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10.3.4 First Normal Form
First normal form (INF) is now considered to be part of the formal definition of a rela
tionin the basic (flat) relational model;12 historically, it was defined to disallow multival
ued attributes, composite attributes, and their combinations. It states that the domain of
anattribute must include only atomic (simple, indivisible) valuesand that the value of any
attribute in a tuple must be a single value from the domain of that attribute. Hence, INF

disallows having a set of values, a tuple of values, or a combination of both as an attribute
value for a single tuple. In other words, I NF disallows "relations within relations" or "rela
tions as attribute values within tuples." The only attribute values permitted by lNF are
single atomic (or indivisible) values.

Consider the DEPARTMENT relation schema shown in Figure 10.1, whose primary key is
DNUMBER, and suppose that we extend it by including the DLOCATIONS attribute as shown in
Figure 10.8a. We assume that each department can have a number of locations. The
DEPARTMENT schema and an example relation state are shown in Figure 10.8. As we can see,
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Houston

{Bellaire, Sugarland, Houston}
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{Houston}
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Research 5
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(e) DEPARTMENT

DNAME
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DNUMBER

Research 5
Research 5
Research 5
Administration 4
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FIGURE 10.8 Normalization into 1NF. (a) A relation schema that is not in 1NF.

(b) Example state of relation DEPARTMENT. (c) 1NF version of same relation with
redundancy.

12. This condition is removed in the nested relational model and in object-relational systems
(ORDBMSs), both of which allow unnormalized relations (see Chapter 22).
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this is not in 1NF because DLOCATIONS is not an atomic attribute, as illustrated by the first
tuple in Figure 1O.8b. There are two ways we can look at the DLOCATIONS attribute:

• The domain of DLOCATIONS contains atomic values, but some tuples can have a set of
these values. In this case, DLOCATIONS is not functionally dependent on the primary key
DNUMBER.

• The domain of DLOCATIONS contains sets of values and hence is nonatomic. In this case,
DNUMBER ~ DLOCATIONS, because each set is considered a single member of the attribute
domain. 13

In either case, the DEPARTMENT relation of Figure 10.8 is not in 1NF; in fact, it does not
even qualify as a relation according to our definition of relation in Section 5.1. There are
three main techniques to achieve first normal form for such a relation:

1. Remove the attribute DLOCATIONS that violates 1NF and place it in a separate rela
tion DEPT_LOCATIONS along with the primary key DNUMBER of DEPARTMENT. The primary
key of this relation is the combination {DNUMBER, DLOCATION},as shown in Figure 10.2.
A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This
decomposes the non-1NF relation into two 1NFrelations.

2. Expand the key so that there will be a separate tuple in the original DEPARTMENT

relation for each location of a DEPARTMENT, as shown in Figure 10.8c. In this case,
the primary key becomes the combination {DNUMBER, DLOCATION}. This solution has
the disadvantage of introducing redundancy in the relation.

3. If a maximum number of values is known for the attribute-for example, if it is
known that at most three locations can exist for a department-replace the DLOCA·

TIONS attribute by three atomic attributes: DLOCATIONl, DLOCATION2, and DLOCATION3.

This solution has the disadvantage of introducing null values if most departments
have fewer than three locations. It further introduces a spurious semantics about
the ordering among the location values that is not originally intended. Querying
on this attribute becomes more difficult; for example, consider how you would
write the query: "List the departments that have "Bellaire" as one of their loca
tions" in this design.

Of the three solutions above, the first is generally considered best because it does not
suffer from redundancy and it is completely general, having no limit placed on a
maximum number of values. In fact, if we choose the second solution, it will be
decomposed further during subsequent normalization steps into the first solution.

