users interpret the relarion schemas and the meaning of their atwributes, Hav-
ing good relation schemas at this level enables users to understand clearly the meaning of
the data in the relations, and hence to formulate their queries correctly. The second s the
implementation (or storage) level—how the rtuples in a base relarion are stored and

B

(hapter 14 / Functional Dependencies and Normalization for Relational Databases

updated. This level applies only o schemas of base relations—which will be physically
stored as files—whereas at the logical fevel we are inrerested in schemas of both base rela-
tions and views (virtual relations). The relaticnal darabase design thecry developed in
this chapter applies mainly to base relations, although some criteria of appropriateness also
apply to views, as will be shown in Section 14.1.

Moreover, as with any design problem, darabase design may be performed using two
approaches: (1} bortom-up or (2} top-down, A bottom-up design methodology would
consider the basic relationships among individual aribuies as the starting point, and it
would use those to build up relations. Otker than the binary relational model,! this
approach is not very popular in practice and suffers from the problem of collecring a large
number of binary attribute relationships as the starting point. This approach is also called
design by synthesis. In contrast, a top-dewn design methodology would start with a num-
ber of groupings of attributes into relations that have already been obrained from concep-
tual design and mapping activities. Design by andlysis is then applied to the relations
individually and collectively, leading to further decomposition unril all desirable proper-
ties are met. ‘

The theory described in this chapter is applicable to both the top-down and bottom-
up approaches, but it is more practical when applied o the top-down approach. We start
in Section 4.1 by informally discussing some criteria for good and bad relation schemas.
Section 14.2 then defines the concept of functional dependency, a formal constraint among
attributes that is the main tool for formally measuring the appropriateness of atiribute
groupings into relation schemas. Properties of functional dependencies are also studied
and analyzed. In Section 14.3 we show how functional dependencies can be used to group
actributes into relation schemas that are in a normal form. A relerion schema is in a nor-
mai form when ic satisfies certain desirable properties. The process of normalization con-
© sists of analyzing relations to meet increasingly more stringent requirements leading to
progressively betrer groupings, or higher normal forms. We show how the funcrional
dependencies—which are identified by the darabase designer——can be used to analyze a
relation with a designared primazy key to determine what normal form it is in and how it
should be further decomposed ro achieve the next higher normal form. In Section 14.4
we discuss more general definitions of normal forms that do not require step-by-step anal-
ysis and normalization.

Chapter 15 will continue the development of the theory related to the design of good
relational schemas. Whereas in Chapter 14 we concentrate on the normal forms for single
relation schemas, in Chapter 15 we discuss measures of appropriateness for a whole set of
relation schemas that together form a relational darabase schema. We specify two such
properties—the nonadditive (lossless) join property and the dependency preservation
property—and discuss algorithms for relational database design that are based on func-
tional dependencies, normal forms, and the aforementioned properties. In Chaprer 15 we
also define additionzl types of dependencies and advanced normal forms thar further
enhance the “goodness” of relation schemas.

1. For example, the NIaM methodology; see Verheijen and VanBekkum (1582).

i

14,1 Informal Design Guidelines for Relation Schemas 467

For the reader interested in only an informal introducrion o nermalization, Sections

' 14.2.3,14.2.4, and 14.5 may be skipped.

14.1 Informal Design Guidelines for

Relation Schemas

© We discuss four informal measures of qualiry for relation schema design in this section:

1. Semantics of the attribures.

2. Reducing the redundant values in tuples.

3. Reducing the null values in tuples.

4. Disallowing the possibility of generating spuricus tuples.

. These measures are not always independent of one another, as we shall see.

14.1.1 Semantics of the Relation Attributes

: Whenever we group attributes to form a relation schema, we assume that a certain mean-
© ing is associated with the attributes. In Chaprer 7 we discussed how each relation can be
& interprered as a set of facts or sratements. This meaning, or semantics, specifies how to
% interpret the aturibure values stored in a tuple of the relation—in ocher words, how the
- actribure values in a tuple relaze to one another. If the conceptual design is done carefully,
. followed by a mapping into relations, most of the semantics would have been accounted
- for and the resulting design should have a clear meaning.

In general, the easier it is to explain the semantics of the relation, the better the rela-

¢ tion schema design will be. To illustrare this, consider Figure 14.1, a simplified version of
% the cowpany relational darabase schema of Figure 7.5, and Figure 14.2, which presents an
- example of populated relations of this schema. The meaning of the ewpLovee relation
: schema is quite simple: each ruple represents an employee, with values for the employee's
. name (ename), social security number (ssx), birthdare (soate), and address {aooress), and
© the number of the department chat the employee works for (onumsez). The onuMser |
. attribute is z foreign key that represents an implicit relationship between ewplovee and
. peparTMENT. The semantics of the pepartent and prolECT schermas are also straightforward;
i each pEPARTMENT tuple represents a department enriry, and each PROJECT tuple represents a
. project entity, The artribute pMerssw of szparTMenT relates a department to the employee
¢ who is its manager, while ovum of rrosecT relates a project to its controlling departmenc;
© both are foreign key attributes.

The semantics of the other two relation schemas in Figure 14.1 are slightly more

- complex. Each tuple in pepr_LocaTIoNs gives a deparrment number (onumeer) and one of the
. locations of the department {sLecatzon). Each ruple in works_on gives an employee social
. security number {ssv), the project number of one of the projects that the employee works
i on (pnuMeer), and the number of hours per week thar the employee worls on that project
¢ (nHours). However, both schemas have a well-defined and unambiguous interpretation.
; The schema pepT_LocatIons represents a multivalued acrribute of separTvenT, whereas works._

Chapter 14 / Eunctional Dependencies and Normalization for Relational Databases

EMPLOYEE fk
{ ENAME ‘ SSN E BDATE I ADDRESS I DNUMBER
pk
DEPARTMENT fX.
‘ DNAME ‘ DNUMBER ‘ DMGRSSN —I
pk

DEPT_LOCATIONS

1k,
DNUMBER DLOCATION —i
i S
—
pk
PROJECT fk
PNAME PNUMBER PLOCATION DNUM
ph
WORKS_CON
fk. fle
| ssv | ewumss | Houms
——
K.
Figure 161 Simplified version of the comeany relational database schema.

ON represents an M:N relationship between sueLovee and rrosgct. Hence, all che relation
schemas in Figure 14.1 may be considered good from the standpoint of having clear

fierr}amics. The following informal guideline further elaborates the relation schema
esign.

GUIDELINE 1: Design a relation schema so that ir is easy to explain its meaning. Do not
combine attributes from multiple entity types and relationship types into a single relazion.
Intuitively, if a relation schema corresponds to one entity type or one relati§nship type
the meaning tends to be clear. Otherwise, the relacion corresponds to a mixture of multi:
ple entities and relationships and hence becomes semantically unclear.

The relaci.on schernas in Figures 14.3{a} and (b) alsc have clear semantics. (The
reade}‘ should ignore the lines under the relations for now, as they are used to illustrare
funcrional dependency notation in. Seczion 14.2.) A tuple in the ewp_pepT relarion schema

14.1 lnformal Design Guidelines for R'elation Schemas

of Figure 14.3(a) represents a single employee but includes additional information—
namely, the name (onave) of the department for which the employee works and the social
security number (omcrss) of the department manager. For the emp_rro3 relation of Figure
14.3(b), each tuple relates an employee to a project but also includes the employee name
{ename), project name (enave), and project location (pLocatzon). Although there is nothing
wrong logicaily with these two relations, they are considered poor designs because they
violate Guideline 1 by mixing attributes from distinct real-world entities; sue_perT mixes
arrributes of employees and departments, and eup,.PROJ mixes artributes of employees and

EMPLOYEE
ENAME SSN BDATE ADDRESS DNUMBEFL}
{ SmithJehn B. 123456789 1965-01-08 731 Fondren,Houston, TX 5
4 Wong,Franklin T 333448555 1955-12:08 638 Voss Houston,TX 5
L Zelaya Alicia J. 999887777 1968-07-19 35321 Castie,Spring, TX 4
5 WallaceJennifer S. £87654321 1941-06-20 291 Berry,Bellaire, TX 4
. Marayan,Remesh K. 566084444 1962-09-15 975 Flire Oak, Humble, TX 5
English,Joyce A, 453453453 1872-07-31 5631 Rice,Houston, TX 5
. JabbarAhmad V. 987987987 1969-03-29 980 Dallas,Housten, TX 4
H BorgJames E. 898685555 1937-11-10 450 Stope,Houston, TX 1
' DEPT_LOCATIONS
DEPARTMENT
DNUMBER DLOCATION
DNAME | DNUMBER ' DMGRSSN ‘ !
1 Houston
© Research 5 383445555 4 Stafford
% Administration 4 987654321 § Bellaire
% Headquarters 1 888665555 5 Sugariand
5 Houston
WORKS_ON
- PROJECT
S8N PNUMBER | HOURS
3 PNAME | PNUMBER PLOCATICN DNUM4]
¢ 123456789 1 325
© 423456789 P 75 Product 1 Bellaire . 5
. 6BERBAAML 3 40.0 ProductY 2 Sugarand 5
T 453453453 1 200 Produch_] 3 Housten 5
| 453453453 2 200 Compute_nzz_mon 10 Stafford 4
| 233445555 2 10.0 Reocrganization 20 Houston 1
493445555 3 " 100 Newhenefits 30 Stafford 4
| 333445555 10 100
;333445555 20 10.0
999887777 a0 300
990887777 10 10.0
$87987987 10 35.0
987987987 30 5.0
987654321 30 200
987654321 20 150
8388665555 20 null
figure 14.2 Example relarions for the schema of Figure 14.1.

469

Chapter t4 / Functional Dependencies and Normalization For Relational Databases

) EMP_DEPT

ENAME 8SN 1 BDATE | ADDRESS i DNUMBER l DNAME
v t !)
| f }

DMGRSSN 1

® EMP_PROJ
| SSN | PNUMBER | HOURS ‘ ENAME I PNAME r F‘LOCA'I?ON—’
ko1 | | 5
Fo2 | !
S b
Figure 143 Tiwo relation schemas and their functional dependencies. Both suffer from

updare anomalies. (a) The ewe_pert relation schema. (b) The ee_pro3 rela-
tion schema.

projects. They may be used as views, but they cause problems when used as base relations,
as we shall discuss in the following section.

