10.3 Normal Forms Based on Primary Keys | 315

10.3.4 First Normal Form

First normal form (1NF) is now considered to be part of the formal definition of a rela-
tion in the basic {(flat) relational model;'* historically, it was defined to disallow multival-
ued attributes, composite attributes, and their combinations. It states that the domain of
an attribute must include only atomic (simple, indivisible} values and that the value of any
atrribute in a tuple must be a single valie from the domain of that attribute. Hence, INF
disallows having a set of values, a tuple of values, or a combination of both as an artribute
value tor a single tuple. In other words, INF disallows “relations within relations” or “rela-
tfionis as attribute values within ruples.” The only attribute values permitted by INF are
single atomic {or indivisible) values.

Consider the peparTMENT relation schema shown in Figure 10.1, whose primary key is
DNUMBER, and suppose that we extend it by including the pLocations attribute as shown in
Figure 10.8a. We assume that each deparrment can have a number of locations. The
DEPARTMENT schema and an example relation state are shown in Figure 10.8. As we can see,

rmultivalued attribute

(@) DEPARTMENT o~ A -
DNAME CNUMBER DMGRSSN } DLOCATIONS
A A A
(b) DEPARTMENT
‘ DNAME | DNUMBER DMGRSSN DLOCATIONS
Research 5 333445555 {Bellaire, Sugarland, Houston)
Administration 4 987654321 {Stafford}
Headguarters 1 888665555 {Houston)
(c) DEPARTMENT_1NF
! | 1
DNAME | DNUMBER DMGRSSN DLOCATION |
Research 5 333445555 Bellaire
Research 5 333445555 Sugarland
Research 5 333445555 Houston
Administration 4 087654321 Stafford
Headguarters 1 888665565 Houston

FIGURE 10.8 Normalization into TNF. (a) A relation schema that is not in 1NF.
(b) Example state of relation peparTrenT. (C) TNF version of same relation with
redundancy.

12. This condition is removed in the nested relational model and in object-relational systems
(ORDBMSs), both of which allow unnormalized relations (see Chapter 22).

316

Chapter 10 Functional Dependencies and Normalization for Relational Databases

rhis is not in INF because pLocatrons is not an atomic attribute, as illustrated by the firse
tuple in Figure 10.8b. There are two ways we can look ar the pLocatTons attribure:

* The domain of DLOCATIONS contains atomic values, hut some tuples can have a sct of
these values. In this case, oLocatIons is not functionally dependent on the primary key
DNUMBER.

* The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case,
DNUMBER —> DLOCATIONS, because each set is considered a single member of the attribute
domain."’

In either case, the perarTrenT relation of Fieure 10.8 is not in INF; in fact, it does not
even qualify as a relation according to our definition of relation in Secrion 5.1. There are

three main rechnigues to achieve first normal form for such a relation:

1. Remove the artribure pLocattons that violates INF and place it in a scparate rela-
tion DEPT_LOCATIONS along with the primary key pnumBer of pEPARTMENT. The primary
key of this relation is the combination {onuvBeg, bLOCATION, as shown in Figure 10.2.
A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This
decomposes the non-INF relation into rwo INF relations.

2. Expand the key so that there will be a separate tuple in the original peEparTNENT
relation for each location of a peparTmENT, as shown in Figure 10.8¢. In this case,
the primary key becomes the combination {onukger, pLocaTIon}. This solurion has
the disadvantage of introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute—for example, if it is
known that at most three locations can exist for a department—replace the pLoca-
TIons attribute by three atomic attributes: pLocaTTond, DLOCATIONZ, and DLOCATION3.
This solution has the disadvantage of introducing null values it most deparrments
have fewer than three locations. It further introduces a spurious semantics about
the ordering among the location values that is not originally intended. Querying
on this attribute becomes more difficult; for example, consider how you would
write the query: “List the deparrments that have “Bellaire” as one of their loca-
tions” in this design.

Of the three solutions above, the first is generally considered best because it does not
suffer from redundancy and it is completely general, having no limit placed on a
maximum number of values. In fact, if we choose the sccond solution, it will be
decompaosed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes thar are themselves
composite. These are called nested relations because each tuple can have a relation
within it. Figure 10.9 shows how the emp_prod relation could appear it nesting is allowed.
Each tuple represents an employvee entity, and a relation pro3s (PNUMBER, HOURS) wwithin each

13. In this case we can consider the domain of DLOCATIONS to he the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the sct of single locations.