First normal form also disallows multivalued attributes that are themselves
composite. These are called nested relations because each tuple can have a relation
within it. Figure 10.9 shows how the EMP_PRO) relation could appear if nesting is allowed.
Each tuple represents an employee entity, and a relation PRO)S(PNUMBER, HOURS) within each

13. In this case we can consider the domain of OLOCATIONS to be the power set of the set of single
locations; that is, the domain is made up of all possible subsets of the set of single locations.
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FIGURE 10.9 Normalizing nested relations into 1NF. (a) Schema of the EMP_PROJ

relation with a "nested relation" attribute PROJS. (b) Example extension of the
EMUROJ relation showing nested relations within each tuple. (c) Decomposition
of EMP_PROJ into relations EMP_PROJI and EMP_PROJ2 by propagating the primary key.

tuple represents the employee's projects and the hours per week that employee works on
each project. The schema of this EMP_PROJ relation can be represented as follows:

EMP_PROJ (SSN, ENAME, {PROJS(PNUMBER, HOURS)})

The set braces { } identify the attribute PROJS as multivalued, and we list the
component attributes that form PROJS between parentheses ( ). Interestingly, recent trends
for supporting complex objects (see Chapter 20) and XMLdata (see Chapter 26) using the
relational model attempt to allow and formalize nested relations within relational
database systems, which were disallowed early on by iNF.
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Notice that SSN is the primary key of the EMP_PROJ relation in Figures 10.9a and b,
while PNUMBER is the partial key of the nested relation; that is, within each tuple, the nested
relation must have unique values of PNUMBER. To normalize this into INF, we remove the
nested relation attributes into a new relation and propagate the primary key into it; the
primary key of the new relation will combine the partial key with the primary key of the
original relation. Decomposition and primary key propagation yield the schemas EMP_

PROJl and EMP_PROJ2 shown in Figure 10.9c.
This procedure can be applied recursively to a relation with multiple-level nesting to

unnest the relation into a set of INF relations. This is useful in converting an
unnormalized relation schema with many levels of nesting into INF relations. The
existence of more than one multivalued attribute in one relation must be handled
carefully. As an example, consider the following non-lNF relation:

PERSON (ss#, {CAR_LIC#}, {PHONE#})

This relation represents the fact that a person has multiple cars and multiple phones. If a
strategy like the second option above is followed, it results in an all-key relation:

PERSON_IN_INF (ss#, CAR_LIC#, PHONE#)

To avoid introducing any extraneous relationship between CAR_LIC# and PHONE#, all
possible combinations of values are represented for every 55#. giving rise to redundancy.
This leads to the problems handled by multivalued dependencies and 4NF, which we
discuss in Chapter 11. The right way to deal with the two multivalued attributes in PERSON

above is to decompose it into two separate relations, using strategy 1 discussed above:
Pl(55#, CAR_LIC#) and P2( 55#, PHONE#).

10.3.5 Second Normal Form
Second normal form (2NF) is based on the concept of full functional dependency. A func
tional dependency X -7 Y is a full functional dependency if removal of any attribute A
from X means that the dependency does not hold any more; that is, for any attribute A E

X, (X - {A}) does not functionally determine Y. A functional dependency X -7 Y is a par
tial dependency if some attribute A E X can be removed from X and the dependency still
holds; that is, for some A E X, (X - {A}) -7 Y. In Figure lO.3b, {SSN, PNUMBER} -7 HOURS is a
full dependency (neither SSN -7 HOURS nor PNUMBER -7 HOURS holds). However, the depen
dency {SSN, PNUMBER} -7 ENAME is partial because SSN -7 ENAME holds.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test need not be applied at all. The EMP_PROJ relation in Figure 10.3b is in INF but is not in
2NF. The nonprime attribute ENAME violates 2NF because of FD2, as do the nonprime
attributes PNAME and PLOCATION because of FD3. The functional dependencies FD2 and FD3
make ENAME, PNAME, and PLOCATION partially dependent on the primary key {SSN, PNUMBER} of
EMP_PROJ, thus violating the 2NF test.
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Ifa relation schema is not in 2NF, it can be "second normalized" or "2NFnormalized" into
a number of 2NF relations in which nonprime attributes are associated only with the part of
the primary key on which they are fully functionally dependent. The functional dependencies
FDI, m2, and FD3 in Figure IO.3b hence lead to the decomposition of EMP_PRO] into the three
relation schemas EPl, EP2, and EP3 shown in Figure 10.lOa, each of which is in 2NF.