14.1.2 Redundant Information in Tuples and
Update Anomalies

Cne goal of schema design is to minimize the storage space that the base relations
(files) occupy. Grouping atrribures into relation schemas has a significant effect on stoz-
age space, For example, compare the space used by the two base relarions empLovee and
pzPaRTMENT in Figure 14.2 with the space for an zwe_peet base relation in Figure 14.4,
which is the result of applying the NATURAL JOIN operation to eMPLOYEE and DEPARTMENT.
In evp_oerT, the attribute values pertaining to a particular department (Dnumser, ovave,
owcRsSw) are repeated for every employee who werks for that deparmment. In contzast, each
department’s information appears only once in the perarTvENT relation in Figure 14.2.
Cnly the department number (onumeer) is repeated in che evpLovee relation for each
employee who works in that department. Similar comments apply to the eve_sro3 rela-
tion (Figure 14.4), which augmencs the works_o relation with additional attributes from
empLOYEE and PrRoJECT.

Another serious problem with using the relations in Figure 14.4 as base relations is
the problem of update anomalies. These can be classified into insertion anomalies, dele-
tion anomalies, and modification anomalies.?

2.. These anomalies were identified by Codd (1972a) to justify the need for normalization, of rela-
tions, as we shall discuss in Section 14.3.

H

15.1 ‘Informal Design Guidelines for Relation Schemas
EMP_DEPT
| ENAME 88N BDATE ADDRESS DNUMBER DNAME DMGRSSN
Smith,John B. 123456789 1965-01-08 731 Fondren,Houston,TX 5 Resgearch 332445555
Wong,Franklin T. 333445555 1955-12-08 638 Voss,Houston, TX 5 Research 333445555
Zelaya, Alicia J. 890887777 1868-07-1¢ 3321 Castlle,Spring, TX 4 Administration 987654321
WallaceJennifer S, 87654321 1941-06-20 291 Bemy,Bellaire, TX 4 Administration 987654321
Narayan,Ramesh K. 66864444 19620815 975 FireCak,Humbie, TX & Research J33445555
English,Joyen A 453453453 1972-07-31 5621 Rice,Houston, TX 5 Research 333445555
Jabbar.ahmad V. 987587987 1969-03-29 580 Dallas,Houston, TX 4 Administration QBTE54321
BorgJames E. BBBE65555 1937-11-10 450 Stone,Houston, TX 1 Headguarters 888655555
EMP_PRCJ
PNUMBER| HOURS ENAME PMNAME PLOCATICN

1 325 SmithJohn B, -~ Productx Beilaire

2 7.5 SmithJohn B, ProductY Sugardand

3 40.0 NarayanRamesh i ProducZ Houston

1 20.0 English,Joyce A. ProductX Bellaire

2 20.0 English.Joyce A, Proghuety Sugariand

2 10.0 Wong,Franidin T. Producty Sugarand

3 10.6 Wong,Franidin T, ProductZ Heuston

10 0.0 Wang,Frankiin T. Computerization Stafford

20 10.0 Wong,Franklin T, Reomganization Houston
999887777 30 300 Zelaya,Alicia J. Newbenefits Stafford
999887777 10 100 Zelaya Alicia J. Computerization Stafford
947987987 10 350 Japbar Ahmag V. " Computerization Stafford
487587987 20 50 JabbarAhrnad V, Newbenefits Stafford
987654321 0 20.0 Wallace Jennifer 3. Newbenefits Stafford
987654321 20 15.0 WallaceJennifler 3. Becrganization Houston
888565555 20 nuf Borg.James & Regrganization Housten

figure [h.h Example relations for the schemas in Figure 14.3 that result from applying
NATURAL JOIN to the relations in Figure 14.2. These may be stored as base
relations for performance reasons.

Insertion Anomalies. These can be differentiated into two types, tllustrated by the fol-
lowing examples based on the ep_pepT relation:

» To insert 2 new employee tuple into eMp_pepT, we must include either the atribute
values for the department that the employee works for, or nulls (if the employee does
not work for a departmenc as yer). For example, to insert a new tuple for an employee
who works in department number 3, we must enter the attribute values of depart-
ment 5 correctly so that they are consistent with values for department 5 i other
tuples in ewp_oept. In the design of Figure 14.2 we do not have to worry abour this
consistency problem because we enter only the department number in the employee
ruple; all ocher actribute values of department 5 are recorded only once in the data-
base, as a single tuple in the perarTMENT telation.

» [t is difficult to inserr a new deparzment that has no employees as yet in the exp_perT
telation. The only way to do this is to place null values in the attributes for employee.

Chapter 14 / Functicnal Dependencies and Normalizatien for Relational Databases

This causes 2 problem because ssn is the primary key of evp_oepT, and each tuple is
supposed to represent an employee entity—not a department entity. Moreover, when
the first employee is assigned to that department, we do not need the tuple with null
values any more. This problem does not oceur in the design of Figure 14.2, because a
department is entered in the oErPaRTMENT relation whether or not any employees work
for it, and whenever an employee is assigned to thar department, a corresponding
tuple is inserted in EmeLOYEE.

Deletion Anomalies. This problem is related to the second insertion ancmaly situation
discussed above. If we delete from evp_perT an employee tuple that happens to represent
the last employee working for 2 particular department, the informartion concerning that
department is lost from the database. This problem does not occur in the database of Fig-
ure 14.2 because peparTMENT tuples are stored separately.

Modification Anomalies. [n ewe_perT, if we change the value of one of the attribuces of
a particular deparrment—say, the manager of department 5—we must update the tples
of all employees who work in that department; otherwise, the database will become
inconsisrent. If we fail o update some tuples, the same department will be shown to have
ewo different values for manager in different employee tuples, which should neot be che
case.

Based on the preceding three anomalies, we can state the guideline that follows.

GUIDELINE 2: Design the base relation schemas so that no insertion, deletion, or modi-
fication anomalies are presen: in the relations. If any anomalies are present, note them
clearly and make sure that the programs that update the database will operate correctly.

The second guideline is consistent with and, in a way, a restatemenc of the first guide-
line. We can also see the need for a more formal approach to evaluating whether a design
meets these guidelines. Sections 14.2 through 14.4 provide these needed formal concepts.
It is important to note that these guidelines may sometimes have to be viclated in order to
improve the performance of cerrain queries. For example, if an important query retrieves
information concerning the department of an emplovee, along with employee attribures,
the emp_perT schema may be used as a base relation. However, the anomalies in ewe_pept
must be noted and well understocd so that, whenever the base relation is updared, we do
not end up with inconsistencies. In general, it is advisable to use anomaly-free base rela-
tions and to specify views that include the JONs for placing together the atrribures fre-
quently referenced in importans queries. This reduces the number of JOIN terms specified
in the query, making it simpler to write the query correctly, and in many cases it improves
the performance.

3. The performance of a query specified on a view thar is the JOIN of several base relations depends
on how the DBMS implements the view. Many relational DBMSS materialize a frequently used view
so that they do not have to perform the JOINs often. The DEMS remains responsible for updating the
materialized view (either immediarely or periodically) whenever the base relations are updated.

J
1.1 Informal Design Guidelines for Relation Schemas

4.1.3 Null Values in Tuples

In some schema designs we may group many attributes together into a “fat” relarion. if
many of the attributes do not apply to all tuples in the relation, we end up with many

“ £ulls in those tuples. This can waste space at the storage level and may also lead to prob-
' lems with understanding the meaning of the attributes and with specifying JOIN opera-
" tions at the logical level.* Another problem with nulls is how to account for them when
jfaggre:gat:f: operations such as COUNT or SUM are applied. Moreover, nulis can have multi-
i ple interprerations, such as che following:

e The attribute does noc apply to this tuple.
* The attribute value for this tuple is unknown.

« The value is known but absent; that is, it has not been recorded yer.

Having the same representation for all nulls compromises the different meanings

;’ they may have. Therefore, we may stare another guideline.

GUIDELINE 3: As far as possible, avoid placing acmibutes in a base relation whose values

. may frequently be aull. If nulls are unavoidable, make sure that they apply in exceptional
 cases only and do not apply to a majority of tuples in the relation.

For example, if only 10 percent of employees have individual offices, there is little

' justification for including an attribute 0FFICE_NUMSER in the EMPLOYEE relation; rather, @ rela-
Hion EMP_OFFICESCESSN, OFFICE.NUMBER) can be created to include tuples for only the
* employees with individual offices.

14.1.4 Generation of Spurious Tuples

Consider the two relation schemas evp_Locs and emp_rroad in Figure 14.5(a), which can be
used instead of the wvp_prod relacion of Figure 14.3(b). A ple in eup_tocs means that the

_ émployee whose name is exave works on some project whose location is PLOCATION. A tuple in

enp_pro1 means that the employee whose social security number is st works kours per week
on the project whose name, number, and location are paug, PNUMBER, and PLOCATION. Figure

" 14.5(b) shows relarion extensions of ep_Locs and evp_proJl correspording to the Ewp_PrO)
* relation of Figure 14.4, which are obtained by applying the appropriate PRCJECT (=) opera-

. tions to Evp_pRo) (ignore the dotted lines in Figure 14.55 for now).

Suppose that we used ewp_pro11 and emp_Locs as the base relations instead of EMp_PrOI.

' This produces a particularly bad schema design, because we cannot recover the informa-

tion that was originally in emp.Pro3 from emP_pro)1 and eup_Locs. If we attempt a NATURAL

. JOIN operation on evp_proll and evp_Locs, the resule produces many more tuples than the
* original population of tuples in exe_pro3. In Figure 14.6, the resule of applying the join to

4. This is because inser and outer joins produce different results when nulls are involved in joins.
“The users must thus be aware of the different meanings of the varicus types of joins. Although this
is reasonable for sophisticated users, it may be difficult for others.

473

(@ EMP_LOCS

ENAME PLOCATION
—. ~ J
pk
EMP_PROJ1
SSN PNUMBER HOURS PNAME PLOCATION
\ J
Y
Pk
@ EMP_LOCS
ENAME PLOCATION
Smith, John B. Bellaire
Smith, John B. Sugariand
Narayan, Ramesh K. Housten
English, Joyee A, Bellaire
English, Joyce A Sugadand
Wong, Franklin T. Sugarfand
Wong, Franklin T. Houston
oo ong. FrankinT, . Stford
Zelaya, Alicia J. Stafford
Jabbar, Ahmad V. Stafford
Wailace, Jennifer S, Stafford
Wallace, Jennifer S. Houston
BergJames E. Houston
EME_PROM
88N PNUMBER HOURS PNAME PLOCATION
123456789 1 325 Product X Bellaire
123456789 2 75 Product Y Sugardand
666884444 3 40.0 Product Z Houston
453453453 1 200 Preduct X " Bellaire
453453453 2 20.0 Product Y Sugarand
333445555 2 10.0 ProductY Sugartand
333445555 3 10.0 Product Z Housten
333445555 10 10.0 Computerization Stafford
..... 393344555520100Re0rganm°nH0uswn
887777 20 30.0 Newbenetts Smffod
Q99887777 10 100 Computerization Stafford
987987987 10 35.0 Computerization Stafford
987987987 30 5.0 Newbenefits Stafford
987654321 30 200 Newbenefits Stafford
987654321 20 18.0 Reorganization Houston
BBBEE5555 20 nuil Reorganization Houston
Figure 14,5 Alternative (bad) representarion of the ewp_pro3 relation. (a) Representing

emp_proy of Figure 14.3(b) by two relation schemas: eve_Locs and ene_prodl.
(b) Resulr of projecting the populated relation ewp_rro3 of Figure 14.4 on
the artribures of evp_Locs and evp_pro71.