10.3 Normal Forms Based on Primary Keys | 317

(@) EMP_PROJ

PROJS
PNUMBER |HOURS

SSN ENAME

o) EMP_PROJ
SSN ENAME ‘ PNUMBER l HOURS
123456789 Smith,John B. 1 32.5
OSSO UUOOURY SO 79
666884444 NarayanRameshK. =~ 3 400
453453453 English,Joyce A. 1 20.0
SO - S 20.0 .
333445555 Wong,Franklin T. 2 10.0
3 10.0
10 10.0
OSSO URTOPUR -, S 100
009887777 Zelaya,Alicia J. 30 30.0
___ 10 ... 100
Q87987987 JabbarAhmad V. 10 35.0
___ 30 20
987654321 Wallace,Jennifer S 30 20.0
___ 20100
388600555 Borg,James E. 20 null
(C) EMP_PROJT
SoN l ENAME
EMP_PRQOJ2
SN PNUMBER ‘ HOURS

FIGURE 10.9 Normalizing nested relations into 1NF. (a) Schema of the emp_prro3
relation with a “nested relation” attribute prois. (b) Example extension of the
eMP_pRrOJ relation showing nested relations within each tuple. (¢) Decomposition

of emp_proJ into relations emp_prosl and emp_pro12 by propagating the primary key.

tuple represents the employee’s projects and the hours per week that employee works on
each project. The schema of this emp_pro3 relation can be represented as follows:

EMP_PROJ (SSN, ENAME, {PROJS(PNUMBER, HOQURS)})

The set braces { } identify the attribute prois as multivalued, and we list the
component attributes that form pro3s between parentheses (). Interestingly, recent trends
for supporting complex objects (see Chapter 20) and XML data (see Chapter 26) using the
relational model attempt to allow and formalize nested relations within relational
database systems, which were disallowed early on by INF.

318 | Chapter 10 Functional Dependencies and Normalization for Relational Databases

Notice that ssn is the primary key of the emp_pros relation in Figures 10.9a and b,
while pnumBER is the partial key of the nested relation; that is, within each tuple, the nested
relation must have unique values of pnuvser. To normalize this into INF, we remove the
nested relation attributes into a new relation and propagate the primary key into it; the
primary key of the new relation will combine the partial key with the primary key of the
original relation. Decomposition and primary key propagation vield the schemas emp_
pr0I1 and EmMP_PROI2 shown in Figure 10.9c.

This procedure can be applied recursively to a relation with multiple-level nesting to
unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-1INF relation:

PERSON (SS#, {CAR_LIC#}, {PHONE#})

This relation represents the fact that a person has multiple cars and multiple phones. If a
strategy like the second option above is followed, it results in an all-key relation:

PERSON IN INF (SS#, CAR_LIC#, PHONE#)

To avoid introducing any extraneous relationship between Car_L1c# and PHone#, all
possible combinations of values are represented for every SS#, giving rise to redundancy.
This leads to the problems handled by multivalued dependencies and 4NF, which we
discuss in Chapter 11. The right way to deal with the two multivalued attributes in pPERSON
above is to decompose it into two separate relations, using strategy 1 discussed above:
P1(SS#, CAR_LIc#) and P2(SS#, PHONE#).

10.3.5 Second Normal Form

Second normal form (2ZNF) is based on the concept of full functional dependency. A func-
tional dependency X — Y is a full functional dependency if removal of any attribute A
from X means that the dependency does not hold any more; that is, for any attribute A €
X, (X — {A}) does not functionally determine Y. A functional dependency X — Y is a par-
tial dependency if some attribute A € X can be removed from X and the dependency still
holds; that is, for some A € X, (X — {A}) — Y. In Figure 10.3b, {sSSN, PNUMBER} —> HOURS is a

full dependency (neither ssN — Hours nor PNUMBER —> HOURS holds). However, the depen-
dency {ssN, PNUMBER} — ENAME is partial because ssy — enave holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

The test for ZNF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test need not be applied at all. The emp_pro3 relation in Figure 10.3b is in INF but is not in
INF. The nonprime attribute enave violates ZNF because of FD2, as do the nonprime
attributes pnaME and pLocaTION because of FD3. The functional dependencies FD2 and FD3
make EnaME, PNAME, and pLocaTION partially dependent on the primary key {ssn, pnumser} of
EMP_PROJ, thus violating the ZNF test.