H

16,1 Informal Design Guidelines for Relation Schemas

o] ssn |PNUMBER| HOURS | PNAME PLOCATION
: 123456789 1 325 ProductX Bellaire Smith,John B,
. 123456789 1 325 ProductX Bellaire English,Joyce A.
123456789 2 75 PraductY Sugartand SmithJohn B.
5w 123456789 2 75 Producty Sugarfand English.Joyce A.
e 123456789 2 75 ProductY Sugarland Wong,Franklin T,
L 666884444 3 400 Product” Houston Narayan,Rarnesh K.
& . 666884444 3 400 ProcuctZ Houston Wong,Franklin T.

- 4563453453 1 200 ProductX Bellaire Smith,John B.
453453453 1 200 ProductX Bellaire Engflish,Jovce A

« 453452453 2 200 ProductY Sugarland Srith,John B.
453453453 2 20.0 ProcuctY Sugarland English.Joyce A

- 453453453 2 0.0 ProductY Sugarland Wang,Frankin T.

« 333448555 2 10.0 ProductY Sugarand Srnith,John B.

« 333445555 2 10.0 ProductY Sugarland English,Joyce A,
333445555 2 10.0 ProductY Sugariand Wong,Frankiin T.

- 333445555 3 10.0 Product? Houston Narayan,Ramesh K.
333445555 3 10.0 ProductZ. « Houston Wong,Franklin T.
333445555 10 1C.0 Computerization Stafford Wong,Franklin T.

« 333445585 20 10.0 Reorgarization Houston Narayan,Ramesh K.
333445555 20 100 Reorganization Houston Wong,Franklin T.

Figure 15,6 Resulr of applying the NATURAL JOIN operation to the tuples above

dotted lines in ep_pro31 and ewp_Locs, with generared spurious tuples
marked by an asterisk.

only the tuples above the dotted lines in Figure 14.5(b) is shown (to reduce the size of the

. resulring relation). Additional tuples that were not in eMp_pro3 are called spurious tuples

because they represent spurious or wrong informaticn that is not valid. The spurious

" tuples are marked by asterisks (*) in Figure 14.6.

Decomposing evp_pro) into ep_10cs and ewe_ero3l is undesirable because, when we

© JOIN them back using NATURAL JOIN, we do not get the correct original information. This |

is because in this case pLocaTION is the atrribure that relates zwe_vLocs and eMp_rredl, and
PLOCATION is neither a primary key nor a foreign key in either ewp_Locs or emp_ ProIZ. We can
now informally state another design guideline.

GUIDELINE 4: Design relation schemas so that they can be JONed with equality condi-
tions on aceributes that are eicher primary keys or foreign keys in a way that guarantees
that no spuricus tuples are generated. Do not have relations thar conrain matching

- atrriburtes other than foreign key-primary key combinarions. if such relations are unavoid-

able, do not join them on such armibutes, because the join may produce spurious tuples.

This informal guideline obviously needs to be stated more formally. In Chaprer 15 we
discuss a formal condition, called the nonadditive {or lossless) join property, which guar-
antees thart certain joins do not produce spurious tuples.

475

i

Chapter 14 / Functional Dependencies and Hormalization for Relational Databases

14.1.5 Summary and Discussion of Design Guidelines

In Sections 14.1.1 through 14.1.4, we informally discussed situations that lead to prob-
lemaric relation schemas, and we proposed informal guidelines for a good relational
design. The problems we pointed out, which can be detecred without additional tools of
analysis, are as follows:

* Anomalies that imply additional work to be done during insertion into and modifica-
tion of a relation, and that may cause accidental loss of information during a deletion
from a relarion.

« Waste of storage space due to nulls and difficulty of performing aggregation opera-
tiens and joins due to null values,

* Generation of invalid and spurious data during joins cn improperly related base rela-
tions.

In the rest of this chaprer we present formal concepts and theory that may be used to
define concepts of the “goodness” and the “badness” of individual relation schemas more
precisely. We first discuss functional dependency as 2 tool for analysis. Then we specify
the three norma!l forms and the Boyce-Codd normal form (BCNF) for relation schemas. In
Chaprer 15 we give addirional criteria for determining that a set of relation schemas
together forms a good relational database schema. We also presen: algorithms thar are a
part of this theory to design relational databases and define additional normal forms
beyond. BCNF. The normal forms defined in this chapter are based on the concept of a
funcrional dependency, which we describe next, whereas the normal forms discussed in
Chapter 15 use additional types of data dependencies called multivalued dependencies
and join dependencies.

14.2 Functional Dependencies

The single most imporrant concept in relational schema design is that of a funcrional
dependency. In this section we formally define the concept, and in Section 14.3 we see
how it ¢an be used to define normal forms for relarion schemas.

14.2.1 Definition of Functional Dependency

A functional dependency is a constraint between two sets of attributes from the darabase.
Suppose that our relational database schema has n atrributes Ay, Ay, . - . Ay; let us think
of the whole darabase as being described by a single universal relation schema R = {4;,
Ay, ... AL5 We do not imply thar we wiil actually score the database as a single universal
table; we use this concept only in developing the formal theory of data dependencies.®

5. This concept of a universal relation is important when we discuss the algorithms for relational
darabase design in Chaprer 15.

6. This assumption means that every ateribure in the database should have a disdner name. In Chap-
ter 7 we prefixed atuibuze names by relation names to achieve uniqueness whenever attributes in
distinct relations had the same name.

i

14,2 Founctional Dependencies

A functional dependency, denoted by X — Y, between two sets of attributes X and Y
¢ are subsets of R specifies a constraine on the possible tuples that can form 2 relation
.tate * of R. The constraint is that, for any two tuples ¢ and £; in r that have 0;[X] = i{X],
‘we must also have &,[Y] = ¢;[Y]. This means that the values of the Y compenent of a wple

“in r depend on, or are determined by, the values of the X componen; or alcernatively, the

values of the X component of a tuple uniquely (or functionally) determine the values of

‘the Y component. We also say thar there is a funcrional dependency from X to Y or that ¥
“is functionally dependent on X. The abbreviation for functional dependency is FD or f.d.
‘The set of attributes X is called the left-hand side of the FD, and Y is called the right-hand
“side. :

Thus X funcrionally determines Y in a relation schema R if and only if, whenever two

“tuples of (R) agree on their X-value, they must necessarily agree on their Yevalue. Norice
“the following:

o If 2 constaint on R stares that there cannot be more than one tuple with a given X-
value in any relation instance r{R}—thar is; X is a candidate key of R—this implies
that X = Y for any subset of atzributes Y of R (because the key constraint implies that
no two tuples in any legal state 7(R) will have the same value of X).

s 1¥% — Yin R, this does not say whether ornot ¥ — X in R.

A functional dependency is a property of the semantics or meaning of the

‘attributes. The database designers will use their understanding of the semantics of the

attributes of R—that is, how they relate to one another—to specify the functional

‘ dependencies that should hold on all relation states {extensions) T of R. Whenever the
. semantics of two sers of attributes in R indicare thar a functional dependency should
“hold, we specify the dependency as a constraint. Relation extensions r(R) that satisfy

the functional dependency constraints are called legal extensions (or legal relation

“states) of R, because they obey the functionai dependency constraints. Hence, the

' main use of functional dependencies is to describe further a relation schema R by spec-

ifying constraines on its actributes that must hold at all fimes. Cerrain FDs can be speci-
“fied withour referring to a specific relation, but as a property of those atuributes. For
‘example, {State, Driver_license_number} — ssn should hold for any adulr in the

Unired States. It is also possible that certain funcrional dependencies may cease to
exist in the real world if the relationship changes. For example, the FD Zip_code —»

- Area_code used to exist as a relationship berween postal codes and relephone number
_codes in the Uniced States, but with the proliferation of telephone area codes it is no
: longer true.

Consider the relation schema enp_pres in Figure 14.3(b); from the semantics of the
artribures, we know that the following functional dependencies should hold:

4. SSN —» ENAME
b. PNUMBER —> {PNAME, PLOCATICON}
c. {SSN, PNUMBER} —> HOURS

These funcrional dependencies specify thar (a) the value of an employee's social

" security number (ss) uniquely determines the employee name (enase), (b} the value of a

project’s number (PnuMser) uniquely determines the project name (puame} and location

477

i

Chapter 14 / Functional Dependencies and Normalization for Relational Databases

TEACH

TEACHER | COURSE TEXT —i
Smith Data Structures Bartram
Smith Data Management Al-Nour
Hall Compilers Heffman
Brown Data Structures Augenthaler

Figure 14.7 The TeacH relation stare with an apparent funcrional dependency Text
— course. Flowever, course: — Text is ruled out.

{pLocaTION), and (¢) a combination of ssn and enumMser values uniquely determines the num-
ber of hours the employee works on the project per week (nours). Altematively, we say
that envamt is funcrionally determined by {or functionally dependent on) ssn, or “given a
value of ssn, we know the value of enave,” and so on.

A functional dependency is a propercy of the relation schema {intension) R, not of a
particular legal relation state {extension) r of R. Hence, an FD cannot be inferred auromat-
ically from a given relation extension r but must be defined explicitly by someone who
knows the semantics of the atributes of R. For example, Figure 14.7 shows a particular
state of the Teacw relarion schema. Although ar fisst glance we may think char rexr —
COURSE, we cannot confirm this unless we know that it is true for all possible legal states of
Teack. [t is, however, sufficient to demonstrate a single counterexample to disprove a func-
tional dependency. For example, because ‘Smith’ reaches both ‘Dara Structures’ and ‘Dara
Management’, we can conclude that Teackzr does not funcrionally determine course.

Figure 14.3 introduces a diagrammatic notation for displaying FDs: Each FD is dis-
played as a horizontal line. The left-hand side asiributes of the FD are connecred by verti-
cal lines to the line representing the ¥D, while the right-hand-side ateribures are
connected by arrows pointing toward the attributes, as shown in Figures 14.3(a) and (b).

14.2.2 Inference Rules.for Functional Dependencies

We denote by F the set of functional dependencies that are specified on relarion schema
R. Typically, the schema designer specifies the funcrional dependencies that are semand-
cally obuious; usually, however, numerous other funcrional dependencies hold in all legal
relation instances that sarisfy the dependencies in E Those other dependencies can be
inferred or deduced from the FDs in F. For real-life examples, it is practically impossible to
specify all possible functional dependencies that may held. The set of 2]l such dependen-
cies is called the closure of F and.is denoted by EL. For example, suppose that we specify
the follow:ng set F of obvious funcrional dependencies on the relaricn schema of Figure

14.3(a):

F = {ssy ~> {EnavE, BDATE, ADDRESS, DNUMBER},
ONUMBER —> {DMAME, DMGRSSN}

16.7 Functional Dependencies

We can infer the following additional functional dependencies from F:

SSN ~—> {DNAME, DMGRSSN},
$SN —3 SSN,
CNUMBER > DNAME

An DX — Y is inferred from a set of dependencies F specified on R if X — Y holds

in every relation state r thar is a legal extension of R; that is, whenever r satisfies all the
© dependencies in F, X — Y also holds in r. The closure F* of F is the set of all functional
" dependencies that can be inferred from F. To determine a systematic way to infer depen-
- dencies, we must discover a set of inference rules that can be used to infer new depen-
- dencies from a given set of dependencies. We consider some of these inference rules next.

We use the notation F E X — Y to denote that the functional dependency X — Y is

. inferred from the set of functional dependencies E.

In the following discussion, we use an abbreviated notation when discussing func-

- tional dependencies. We concatenate atrribute variables and drop the commas for conve-
* nience. Hence, the FD {X,Y} — Z is abbreviated to XY - Z, and the FD {X,Y,Z} — [V} is
- abbreviazed w XYZ — UV. The following six rules (IR1 through IR6) are weli-known
" inference rules for functicnal dependencies:

'm(\ete ace ke
IR] {reflexive rule™: IfX D Y, then X — Y.

R2 (augmenzarion rule®): {X =Y} F XZ = YZ.
183 (transitive rule): {X = Y, Y 5 2} F X > 2.
R4 (decomposition, or projective, rule): { X = YZ} F X = Y.
RS (union, or additive, rule): { X 2 Y, X =2 Z} B X — YZ.
RS (pseudorransitive rule): (X - Y, WY = Z} k WX = Z.

The reflexive rule (IR1) states thart a set of aceribures always determines itself or any
of its subsets, which is obvious. Because IR1 generates dependencies that are always true,

" such dependencies are called wivial. Formally, a functional dependency X - Y is trivial if

X = Y otherwise, it is nontrivial. The augmentation rule (IR2) says that adding the same
set of atrributes to borh the left- and right-hand sides of a dependency results in another
valid dependency. According to IR3, functional dependencies are tansitive. The decom-
position rule (IR4) says that we can remove attribures from the right-hand side of a depen-
dency; applying this rule repeatedly can decompase the FD X — {A), A;, -y Al into the
set of dependencies {X — A}, X = Az, v, X = A} The union rule (IR5) allows us to do
the opposite; we can combine a set of dependenci@s K= AL X = Ay e X = Al into
the single FD X — {A}, A, -, Al

Each of the preceding inference rules can be proved from the definition of funcrional
dependency, either by direct proof or by contradiction. A proof by contradiction assumes

7. The reflexive rule can also be scated as X — X; that is, any ser of arribures functionally deter-
mines iself.

8. The augmentarion rule can also be stared as {X = Y} = XZ — Y; thar is, augmenting the left-
hand side acteibutes of an FD preduces another valid ED.

ol ege A L5 enem

479

Chapter 14 7 Functional Dependencies ané Normalization for Relational Batabases

that the rule does not hold and shows that this is not possible. We now prove thar the first
three rules (IR1 through IR3) are valid. The second proof is by contradiction.

PROGE OF IRy

Suppose that X D Y and that two tuples t; and ¢; exist in some relation instance r of
Rsuch that ¢ [X] = t; [X]. Then ¢[Y] = &;{Y] because X 2 ¥ hence, X = ¥ must held

inr

PROOF OF IRz {BY CONTRADICTIONR)

Assume that X — Y holds in a relation instance r of R but that XZ — YZ does not
hold. Then there must exist two tuples ¢, and t; in 7 such that (1) ¢ [X] = & [, (2)
t IY] = [Y], (3) ¢y [XZ] = 1 IXZ), and (4) ¢, [YZ] # 13 [YZ]. This is not possible
because from (1) and (3) we deduce {3) t; [Z] = 1 [Z], and from () and (5) we
deduce (8) t; [YZ] = 1; [YZ], contradicring {4).

PROOE OF 1R3

Assume that (1) X — Y and {2) Y — Z both hold in a relation . Then for any two
tuples ¢; and ¢ in 7 such that £y [X] = 13 [X], we must bave (3) t; [Y] = ¢ [Y], from
assumprion (1); hence we must also have (4) ¢, [Z] = ¢; [Z], from (3} and assumption
(2% hence X — Z must hold in .

Usirig similar proof arguments, we can prove the inference rules IR4 to IR6 and any
addirional valid inference rules. However, a simpler way to prove that an inference
rule for funcrional dependencies is valid is to prove it by using inference rules that
have already been shown to be valid. For example, we can prove IR4 through IR6 by
using IR] through IR3 as follows:

PROOE OF 1Ry (USING IRy THROUGH [R3)

1. X = YZ (given).

2. YZ — Y {using IR] and knowing that YZ 2 Y).
3. X =Y (usingIR3on land 2).

PROOF OF Rs (USING [Rx THROUGH IR3)

1. X — Y{given).

2. X - Z (given).)

3. 2 — XY {using IR2 on 1 by augmenting with X; nortice that XX = X).
4. XY — YZ {using IR2 on 2 by augmenting with Y).

5. X — YZ (using IR3 on: 3 and 4).

PROQF OF 1R6 {USING IR THROUGH [R3)

1. X = Y (given).
2. WY — Z (given).

b

14.2 Functional Dependencies

3. WX — WY (using IR2 on 1 by augmenting with W).
4. WX — Z (using 1IR3 on 3 and 2).
Iz has been shown by Armstreng (1974) that inference rules I1R1 through 123 are

sound and complete. By sound, we mean thar, given a set of functional dependencies F
specified on a relation schema R, any dependency that we can infer from F by using IR1

" through IR3 holds in every relation state of R that satisfies the dependencies in F. By com-
s plete, we mean thar using IR through I83 repeatedly to infer dependencies until ne more
"¢ dependencies can be inferred results in the complete set of all possible dependencies thac

can be inferred from F. In other words, the set of dependencies F*, which we called the

closure of F, can be determined from F by using only inference rules IR1 through IR3.
- Inference rules IR1 through IR3 are known as Armstrong’s inference rules.’

Typically, dacabase designers firsc specify the set of funcrional dependencies F thac

i can easily be determined from the semantics of the atrributes of R: then IR, 182, and]R3
- are used to infer additional functional dependencies that will also hold on R. A systematic
i way to determine these additional functional dependencies is first to determine each set
¢ of atrributes X thar appears as & lefe-hand side of some funcrional dependency in F and
- then to determiine the set of all azibutes that are dependent on X. Thus for sach such set
. of aczributes X, we determine the set X* of attribures that are functionally determined by
. X based on F; X* is called the closure of X under F. Algorithm 14.1 can be used to calcu-
i lare X7

Algorithm 14.1 Determining X*, the closure of X under F
X oim X
repeat
oldX* 1= X*;
for each functional dependency ¥ — Z in F do
iF X* D Y then X* 1= Xt U Z;
until (X* = oTdX™);

Algorithm 14.1 starts by setzing X* to all che attributes in X. By IR1, we knaw that all
these areributes are funcrionaily dependent on X, Using inference rules IR3 and 1R4, we

- add artributes to X7, using each functional dependency in F. We keep going through all

the dependencies in F (the repeat loop) unril ne more arrributes are added ro X* during a
complete cycle (the for loop) threugh the dependencies in F. For example, consider the
relation schema ewp_pro2 in Figure 14.3(b); from the semantics of the attributes, we spec-
ify the following set F of functional dependencies thar should hold on evp_prda:

F = {ssn — ename,
PNUMBER ==> {BNAME, PLOCATIONY,
{SSN, PNUMBER} — HOURS}

9. They are actually known as Armstrong’s axioms. In the smice mathernatical sense, the axoms
(given facts) are the funcrional dependencies in F, since we assume thar they are correc, while R1
through 1R3 are the inference rules for inferring new funcrional dependencies (new facrs).

481

{hapter 1k / Functional Dependencies and Normalization for Refational Databases

Using Algorithm 14.1, we calculate the following closure sets with respect to F:

{ssu}t = { SN, ENAME }
{ PNUMBER }* = { PNUMBER, PNAME, PLOCATION }
{ 35N, PNUMBER }* = { SSN, PNUMBER, ENAME, PNAME, PLOCATION, HOURS }

14.2.3 Equivalence of Sets of Functional Dependencies

In this section we discuss the equivalence of two sets of funcrional dependencies. First, we
give some preliminary definitions. A set of functional dependencies E is covered by a set
of funcrional dependencies F-—or alternatively, F is said to cover E—if every FD in Eis
also in F*; thar is, if every dependency in E can be inferred from F. Twvo sets of functional
dependencies E and F are equivalent if E* = F*. Hence, equivalence means that every FD
in E can be inferred from F, and every FD in F can be inferred from E; that is, E is equiva-
lent to F if both the conditions E covers F and F covers E hold.

We can dezermine whether F covers E by calculating X% with respect to F for each FD
X = YinE, and then checking wherther this X* includes the arrributes in Y. If this is the
case for every ED in E, then F covers E. We determine whether E and F are equivalent by
checking that E covers F and F covers E.

14.2.4 Minimal Sets of Functional Dependencies
A set of funcrional dependencies F is minimal if it satisfies the following conditions:

1. Every dependency in F has a single artribute for its right-hand side.

2. We cannct teplace any dependency X — A in F with a dependency ¥ — A, where
Y is a proper subset of X, and still have a set of dependencies thart is equivalent
woF

3. We cannot remove zny dependency from F and still have a ser of dependencies
that is equivalent to F.

We can think of a minimal set of dependencies as being 2 set of dependencies in a
standard or canonical form and with no redundancies. Cendition 1 ensures that every
dependency is in a canonical form with a single attribute on the right-hand side.!? Condi-
tions 2 and 3 ensure that there are no redundancies in the dependencies either by having
redundant artribuces on the lefi-hand side of a dependency (Cendirion 2), or by having a
dependency that can be inferred from the remaining s in F {Condition 3). A minimal
cover of a set of funcrional dependencies F is a minimal set of dependencies F_;, that is
equivalent to F. Unfortunately, there can be several minimal covers for a set of functional
dependencies. We can always find at least one minimal cover G for any set of dependen-
cies F using Algorichm 14.2.)