10.3 Normal Forms Based on Primary Keys { 319

If a relation schema is not in 2NF, it can be “sccond normalized” or “2NF normalized” into
a number of 2NF relations in which nonprime attributes are associated only with the part of
the primary key on which they are fully functionally dependent. The functional dependencies
F0I, FD2, and FD3 in Fieure 10.3b hence lead to the decomposition of eMp_pro3 into the three
relation schemas 1, ep2, and £r3 shown in Figure 10,104, each of which is in ZNF.

10.3.6 Third Normal Form

Third normal form (3NF) is hased on the concept of transitive dependency. A functional
dependency X — Y in a relation schema R is a transitive dependency if there is a sct of

(@) EMP_PROJ
I | '=
SSN_| PNUMBER | HOURS | ENAME | PNAME | PLOCATION ‘
FD1 l ’|k
FD2 %
\ ‘)
FD3 |
2NF NORMALIZATION
\Jv/
EP1 EP2 EP3
! ! -
SSN | PNUMBER | HOURS | | SSN | ENAME E E PNUMBER | PNAME | PLOCATION
i] i
FIH ‘ ‘u FDZ2 i‘ FD3 ‘ '+
(o) EMP_DEPT

E ;
ENAME | SSN | BDATE iADDF{ESSI DNUMBER | DNAME | DMGRSSN
f

: S N

i 3NF NORMALIZATION

N§Z4

=iy =

ENAME | SSN | BDATE | ADDRESS | DNUMBER DNUMBER | DNAME | DMGRSSN |

i 1 : T

[

FIGURE 10.10 Normalizing into 2NF and 3NF. (a) Normalizing esp_pro3 into ZNF
relations. (b) Normalizing esp_pePT Into 3NF relations.

320 | Chapter 10 Functional Dependencies and Normalization for Relational Databases

attributes Z that is neither a candidate key nor a subset of any key of R,'* and both X — 2
and Z — Y hold. The dependency ssn — DMGRSSN is transitive through DNUMBER in EMP_DEPT ot
Figure 10.3a becausc both the dependencies ssn — pruvBER and pnuMBER — DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of emp_pepT. Intuitively, we can sce that
the dependency of pvGrRSSN on DNUKBER is undesirable in EMP_DEPT since DNUMBER is not a key of
EMP_DEPT.

Definition. According to Codd’s original definition, a relation schema R is in 3NF it it
satisfies 2NF and no nonprime attribute of R is transitively dependent on the primary key.

The relation schema eqp_pepT in Figure 10.3a is in 2NF, since no partial dependencies
on a key exist. However, evp_DEPT is not in 3NF hecause of the transitive dependency of
oMcrssN (and also pvave) on SSN via pnuveer. We can normalize evp_pepT by decomposing it
into the two 3NF relation schemas o0l and e02 shown in Figure 10.10b. Intuitively, we sce
that £01 and 2 represent independent entity facts about employees and deparuments. A
NATURAL JOIN operation on epl and 02 will recover the original relation enp_pept without
generating spurious tuples.

Intuirively, we can see that any functional dependency in which the left-hand side is
part {proper subset) of the primary key, or any functional dependency in which the left-
hand side is a nonkey attribute is a “problemaric” FD. ZNF and 3NF normalization remove
these problem FDs by decomposing the original relation into new relations. In terms of
the normalization process, it is not necessary to remove the partial dependencies before
the transitive dependencies, but historically, 3NF has been defined with the assumption
that a relation is tested for 2NF first before it is tested for 3NF. Table 10.1 informally
summarizes the three normal forms based on primary keys, the tests used in each case, and
the corresponding “remedy” or normalization performed to achieve the normal form.

10.4 GENERAL DEFINITIONS OF SECOND AND
THIRD NORMAL FORMS

[n general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies, because these types of dependencies cause the update anomalies
discussed in Section 10.1.2. The steps for normalization into 3NF relations that we have
discussed so far disallow partial and transitive dependencies on the primary key. These
definitions, however, do not rake other candidare keys of a relation, it any, into account.
In this section we give the more general definitions of 2ZNF and 3NF that take all candidate
keys of a relation into account. Notice thar this does not affect the defnition of INF,
since it 1s independent of keys and functional dependencies. As a general definition ot
prime attribute, an attribute that is part of any candidate key will be considered as prime.