10. This is a standard form, not a requirement, to sireplify the condirions and algorithms that ensure
no redundancy exists in F. By using the inference rules IR4 and IR, we can convert a single depen-
dency with mulriple atributes on the right-hand side into a set of dependencies, and vice versa.

14.3 Hormal Forms Based on Primary Keys

Algorithm 14.2 Finding a2 minimal cover G for F

1.8et G := F.
2. Replace each functional dependency X — {41, A, ..., A} in C by the
n functional dependencies X — Ay, X — Ay, . . ., X = Aj

3. For each functional dependency X —» 4 in &
for each attribute 8 that is an element of X
iF (6 — {X = A} U {(X — {8}) — A}) is equivalent to
G,
then replace X — A with (X — {B}) -~» A in C.
4. For each remaining functional dependency X — A in G
if (G -~ {X — A}) is equivalent to G,
then remove X — A from G.

14.3 Normal Forms Based on Primary Keys

- Having studied functional dependencies and some of their properties, we are now ready to

use them as information abour the semantics of the relation schemas. We assume that a
set of functiconal dependencies is given for each relation, and that each relation has a des-
ignated primary key; this information combined with the tests (condiions) for normal
forms drives the normalization process. We will focus on the first three normal forms for
relation schemas and the intuition behind them, and discuss how they were developed

historically. More general definirions of these normal forms, which rake into account all-

candidate keys of a relatiort rather than just the primary key, are deferred wo Section 14.4.

. In Section 14.5 we define Bovce-Codd normal form (BONE), and in Chapter 15 we define

further normal forms that are based on other types of dara dependencies.

We start in Section. 14.3.1 by informally discussing normal forms and the motivation
behind their development, as well as reviewing some definitions from Chapter 7 that are
needed here. We then discuss first normal form (1NF) in Section 14.3.2, and present the
definivions of second normal form (ZNF} and thixd normal form (3NE) that are based on
primary keys in Sections 14.3.3 and 14.3.4.

14.3.1 Introduction to Normalization

The normalization process, as first proposed by Codd (1972a), takes a relarion schema
through a series of tests to “certify” whether it satisfies a certain normal form. The pro-
cess, which proceeds in a top-down fashion by evaluating each relation against the crite-
ria for normal forms and decomposing relations as necessary, can thus be considered as
relational design by analysis. Inirially, Codd proposed three normal forms, which he called
first, second, and third normal form. A stronger definition of 3NF—<alled Boyce-Codd
normal form {BCNF)—was proposed larer by Boyce and Codd. All these normal forms are
based on the functional dependencies among the arzributes of a relation. Later, a fourth
normal form {4NE) and a fifth normal form (3NF) were proposed, based on the concepts of
multivalued dependencies and join dependencies, respectively; these are discussed in

483

H

Chapter 14 / Functional Dependencies and Normalization for Relational Databases

Chapter 15. At the beginning of Chaprer 15, we also discuss how 3NF relations may be
synthesized from a given set of EDs. This approach is called relational design by synchesis,

Normalization of data can hence be looked upon as a process of analyzing the given
relarion schemas based on their FDs and primary keys to achieve the desirable properties
of (1) minimizing redundancy and (2) minimizing the insertion, deletion, and update
anomalies discussed in Section 14.1.2. Unsatisfactory relation schemas that do not meet
certain conditions—the normal form tests—are decomposed into smaller relation sche-
mas that meet the tests and hence possess the desirable properties. Thus, the normaliza-
tion procedure provides database designers with:

» A formal framework for analyzing relation schemas based on their keys and on the
functional dependencies among their attributes.

* A series of normal form rests thar can be carried out on individual relation schermas
so that the relarional darabase can be normalized to any desired degree.

The normal form of a relation refers to the highest normal form condition that it
meets, and hence indicates the degree to which it has been normalized. Normal forms,
when considered in isolation from other factors, do not guarantee a good database design.
It is generally not sufficient to check separately thar each relaticn schems in the datzbase
is, say, in BCNF or 3NF. Rather, the process of normalizatien through decomposition must
also confirm the existence of additional properties that the relational schemas, taken
ropether, should possess. These would include two properties: ‘

* The lossless join or nonadditive join property, which guarantees that the spurious
tuple generation problem discussed in Section 14.1.4 does not oceur with tespect to
the relarion schemas created afrer decomposition.

* The dependency preservation property, which ensures that each functional depen-
dency is represented in some individual relations resulring after decomposition.

The nonaddirive join property is extremely crirical and must be achieved at any cost,
whereas the dependency preservation property, although desirable, is sometimes sacri-
ficed, as we shall see in Section 15.1.2. We defer the presentation of the formal concepts
and techniques thar guarantee the above two properties to Chapter 15.

Additional nermal forms may be defined to meet other desirable criteria, based on
additional types of consmraints, as we shall see in Chaprer 15. However, the practical uril-
ity of normal forms becomes questionable when the constraints on which they are based
are hard to understand or to detect by the database designers and users who must discover
these constraints. Thus darabase design as practiced in industry today pays particular
atrention to normalization up to BCNF or 4NF.

Another point worth noting is that the darabase designers need not normalize to the
highest possible normal form. Relations may be left in a lower normalization status for
performance reasons, such as those discussed at the end of Section 14.1.2. The process of
storing the join of higher normal form relations as a base relation—which is in a lower
normal form—is known as denormalization.

Before proceeding further, let us look again ar the definitions of keys of a relation
schema from Chaprer 7. A superkey of a relation schema R = {A[, Ay, v Ayl is @ ser of
atrributes S C R with the property that ne two tuples ¢; and 2; in any legal relation state v of

153 Normal Forms Based oo Primary Keys

R will have t)[S] = [S]. Akey Kisa superkey with the addizional property that removal of

“any attribute from K will cause K not to be a superkey any more. The difference between a

'key and a superkey is that a key has to be minimal; chat is, if we h-ave akey K= {/f\ 1r A2y weens
‘A of R, then K — {A}isnotakeyof Rforanyi, | =i = k. In Figure 14.1 lssn} is a key for
“gupLavee, whereas {ssx}, {ssn, enauel, {ssn, Enae, BoATE}, erc. are all superkeys.

If a relation schema has more than one key, each is called a candidate key. One of
‘the candidate keys is arbitrarily designated o be the primary key, and the others are

_called secondary keys. Each relarion schema must have a primacy key. In Figure 14:1 {ssn}

is the only candidate key for EMPLOYEE, 50 it is also the primary key.
) An atrribute of relation schema R is called a prime attribute of R if it is 2 member of
| some candidate key of R. An attribute is called nonprime if it is not a prime atrribute——thar
‘i, if it is not a member of any candidarte key. In Figure 14.1 both ssn and pumsER are prime
 arrribures of works_on, whereas other attributes of works_ON are nonprime.

‘We now present the first three normal forms: INE, ZNF, and 3NF. These were pro-

‘posed by Codd {1972a) as a sequence 1o achieve the desirable state of 3NF relations by
: progressing through the intermediate stares of 1NF and 2NF if needed.

'14.3.2 First Normal Form

First normal form {1NF) is now considered to be part of the formal definition of a rela-
tion in the basic (flat) relational model;'! historically, it was defined ro disallow multival-
ved avriburtes, composite atrributes, and their combinarions. It states that the domain of
an zceribute must include only atomic (simple, indivisible) values and that the value of any
actribute 1o G TUpIe Tmust be a single value from the domain of thar acrribute. Hence,. INE
disallows having a set of values, a tuple of values, or a combination of both asan attr:bute
value for a single tuple, In other words, INF disallows “relations within relations” or relrft-
tions as actributes of tuples.” The cnly atoribute values permitred by INF are single atomic
{or indivisible) values. _

Consider the peparrent relation schema shown in Figure 14.1, whose primary key is
onuMEER, and suppose that we extend it by including the puocazons atrribute as ‘shcwn in
Figure 14.8(a). We assumme that each department can have a number of locations. Th‘e
DEPARTMENT schema and an example extension are shown in Figure 14.8. As we can see, this
is not in. 1NF because DLOCATIONS is not an atomic attribute, as illuscraced by che first tuple
in Figure 14.8(b). There are two ways we can look at the vLoCATIONS attribute:

e The domair of DLOCATIONS contains atomic values, but some tuples can have a set of
these values. In this case, DLOCATIONS is no: functionally dependent on ONUMZER.

e The domain of oLocaTIons contains sets of values and hence is nonatomic. In this
case, ONUMBER —» DLOCATIONS, because each. set is considered a single member of the
actribute domain. 2

11. This condition is removed in the nested relasional model and in object-relational systems
(ORDBMSs), both of which allow unnormalized reladons (see Chaprer 13}

12. In this case we can consider the domain of DLOCATIONS to be the power set of th_e set of single
locarions; that is, the domain is made up of all possible subsets of the set of single locations.

485

i

(hapter 14 / Functional Dependencies and Normalization for Relational Databases

DEPARTMENT
i DNAME I ONUMBER i DMGRSSN DLOCATICNS T
i | Ao A
DEPARTMENT
l DNAME l DNUMBER 1 DMGRSSN] DLOCATIONS
Research 5 333445555 {Bellzire, Sugartand, Houston}
Administration 4 987654321 {Stafford)
Headquarters 1 880565555 {Houston}
DEPARTMENT
DNAME DNUMBER DMGRSSN DLOCATION
Research 5 333445555 Bellaire
Research 5 333445555 Sugarland
Research 5 333445555 Houston
Adminisiration 4 87654321 Staftord
Headquartars 1 888665555 Houston

Figure 14.8 Normalization inro INF. {a) Relation schema that is not in INF.
(b) Example relation instance. (¢) INF relation wich redundancy.

i

14,3 MNarmal Farms Based on Primary Keys

values. In fact, if we choose the second solution, it will be decomposed further during
. ubsequent normalization steps into the fist solution.

The first normal form also disallows multivalued actribures thar are themselves compos-
ite. These are called nested relations because each tuple can have a relation within 1. Figure
14.9 shows how the evp_pra1 relation could appear if nesting is allowed. Each wuple repre-
nts an employee eatity, and 2 relation ProIs(PNUMBER , Fours) within each tuple represents the

In eicher case, the perarTrenT relation of Figure 14.8 is not in INF; in fact, it does not
even qualify as a relation, according to our definition of relation in Section 7.1. There are
three main techniques to achieve first nermal form for such a relation:

1. Remove the attribute stocatrons thar violates INF and place it in a separate rela-
tion DEPT_LocaTIoNs along with the primary key onuvser of pepartmenT. The primary
key of this relation is the combination {onumeer, cLocatIon}, as shown in Figure
14.2. A distinct tuple in oepr_LocaTIONS exists for each location of a department.
This decompases the non-1NF relation into two INF relarions.

2. Expand the key so that there will be a separate tuple in the criginal peparTMenT
relarion for each location of a DEPARTMENT, as shown in Figure 14.8(c). In this case,
the primary key becomes the combination {onumeer, pLocatTon). This solution has
the disadvantage of introducing redundancy in the relation.

3. If a madmum number of values is known for the atrribute—for example, if it is
known thar az most three locarions can exist for a department—replace the bLoca-
TIons attribute by three aromic attribuces: BLOCATION, BLOCATIONZ, and DLOCATIONS.

EMP_PROJ
PROJS
B8N ENAME
PNUMBER IHOUHS
{©) EMP_PROJ
rSSN l ENAME lPNUMBEHl HOURS I
123456789 SmithJohn B, 1 325
2 75
558884444 Narayan Ramesh K, 3 40.0
453453453 EnglshJoyce Al 1 200
2 200
333445555 Wong,Frankiin T. 2 10.0
2 10.0
10 10.0
20 10.0
905887777 ZelayaAlica J. 30 30.0
10 10.0
887587987 JabbarAhmad V. 10 35.0
30 50
987654321 Wallace,Jennifer S. 30 200
20 15.0
888665385 Borg.James E. 20 null
EMP_PROJI
e [owr |
EMP_PROJ2
l SSN_ .| PNUMBER l HOURS I

This solution has the disadvantage of introducing null values if most departments
have fewer than three locations.

Of the three soluticns above, the first is superior because it does not suffer from

redundancy and it is complerely general, having no limit placed on a maximum number

Figure 14,9 Normalizing nested relations into INE. (2) Schema of the eve_rro3
relation with a “nested relation” rro3s. (b) Example extension of the
ewp_pPrO] relation showing nested relations within each tuple.

(¢) Decomposing emp_r03 into 1NF relations eve_pro1l and
eup_proi2 by propagating the primary key.

487

i

Chapter 16 / Functional Dependencies and Normalization for Relatienal Databases

employee’s projects and the hours per week that employee works on each project. The

schema of this eup_rro3 relation can be represented as follows:

EMP_PRCI (SSN, ENAME, {PROJS(PNUMBER, HOURS}})

The set braces { } identify the atribute pross as multivalued, and we list the compo-
nent attributes that form rross between parentheses {). Interestingly, recent research into
the relational model is arrempting to allow and formalize nested relations (see Section
13.6), which were disallowed early on by INE.

Notice that ssn is the primary key of the emp_prro) relation in Figures 14.9(a) and {b),
while pnuMeer is the partial primary key of the nested relation; that is, within each tuple,
the nested relation must have unique values of pnumgEr. To normalize this into INF, we
remove the nested relation attributes into a new relation and propagate the primary key
into it; the primary key of the new relation will combine the partial key with the primary
key of the original relation. Decomposition and primary key propagation yield the sche-
tmas eme_pro31 and er_pro32 shown in Figure 14.9{c).

This procedure can be applied recursively to a relation with multiple-level nesting o
unnest the relation into a set of INF relations. This is useful in converting an unnormai-
ized relarion schema with many levels of nesting into 1NF relations, as we saw in Section
13.6. We also saw in cthat section that the unnest operator is a part of the nested relational
model. Chapter 15 will show that restricring relations to 1NF leads ro the problems associ-
ared with multivalued dependencies and 4NF.

14.3.3 Second Normal Form

Second normal form {2NF) is based on the concept of full funcrional dependency. A func-
tional dependency X — Y is a full functional dependency if removal of any auribure A
from X means that the dependency does not hold any more; that is, for any atrribute A €
X, (X — {A}) does noe funcrionally determine Y. A functional dependency X — Y is a par-
tial dependency if some artribure A € X can be removed from X and the dependency still
helds; that is, for some A e X, (X — {A}) = Y. In Figure 14.3(b), {ssn, Pnumser} — HoURS is 3
full dependency {neither ssv & Hours nor PvumMagr —> Hours holds). However, the depen-
dency {ssx, puumser} — enaMe is partial because ssn —> ename holds.

The test for 2NF involves testing for functional dependencies whose left-hand side
arributes are parr of the primary key. If the primary key contzins 2 single attribute, the
rest need not be applied at all. A relation schema R is in 2NF if every nonprime attribute
A in R is fully functonally dependent on the primazy key of R. The ewp_prod relation in Fig-
ure 14.3(b} is in 1NE but is nort in ZNF. The nonprime atmribute snave violates ZNF because
of FD2, as do the nonprime ateributes pvavg and pLocatzon because of FO3. The functional
dependencies FD2 and FD3 make ename, prame, and procarzon partially dependent on the pri-
mary key {ssn, pnuvaer) of eme_pro, thus vielating the ZNF test.

If a relation schema is not in ZNF, it can be “second normalized” or “INF normalized”
into a number of 2NF relarions in which nonprime attributes are associated only with the
part of the primary key on which they are fully functionally dependent. The functional
dependencies FO1, FD2, and FD3 in Figure 14.3(b) hence lead to the decomposition of
gwp_PRO] into the three relation schemas EP1, EPZ, and 23 shown in Figure 14.10(a), each
of which is in ZNF.

i

143 HNormal Forms Based on Primary Keys

EMP_PROJ
FSN PNUMBER ! HOUHS‘ ENAME] PNAME 1 s't.ocmorﬂ
o
A
| 4,
03 l !
2NF NORMALIZATION

EP1 El
S

l JE

' P2 £
“esN | PNUMBER ! HOURSJ ligy_ | ENAME FNUMBER l PNAME l PLOCATIOL‘
- N o5 | A A

EMP_REPT

DMGRSSN

{ENAME SSN . EDATE | ADDRESS | DNUMBER ~ DNAME

R
* o

INF NORMALIZATION
ED1 ED2
= ENAME | SSN | BRATE i ADDRESS | DNUMBER DNUMEER ! DNAME DMGERSSN }

S S Y T N

Figure 14.10

The normalization process. {a) Normalizing eMp_PpRo: into ZNF rela-
tions. (b) Normalizing svp_pepT into 3NF relations.

14.3.4 Third Normal Form
Third normal form (3NF} is based on the concept of mansitive dependency. A functional

. dependency X — Y in a relation schema R is a transitive dependency if there is a set of

attributes Z thar is neither a candidate key nor 2 subset of any keyof R, and both X — 2

_ é:: and Z — Y hold. The dependency $sn —» DMGRSSN is transitive through DNUMEER in BMP_DEPT of
: Figure 14.3(z) because both the dependencies ssn — ONBER and DNUMBER ~> GMGRSSN hold

: i iti iri d only with pri-
© 13.This is the general definirion of transicive dependency. Because we are concerne
* mary keys in this section, we allow ransicive dependencies where X is the primazy key but Z may be

(a subset of) a candidate key.

489

P14

Chapter 14 / Functional Dependencies and Normalization for Relational Databases

Summary of Normal Forms Based on Primary Keys and Comresponding Normalization.

nal Formp__ Test

Remedy (Normalization)

(lNF@FclatiOn should have no nonaromic
attributes or nested relations

nd {2NF)

4 (3NF)

Form new relations for each nonatomic
attribute or nested relation

Decompose and set up a new relation for
each partial key wich irs dependent
attribute(s). Make sure to keep a relation
with the original primary key and any
attributes that are fully funcrionally de-
pendent on it

Decompose and set up a relation that
includes the nonkey ateribute(s) that
functionally determine(s) other nonkey
atrribure(s}.

For relations where primary-key contains
multiple ateributes, no nonkey areri-
bute should be functionally dependent
on a part of the primary key

Relation should not have a nonkey
atrribute funcrionally determined by
another nonkey attribute (or by a set
of nonkey attributes.) That is, there
should be no transitive dependency of
a nonkey attribute on the primary
key.

and pnumser is neither a key itself nor a subset of che key of evp_pert. Intuirively, we can see
that the dependency of pucrssn on onumger is undesirable in EMp_DEPT sirice DNUMBER s not a
key of emp_peeT.

According to Codd’s original definition, a relation schema R is in 3NF if it satisfies
2NF and no nonprime artribute of R is transitively dependent on the primary key. The
relation schema ewe_oerT in. Figure 14.3(a) is in ZNF, since no partial dependencies on a
key exist. However, eMp_oepT is not in 3NF because of the transitive dependency of omcrssy
(and zlso onamE) on sSn via pnumeer. We can normalize ewp_perT by decompesing it into the
two 3NF relation schemas g0l and 02 shown in Figure 14.10(b). intuitively, we see that
g0l and 02 represent independent entity facts 2bour employees and departments. A NaTU-
RAL 30IN operation on 0l and 02 will recover the original relation ewp_pert without gener-
ating spuricus tuples. .

Table 14.1 informaily summarizes the three normal forms based on primary keys, the

tests used in each case, and the corresponding “remedy” or normalization to achieve the
normal form.

14.4 General Definitions of Second and
Third Normal Forms

[n general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies, because these types of dependencies cause the update anomalies
discussed in Section 14.1.2. The steps for normalization into 3NF relations thar we dis-
cussed so far disallow partial and transitive dependerncies on the primary key. These defini-

TR
A relarion schema R is in third normal form (3NE) if, whenever a nontrivial funcrional
¢ dependency X 3> A Holds M K, either {a) X is a superkey of R, or (b) A is a primé atTibute
- of R. According to this definition, Lo7s2 (Figure 14.11b} is in 3NF. However, FO4 in 10751
- violares 3NF because ARga is not a superkey and PRICE is not a prime artribure in Lotsl To .

i

1.4 General Definitions of Second and Third Normal Forms

ons, however, do not take other candidate keys of a relarion, if any, into account. In this
ction we give the more general definitions of ZNF and 3NF that take all candidate keys of
celztion into account. Notice that this does not affect the definition of INF, since it is
gependent of keys and functional dependencies. As a general definition of prime
Litribute, an attribute thac is part of any candidate key wilt be considered as prime. Partial
d fuil functional dependencies and transitive dependencies will now be with respect to

all candidate keys of a relation.

General Definition of Second Normal Form

1.4.]

relation schema R is in second normal form (2NE) if every nonprime armibure A in R

i hot partially dependent on any key of R.*F Consider the relation schema Lovs shown in
Figure 14.11(a}, which describes parcels of land for sale in various counties of a state. Sup-
pose that there are two candidate keys: properTy_Io# and {counTy_name, LoT#}; thar is, lot

‘numbers are unique only within each county but properTv_I0 numbers are unique across
-counties for the entire state.