14. This is the general definition of transitive dependency. Because we are concerned only with pri-
mary keys in this section, we allow transitive dependencies where X is the primary key but Z may be
(a subser of) a candidate key.

10.4 General Detfinitions of Second and Third Normal Forms | 321

TABLE 10.T SUMMARY OF NORMAL FORMS BASED ON PRIMARY KEYS AND CORRESPONDING
NORMALIZATION

NORMAL FORM TEST REMEDY (NORMALIZATION)
First {(INF) Relation should have no nonatomic Form new relations for each nonatomic
attributes or nested relations. attribute or nested relation.

Second (INF) For relations where primary key contains Decompose and set up a new relation for
multiple attributes, no nonkey attribute each partial key with its dependent
should be functionally dependent on a part attribute(s). Make sure to keep a relation
of the primary key. with the original primary key and any

attributes that arc fully functionally
dependent on it.

Third (3NF) Relation should not have a nonkey attribute Decompose and set up a relation that
functionally determined by another nonkey includes the nonkey attribute(s) that
atiribute {or by a set of nonkey attributes.) functionally determine(s) other nonkey
That is, there should be no transitive depen- attribure(s).
dency of a nonkey attribute on the primary
key.

Partial and full functional dependencies and transitive dependencics will now be consid-
ered with respect to all candidate kevs of a relation.

10.4.1 General Definition of Second Normal Form

Definition. A relation schema R is in second normal form (2NF) if every nonprime
attribute A in R is not partially dependent on any key of R.P

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test need not be applied at all. Consider the relation schema Lots shown in Figure 10.114,
which describes parcels of land for sale in various counties of a state. Suppose that there
are two candidate keys: properTy_1o# and {county nave, LoT#}: that is, lot numbers are
unique only within cach county, but proPERTY_T0 numbers are unique across counties for
the entire state.

Based on the rwo candidate keys proprerTY_1n# and {county_name, LoT#}, we know that
the functional dependencies FDI and FD2 of Figure 10.11a hold. We choosc properTY 10#
as the primary key, so it is underlined in Figure 10.11a, but no special consideration will

5. This definition can be restated as follows: A relation schema R is in 2NF if every nonprime
attribute A in R is fully functionally dependent on every key of R.

322

Chapter 10 Functional Dependencies and Normalizatior o” Rz 27..73 — 320337

_ = = == =

candidate key
(a) LOTS . A —
| PROPERTY ID# COUNTY NAME LOT# \ AREA \ PRICE | TAX_RATE
|
A T A
FO1 ‘ # '
|
: A A
o |])
A
FD3 |
| A
FD4 ‘ |
b) LOTST
| |
PROPERTY_ID# COUNTY_NAME ‘ LOTH l AREA ‘ PRICE W
: I o
A
FD T + | %
Fo2 ‘ \ 1 ?
Fx ?
LOTS2
|
COUNTY_NAME TAX_RATE |
A
FO3 |
() LOTSTA LOTSI1B
| r
PROPERTY_ID# \ COUNTY_NAME LOTE | AREA | | AREA | PRICE ‘
' !
FOA ‘] T %, FD |] |
A | A
b2 | |
() /I_OTS\ INF
LOTST LOTS? ONF
LOTS1A LOTS1B LOTS2 ANE

AGURE 10.11 Normalization into 2NF and 3NF. (a) The LoTs relation with its func-
tiona! dependencies rD1 through FD4. (b) Decomposing into the 2NF relations
ors1 and Lots2. (c) Decomposing Lotsl into the 3NF relations Lots1a and Lotsle. (d)

Summary of the progressive normalization of LoTs.

10.4 General Definitions of Second and Third Normal Forms | 323

be given to this key over the other candidate key. Suppose that the following two
additional functional dependencies hold in LoTs:

FD3: COUNTY NAME —> TAX_RATE

FD4: AREA — PRICE

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), while FD4 says that the price of a lot is
determined by its area regardless of which county it is in. (Assume thar this is the price of
the lot for tax purposes.)