Based on the two candidate keys ProperRTY_Io# and {counTy_name, LoT#}, we know that

‘the functional dependencies FD1 and FDZ of Figure 14.11(a) hold. We choose properTY..

1D# a5 the primary key, so it is underlined in Figure 14.11{a); bur no special consideration

“will be given to this key over the other candidate key. Suppose thart the following two

additional funcrional dependencies hold in Lovs:
FD3: COUNTRY_NAME — TAX_RATE
FD4: AREA —> PRICE

In words, the dependency FD3 says that the tax rate is fixed for a given county {does
not vary lot by lot within the same county), while FD4 says that the price of a lot is deter-
mined by its area regardless of which county it is in. (Assume that this is the price of the

‘lot for tax purpeses.) The Lots relation schema violates the general definition of ZNF
- because TAX_RATE is partially dependent on the candidate key {county_name, LoT#}, due to
“ 7 tD3. To normalize L0Ts into ZNF, we decompose it into the two relations LoTs1 and 10752,
- shown in Figure 14.11(5). We construct Lots1 by removing the attribute Tax_rae that
.. violates 2NF from Lots and placing it with counry_nave {the left-hand side of FD3 thac
causes the parsial dependency) into another relation wors2. Both Lotsl and LoTS2 are in
©i. 2ZNF. Notice that FD4 does not violate ZNF and is carried over to LoTsl.

General Definition of Third Normal Form

" 14. This definition can be restated as follows: A relation schema R is in INE if every nonprime
% arribute A in R is fully functionally dependent on every key of R.

491

Qné‘r\o‘f“f\-"—D

4
\
rd
2 r\m’*wn_Q ?
/}
g

i

(hapter 14 f Functional Dependencies and Normalization for Relaticnal Databases

(@) LOTS

L PROPERTY. ID# r COUNTY_NAME LOT# l AREA I PRICE

m— SRS S s
S I J
FDs

)] LOTS

L PROPERTY._ID# | COUNTY_NAME 1 LOT# r AREA ’ PHICE—I

o | i S
e | 1 ¢

m

LOTS2
L COUNTY_NAME I TAX_RATE ‘I
v
|
e LOTSIA LOTS1B
! PROPERTY_ID# J COUNTY_NAME ’ LOT# | AREA—’ i AREA E PRICE I
o | 1 } o
S | | 1 v
(e LOTS 1NF
LOTS1 LOTS2 oNF
LCTS14 LoTsis LoTs2 anE
Figure [.1} Normalization to 2NF and 3NF. (2) The LoTs relarion échema and its

functional dependencies FD1 through FD4. (b) Decomposing LoTs into
the ZNF relations L0751 and Lors2. (¢ Decomposing Lots1 into the

INF relations LoTs1a and Letsis. {d) Summary of normalization of
LOTS. ’

}

14.5 Boyce-Codd Normal Form

‘normalize LoTs1 into 3NF, we decompose it inte the relation schemas Lotsia and Lorsis
shown in Figure 14.11{c). We construct 107514 by removing the attribute price thar vio-
lates 3NF from Lotsl and placing it with arga (the lefr-hand side of FD4 that causes the
transitive dependency) into another relation Lovs1s. Both Lotsla and LoTs18 are in 3NF.
Two points are worth noting about the general definition of 3NF:

e Lots1 violates 3NF because #RICE is transitively dependent on each of the candidate
keys of LoTs1 via the nonprime attribute ArEA.

 This definition can be applied divectly to test whether a relation schema is in 3NF; it
does not have to go through 2NF first. If we apply the above 3NF definition to LoTs
with the dependencies FD1 through FD4, we find that both FD3 and FD4 violate 3NF.
We could hence decompose LoTs into LoTs3A, LoTs18, and Lots2 directly. Hence the
transitive and partial dependencies that violate 3NF can be remaoved in any order.

14.4.3 Interpreting the General Definition of 3NF

A relation schema R violares the general definition of 3NF if a functional dependency X
— A holds in R that violates both conditions {a) and (b} of 3NF. Violating (b) means that
A is a nonprime acrribure. Violating (a) means that X is not a superset of any key of R;
hence, X could be nonprime or it could be a proper subser of a key of R. If X is nonprime,
we typically have a transitive dependency thac violates 3NF, whereas if X is a proper sub-
set of a key of R we have 2 parrial dependency that violates 3NF (and also ZNF). Hence,
we can state a general alternative definition of 3NF as follows: A relation schema R is in
3NF if every nonprime attribute of R meets both of the following terms:

« It is fully funcrionally dependent on every key of R.

» {tis nontransitively dependent on every key of R.
7

A
14.5 Boyce-Codd Normal Form

Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NE, but it was found
to be stricter than 3NF, because every relarion in BCNF is alsp in 3NF; however, a relation
in 3NE is noz necessarily in BCNF. Intuirively, we can see the need for a stronger normal
form than 3NF by going back to the LoTs relation schema of Figure 14.11(a) wich its four
functional dependencies, FD1 through FD4. Suppose that we have thousands of lots in the
relation but the lots are from only two counties: Dekalb and Fulton. Suppose also that lot
sizes in Dekalb County are only C.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lor sizes in
Fulten County are resticted o 1.1, 1.2, ..., 1.9, and 2.0 acres. In such a situarion we
would have the additional functional dependency FR3: area ~» counTy_Name, If we add chis
o the other dependencies, the relation schema tevs1a still is in 3NF because CoUNTY_NAME is
a prime acmibure.

The area of z lot that dezermines the county, as specified by FD3, can be represented by
16 tuples in a separate relation R{area, county_name), since there are only 16 possible area
values. This representation reduces the redundancy of repearing the same information in

Chapter 14 / Functional Bependencies and Normalization for Relational Databases

the thousands of LoTs1a tuples. BONF is a stronger normal form thar would disallow LoTs1a

and suggest the need for decomposing it. TEAGH R
A The formal definition. of BONF differs slighcly from the definition of 3NF, A relation STUDENT COURSE | “INSTRUCTOR
/ \§Q wﬁmmpm a nonerivial funcrional dependency X — A holds in R, N Rt
(%(, en % is a superkev of B. The anly difference between the definitions of BCNF and 3NF is nindel Datzbase i
thar condition (b} of 3NE, which allows A to be prime, is absent from BCNF. Smith Database "~ ‘Navathe
I our exampi‘e, FDS vio_lates BCNF in tovsla because area is not 2 superkey of LoTs1a. Smith Operating Systems ~ Ammar
Note that FDS satisfies 3NF in LoTs1s because counTy_xave is a prime attribute (condition .
b), but this condition does not exist in the definition of BCNF. We can decompose LoTs1A S Theory
into two BONF relations LoTs1ax and LoTs1av, shown in Figure 14.12(a). This decomposi- Walace Database Mark
tion loses _r.he functional dependency FDZ because its attributes no longer coexist in the Wallace Operating Systems Ahamad
same relation. N
In practice, most relarion schemas that are in 3NF are also in BCNF. Only f X — A Werg Dawabase Omecinsid
holds in a relarion schema R with X not being a superkey and A being a prime attribute Zelaya Database Navathe
will R be in 3NF but not in BCNF. The relation schema R shown in Figure 14.12(b) illus- Figure 16.13 A relation Teacs that is in 3NF but not in BONE.

trates the general case of such a relation. Ideally, relarional darabase design should
strive to achieve BONF or 3NF for every relation schema. Achieving the normalization

- status of just 1NF or ZNF is not considered adequate, as they were developed historically
as stepping stones to 3NF and BCNF. Figure 14.13 shows a relarion Teags with the follow-

@ LOTS1A .
| ~ ing dependencies:

] PROPERTY (D# COUNTY_NAME | LOT# E AREA i
Fm'“—“‘—“‘ * % * : FD1: [STUBENT, COURSE} —> INSTRUCTOR

FD7:4% INSTRUCTOR —> COURSE

El

> + 1 } * Note that {sTuoenT, covrse} is a candidate key for this relation and that the dependen-
FOS + I ; cies shown follow the pattern in Figure 14.12(b). Hence this relation is in 3NF but not

. BONF. Decomposirion of this relation schema into two schemas is not straightforward

" hecause it may be decomposed in one of the three possible pairs:

BCNF Nommalization
1. {sTupent, InstRucTor) and {sTuoenT, cousssl

2. {counse, IwsrrucTor} and {course, sTupent}

3. {ansTRuCTOR, COURSEland {INSTRUCTOR, STUDENT!.

LOTS1AX LOTSIAY
[PROPERTY_iD# ‘ .AREA [LOT# | 1 AREA l COUNTY_NAME J

All three decompositions “lose” the functional dependency FDI. The desirable
- decomposition out of the above three is the third one, because it will not generate spuri-
 ous tuples after a join. A test to determine whether a decomposition is nenadditive (loss-
less) is discussed in Section 15.1.3 under Property L1. In: general, 2 relarion not in BONF
should be decomposed so as to meec this property, while possibly forgoing the preserva-
tion of all functional dependencies in the decomposed relations, as is the case in this
' example. Algorithm 15.3 in the next chapeer does that and could have been used above
" to give the same decomposition for TEACH.

® R

e]<]
S S

Figure 1611 Boyce-Codd normal form. (a) BONF normalization with the depen-
dency of FDZ being “lost” in the decomposition. () A relation R in

1

3NF but not in BCNF, 15. This assumes that “each instructor teaches one course” is a constrain for this application.

Chapter 14 / Functional Dependencies and Normalization for Relational Databases

14.6 Summary

In this chapter we discussed on an intuitive basis several pitfally in relational database
design, identified informally some of the measures for indicating whether 2 relation
schema is “good” or “bad,” and provided informal guidelines for a good design. We then
presented some formal concepes that allow us to do relational design in a top-down fash-
ion by analyzing relations individually. We defined this process of design by analysis and
decomposition by introducing the process of normalization. The topics discussed in this
chaprer will be continued in Chapter 15, where we discuss more advanced concepts in
relational design theory.

We discussed the problems of update anomalies that occur when redundancies are
present in relations. Informal measures of good relation schemas include simple and clear
atrribute semantics and few nulls in the excensions of relations. A good decomposition should
also avoid the problem of generation of spuricus tuples as a result of the join operation.

We defined the concept of functiona! dependency and discussed some of its proper-
ties. Functional dependencies are the fundamental source of semantic information about
the attributes of a relation schema. We showed how from a given ser of funcrional depen-
dencies, additional dependencies can be inferred using a set of inference rules. We defined
the concepts of closure and minimal cover of a set of dependencies, and we provided an
algorithm to compute 2 minimal cover. We also showed how to check whether two sets of
functional dependencies are equivalent.