The LoTs relation schema violates the general definition of ZNF because TAX_RATE 18
vartially dependent on the candidare key {county_nave, LoT#}, due to FD3. To normalize LoTs
into 2NF, we decompose it into the two relations Lots1 and 10752, shown in Figure 1C.11h.
We construct LoTs1 by removing the attribute Tax_rate that violates INF from Lots and
nlacing it with counTv_nave (the lefr-hand side of FD3 that causes the partial dependency)
into another relation to1s2. Both LoTsl and LoTs2 are in ZNF. Notice that FD4 does not
violate 2ZNF and is carried over to LoTs1.

10.4.2 General Definition of Third Normal Form

Definition. A relation schema R is in third normal form (3NF) if, whenever a
1ontrivial functional dependency X — A holds in R, either (a) X is a superkey of R, or (b)
A is a prime attribute of R.

According to this definition, Lors2 (Figure 10.11b) is in 3NF. However, FD4 in LoTs1
-iplates 3NF because AREA is not a superkey and PRICE is not a prime attribute in LoTs1. To
~srmalize LoTs1 into 3NF, we decomposc it into the relation schemas LoTsia and torsls
“own in Figure 10.11c. We construct LoTs1a by removing the attribute prIce that violates
*NF from totsl and placing it with area (the left-hand side of FD4 that causes the
-ansitive dependency) into another relation Lotsle. Both LoTs1a and LoTs18 are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

o 10751 violates 3NF becausc pPRICE is transitively dependent on each of the candidate
keys of LoTS1 via the nonprime attribute AREA.

s This general definition can be applied divectly to test whether a relation schema is in
3NE; it does nor have to go through ZNF first. If we apply the above 3NF definition to
LoTs with the dependencies FD] through FD4, we find that both FD3 and FD4 violate
3NF. We could hence decompose LoTs into LoTS1a, LoTs1E, and 1o0Ts2 directly. Hence
the transitive and partial dependencies that violate 3NF can be removed in any order.

10.4.3 Interpreting the General Definition of
Third Normal Form

. -zlation schema R violates the general definition of 3NF if a functional dependency X
— 2 holds in R that violates both conditions (a} and (b) of 3NF. Violating (b} means that

324 | Chapter 10 Functional Dependencies and Normalization for Relational Databases

A is a nonprime attribute. Violating (a) means that X is not a superset of any key of K;
hence, X could be nonprime or it could be a proper subsct of a key of R. If X is nonprime,
we typically have a transitive dependency that violates 3NF, whereas it X is a proper sub-
sct of a key of R, we have a partial dependency that violates 3NF (and also 2NF). [lence,
we can state a general alternative definition of 3NF as follows: A relation schema R is in
3NF if every nonprime attribute of R meets both of the following conditions:

e It is fully functionally dependent on every key of R.

e It is nontransitively dependent on every key of R.

10.5 BOYCE-CODD NORMAL FORM

Boyee-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found
to he stricter than 3NE. That is, every relation in BCNF is also in 3NF; however, a relation
in 3NF is not necessarily in BONF. Intuitively, we can see the need for a stronger normal
form than 3NF by going back to the LoTs relation schema of Figure 10.11a with its tour
funcrional dependencies FD1 through F4. Suppose that we have thousands of lots in the
relation but the lots are from only two counties: Dekalb and Fulton. Suppose also that lot
sizes in Dekalb County arc only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in
Fulton County are restricted to 1.1, 1.2, .. ., 1.9, and 2.0 acres. In such a situation we
would have the additional functional dependency FI»9: area — counTy_nave. [f we add this
to the other dependencies, the relation schema LoTsTa still is in SNF hecause COUNTY NAME is
a prime attribure.

The area of a lot that determines the county, as specified by FD5, can be represented
by 16 tuples in a separate relation R{area, county_name), since there are only 16 possible
srea values. This representation reduces the redundancy of repeating the same
information in the thousands of LoTs1a tuples. BONF is a stronger normal form that would
disallow LoTs1a and suggest the need tor decomposing it.

Definition. A rclation schema R is in BCNF if whenever a nontrivial functional
dependency X — A holds in R, then X is a superkey of K.

The formal definition of BONF differs slightly from the definition of 3NF. The only
difference hetween the definitions of BCNFE and 3N is that condition (h) ot 3NF, which
allows A to he prime, is absent from BCNF. In our example, FD3 violates BONF in LoTs14
hecause AREA is not a superkey of Lotsla. Note that FD5 satisfies 3NF in totsla because
COUNTY_NAE is a prime attribute (condition b}, but this condition does not exist in the
detinition of BCNF. We can decompose LOTS1a Into two BONF relations LOTS1AX and LOTS1AY,
shown in Figure 10.12a. This decomposition loses the functional dependency FD2 because
its artributes no longer coexist in the same relation atter decomposition.