We then described the normalizarion process for achieving good designs by resting
relarions for undesirable types of functional dependencies. We provided a wearment of
successive normalization based on a predefined primary key in each relation, then relaxed
this requirement and provided more general definitions of second normal form (2NF) and
third normal form (3NF) thar rake all candidate keys of a relation into account. We pre-
sented examples to illustrate how using the general definition of 3NF a givern relacion may
be analyzed and decomposed to eventually vield a set of relations in 3NF.

Finally, we presented Boyce-Codd normal form {BCNF) and discussed how it is a
stronger form of 3NF. We also illustrated how the decompositicn of 2 non-BCNF relation
must be done by considering the nonaddizive decomposition requirement,

Chaprer 13 will present synchesis as well as decomposition algorithms for relational
darabase design based on functional dependencies. Related o decomposition, we will dis-
cuss the concepss of lossless (nonadditive) join and dependency preservation, which are
enforced by some of these algorithms. Other topics in Chapter 15 include multivalued
dependencies, join dependencies, and addirional normal forms thar take these dependen-
clies into account.

Review Questions

14.1. Discuss the artribute semantics as an informal measure of goodness for a relation
schema. .

14.2. Discuss insertion, deletion, and modification anomalies. Why are they considered
bad? Illustrate with examples.

14.3. Why are many nulls in 2 relation considered bad?

Exercises

14.4. Discuss the problem of spurious tuples and how we may preven it.

14.5. State the informal guidelines for relation schema design that we discussed. Illus-
trate how violation of these guidelines may be harmful.

14.6. Whar is 2 functional dependency? Who specifies the functional dependencies
that hold among the attribures of a relation schema?

14.7. Why can we not infer a functional dependency from a particular relation stare?

14.8. Why are Armstrong’s inference rules—the three inference rules IR1 through
IR3—important?

14.9. Whar is meant by the completeness and soundness of Armstrong’s inference rules?

14.10. What is meant by the closure of a set of functional dependencies?

14.11. When are two sets of funcrional dependencies equivalent? How can we determine
their equivalence!?

14.12. What is 2 minimal set of functional dependencies? Does every set of dependencies
have a minimal equivalenr set?

14.13. Whar does the term unnommalized relation refer 10! How did the normal forms
develop historically?

14.14. Define first, second, and third normal forms when only primary keys are consid-
ered. How do the general definitions of 2NF and 3NF, which consider all keys of a
relation, differ from those that consider only primary keys?

14.15. Whar undesirable dependencies are avoided when a relation is in 3NF?

14.16. Define Boyce-Codd normal form. How does it differ from 3NF? Why is it consid-
ered a stronger form of 3NF?

Exercises

14.17. Suppose that we have the following requirements for a university darabase that is
used to keep track of students’ rranscriprs:

2. The university keeps track of each student’s name (svame); student number
(swum); social security number (ssn); current address (scavor) and phone
(scemone); permanent address {spanor) and phone (speionz); birth darce {8oaTE);
sex (sex); class (cLass) (freshman, sophomore, ..., graduace); major department
(mazorcoDe); minor department (mrnorcove) (if any); and degree program (PrRoc)
(8.4.,8.5., ..., .0.). Both sssn and student number have unique values for
each student.

b. Each department is described by a name (owave), department code (ocope),
office number (porrIce}, office phone (ppwone), and college (pcoLLece). Both
name and code have unique values for each department.

¢. Each course has a course name (cnave), description (coesc), course number
(cnum), number of semester hours (creor), level (Leve), and offering depart-
ment (coepT). The course number is unique for each course.

d. Each section has an instructor (mname), semester (sevgster), year (vear), course
(seccourse), and section number (szenom). The section number distinguishes
different sections of the same course that are raught during the same semescer/

year; its values are 1, 2, 3, ..., up o the total number of sections raught during
each semester.

497

Chapter 14 / Functional Dependencies and Normalization for Relational Databases

14.18

14.19

14.20

14.21

14.22

14.23

14.24
14.25

14.26

e A grade record refers to a student {ssw), a particular section, and a grade
(crane).

Design a relational database schema for this darabase application. First show all

the functional dependencies that should hold among the attributes. Then design

relation schemas for the database that are each in 3NF or BONF. Specify the key

attribures of each relation. Note any unspecified requirements, and make appro-

priate assumptions to render the specification complete.

. Prove or disprove the following inference rules for funcrional dependencies. A
proof can be made either by a proof argument or by using inference rules IR1
through IR3. A disproof should be performed by demonstrating a relation instance
that satisfies the conditions and functional dependencies in the-lefe-hand side of
the inference rule but does not satisfy the dependencies in the righr-hand side.
WY, X227} B {WX—=Y]

X—=YlandYDZ E X =7}
K2Y, X W WY -2 E{X—2ZhL
XY »Z, YW F XW-Z).

K= Z,Y-Z = XY

K=Y, XY=7 B (X—= 2.
H=Y,2-W E XZ— YW
Y= 22X FIZY)
X->Y.Y—=2Z} E{—-YZL

o XY = Z2,2oW B X WL

. Consider the following two sets of functional dependencies: F = {A — C, AC —
D,E - AD,E — H} and G = {A = CD, E - AHJ. Check whether they are

_equivalent. :

. Cousider the relation schema ewp_perr in Figure 14.3(z) and the following set
G of functional dependencies on eMp_pert: G = {SSN —> {ENAME, BDATE, ADDRESS, DNUM-
BER}, ONUMBER ~> {DNamg, omcrssn}). Calculare the closures {ssn}™ and {ovumaer)” with
respect 10 G. '

. Is the ser of functional dependencies G in Exercise 14.20 minimal? If not, try to
find 2 minimal set of functional dependencies that is equivalent to G. Prove thar
your set is equivalent to G.

- Whar update anomalies occur in the ewe_pros and ev_perT relations of Figures
143 and 14.4?

. In what normal form is the Lots relation schema in Figure 14.11(a) with respect o
the restrictive interpretations of normal form that take only the primary key into
account! Would it be in the same normal form if the general definitions of normal
form were used?

. Prove that any relation schema with two actribures is in BONF.

. Why do spurious tuples ocour in the result of joining the eve_pros and Evp_ Locs
relations of Figure 14.5 (result shown in Figure 14.6)?

. Consider the universal relaticn R ={A, B, C, D, E, F, G, H, I, J} and the set of
funcrional dependencies F = {{A, B} — {C}, {A} = [D, E}, {B} —= (F}, {F} = {G, H},
{D}— {I, J}}. What is the key for R? Decompose R into 2NF, then 3NF relations.

»

vom e up TR

Ap—=>C
A —> DE

N jF¥s 6H

jﬂ@ﬁéﬁhfFIjﬁ

14.27.

14.28,

14.29.

14.30.

Exercises

Repeat exercise 14.26 for the following different set of funcrional dependencies
G ={{A, B} = {C}, B, D} = {E, E}, {A, D} = {G, H}, {A} — {I}, {H} - {1}

Consider the following relation:

A B C TUPLE#
10 bl cl #1
10 b2 c2 #2
11 b4 cl #3
12 b3 c4 #4
13 bl cl #5
14 b3 c4 #6

a. Given the above exrension (state), which of the following dependencies may
hold in the above relation? If the dependency cannot hold, explain why by
specifying the tuples thar cause the viclation.

LA=BiLBwCiiC—oBivBoAvC—A
b. Does the above relation have a potential candidare key? If ic does, whar is ic? If

it does not, why not?)
Consider a relation R{A, B, C, D, E) with the following dependencies:

AB—C,CD —E,DE=B D BAL—> CE

Is AB a candidare key of this relation? If not, is ABD? Explain your answer
Consider the relation R, which has attribures thar hold schedules of courses and
sections at a university; R = {CourseNo, SecNo, OfferingDept, Credit-
Hours, Courselevel, Instructorssy, Semester, Year, Days_HKours,
RocmNo, NoOfStudents} Suppose that the following functional dependencies hold
on R:
{CourseNo} — {0fferingDept, CreditHours, CourselLevel}
{CourseNs, SecNo, Semester, Year}—

{Days_Hours, RoomNo, NoCfStudents, Instructorssn}
{RoomNg, Days.Hours, Semester, Year}—

{Instructorssy, CourseNo, SecNo}

Try to derermine which sets of armributes form keys of R. How would you normal-
ize this relation?

. Consider the following relations for an order-processing application database in

ABC Inc.

QRDER (0#, Odate, Cust#, Total_amount)
ORDER-ITEM(O#,I#, Quy_ordered, Total_price, Discount%®)

499

g?;fﬁcEFGHI

(hapter 14 / Functional Dependencies and Normalization for Relational Databases

Assume that each item has a different discount; the Total_price refers to ane i
iter, Odate is che dare on which the order was placed, the Toral_ amount is the ";
amount of the order. If we apply natural join on the relations ORDER-ITEM and |
ORDER in the above database, what does the resulting relation schema look like? |
Whart will be its key!? Show the FDs in this resulting relation. Is it in ZNF Is it in ‘
INE? Why or why not? (State assumptions, if you make any.)

14.32. Consider the following relation:
CAR_SALE (Car #, Date_sold, Salesman#, Commission%,
Discount_amt)
Assume that a car may be sold by multiple salesmen and hence {Car#, SaTes-
man#} is the primary key. Additional dependencies are

Datre_sold — Discount_amt and Salesman# — Commission®.
Based on the given primary key, is this relation in INF, 2NF, or 3NF! Why or why
not? How would you successively normalize it completely?
14.33. Consider the relation for published books:
BOOK {(Bock_title, Authorname, Beck_type, Listprice, Auther_affil,
Pubiisher)

Author_affi) refers to the affiliation of author. Suppose the following dependen-
cles exist:

Bogk_title — Publisher, Book_type

Book_type — Listprice

Authorname = Author-affil

a. Whar normal form is the relation in? Explain your answer.
b. Apply normalization until you cannot decompose the relations further. State
the reasons behind each decomposition.

Selected Bibliography /

Functiona! dependencies were originally introduced by Codd {197C}. The original defini-
tions of first, second, and third normal form were also defined in Codd (1972a), where a
discussion on update anomalies can be found. Boyce-Codd normal form was defined in |
Codd (1974). The alternarive definition of third normmal form is given in Ullman {1988), '
as is the definition of BCNF that we give here. Ullman (1988), Maier (1983), and Atzeni i
and De Antonellis (1993) contain many of the theorems and proofs concerning func-
tional dependencies.

Armstrong {1974) shows the soundness and completeness of the inference rules IR1
through IR3. Additional references to relational design theory are given in Chaprer 15.