In practice, most relation schemas that are in 3NF are also in BONF. Only it X — 2
holds in a relation schema R with X not being a superkey and A heing a prime attribuic
will R be in 3NF but not in BONE. The relation schema R shown in Figure 10.12%
illustrates the general case of such a relation. Ideally, relational database design shoulc
strive to achieve BCNF or 3NF for cvery relation schema. Achieving the normalizatior

10.5 Boyce-Codd Normal Form | 325

(a) LOTSIA
)
| PROPERTY_ID# COUNTY NAME LOT# AREA
FOA * ‘ ‘
e A g A
S +
i BCNF Normalization
\\)/
LOTS1AX LOTS1AY
PROPERTY ID# E AREA LOT# ! AREA | COUNTY NAME
(b} =
A | B | C
FD1 A

FD2 “—‘

FIGURE 10.12 Bovce-Codd normal form. (a) BCNF normalization of Lotsla with the
functional dependency f02 being lost in the decomposition. (b} A schematic
relation with FDs; it is in 3NF, but not in BONF.

status of just INF or 2NF is not considered adeguate, since they were developed
historically as stepping stones to 3NF and BCNF. S
As another example, consider Figure 10.13, which shows a relation teacy with the

following dependencies:

FID1: { STUDENT, COURSE} —> INSTRUCTOR

F2:1% INSTRUCTOR = COURSE

Note that {stupent, course} is a candidare key for this relation and that the
dependencies shown follow the pattern in Figure 10.12h, with stupent as A, Course as B,
and 1sTrRucTor as C. [Hence this relation is in 3NF but not BONF. Decomposition of this

relarion schema into two schemas is not straightforward becausc it may be decomposed
into one of the three tollowing possible pairs:

1. {sTupenT, InsTRUCTOR} and {STUDENT, COURSE}.

2. {couRSE, INSTRUCTOR } and {COURSE, STUDENT}.

3. {insTrucTOR, COURSE | and {INSTRUCTOR, STUDENT).

16. This dependency means that “each instructor teaches one course” is a constraint tor this applicarion.

326 | Chapter 10 Functional Dependencies and Normalization for Relational Databases

TEACH
STUDENT COURSE INSTRUCTOR
Narayan Database Mark
Smith Database Navathe
Smith Operating Systems Ammar
Smith Theory Schulman
Wallace Database Mark
Wallace Operating Systems Ahamad
Wong Database Omiecinski
Zelaya Database Navathe

FIGURE 10.13 A relation Teack that is in 3NF but not BCNE.

All three decompositions “lose” the functional dependency FDI. The desivable
decomposttion of those just shown is 3, because it will not generarte spurious tuples after a join.

A test to determine whether a decomposition is nonadditive (lossless) is discussed in
Section [1.1.4 under Property LJ1. In general, a relation not in BCNF should he
decomposed so as to mcet this property, while possibly forgoing the preservation of all
functional dependencics in the decomposed relations, as is the case in this example.
Algorithm 11.3 does that and could be used above to give decomposition 3 for Teach.

10.6 SUMMARY

In this chapter we first discussed several pitfalls in relational darabase design using intui-
tive arguments. We identificd intormally some of the measures for indicating whether a
relation schema s “good™ or “bad,” and provided informal guidelines for a good design.
We then presented some formal concepts that allow us to do relational design in a top-
down fashion by analyzing relations individually. We defined this process of design hy
analysis and decomposition by introducing the process of normalization.

We discussed the problems of update anomalies that occur when redundancies are
present in rclations. Informal measures of good relation schemas include simple and clear
attribute semantics and few nulls in the extensions (states) of relations. A good
decomposirion should also avoid the prohlem of generation of spurious tuples as a result of
the join operation.

We defined the concept of functional dependency and discussed some of its
properties. Functional dependencies specify semantic constraints among the attribures of
a relation schema. We showed how from a given set of funcrional dependencies,
additiona) dependencics can be inferred using a set of inference rules. We defined the
concepts of closure and cover rclated to functional dependencies. We then defined