10.3.6 Third Normal Form
Third normal form (3NF) is based on the concept of transitive dependency. A functional
dependency X ~ Y in a relation schema R is a transitive dependency if there is a set of

(a)

PLOCATION

____t_t
'------- tFD2

FD3

J} 2NF '-'lRMAUZATION

ED1

J1- 3NF '-'lRMAUZATION

ED2

FIGURE 10.10 Normalizing into 2NF and 3NF. (a) Normalizing EMP_PRO] into 2NF
relations. (b) Normalizing EMP_DEPT into 3NF relations.



320 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

attributes Z that is neither a candidate key nor a subset of any key of R,14 and both X -7 Z
and Z -7 Y hold. The dependency SSN -7 DMGRSSN is transitive through DNUMBER in EMP_DEPTof
Figure 1O.3a because both the dependencies SSN -7 DNUMBER and DNUMBER -7 DMGRSSN hold and
DNUMBER is neither a key itself nor a subset of the key of EMP_DEPT. Intuitively, we can see that
the dependency of DMGRSSN on DNUMBER is undesirable in EMP_DEPT since DNUMBER is not a key of
EMP_DEPT.

Definition. According to Codd's original definition, a relation schema R is in 3NF if it
satisfies 2NFandno nonprime attribute of R is transitively dependent on the primary key.

The relation schema EMP_DEPT in Figure lO.3a is in 2NF, since no partial dependencies
on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of
DMGRSSN (and also DNAME) on SSN via DNUMBER. We can normalize EMP_DEPT by decomposing it
into the two 3NF relation schemas EDl and ED2 shown in Figure 10.lOb. Intuitively, we see
that EDl and ED2 represent independent entity facts about employees and departments. A
NATURAL JOIN operation on EDI and ED2 will recover the original relation EMP_DEPT without
generating spurious tuples.

Intuitively, we can see that any functional dependency in which the left-hand side is
part (proper subset) of the primary key, or any functional dependency in which the left
hand side is a nonkey attribute is a "problematic" FD. 2NF and 3NF normalization remove
these problem FDs by decomposing the original relation into new relations. In terms of
the normalization process, it is not necessary to remove the partial dependencies before
the transitive dependencies, but historically, 3NF has been defined with the assumption
that a relation is tested for 2NF first before it is tested for 3NF. Table 10.1 informally
summarizes the three normal forms based on primary keys, the tests used in each case, and
the corresponding "remedy" or normalization performed to achieve the normal form.

10.4 GENERAL DEFINITIONS OF SECOND AND
THIRD NORMAL FORMS

In general, we want to design our relation schemas so that they have neither partial nor
transitive dependencies, because these types of dependencies cause the update anomalies
discussed in Section 10.1.2. The steps for normalization into 3NF relations that we have
discussed so far disallow partial and transitive dependencies on the primary key. These
definitions, however, do not take other candidate keys of a relation, if any, into account.
In this section we give the more general definitions of 2NFand 3NF that take all candidate
keys of a relation into account. Notice that this does not affect the definition of 1NF,
since it is independent of keys and functional dependencies. As a general definition of
prime attribute, an attribute that is part of any candidate key will be considered as prime.

--~-------------------- ------------------- ---

14.This is the general definition of transitive dependency. Because we are concerned only with pri
marykeysin this section, we allow transitive dependencies where X is the primarykey but Z maybe
(a subsetof) a candidate key.
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TABLE 10.1 SUMMARY OF NORMAL FORMS BASED ON PRIMARY KEYS AND CORRESPONDING

NORMALIZATION

NORMAL FORM TEST REMEDY (NORMALIZATION)

First (lNF)

Second (2NF)

Third (3NF)

Relation should have no nonatomic
attributes or nested relations.
For relations where primary key contains
multiple attributes, no nonkey attribute
should be functionally dependent on a part
of the primary key.

Relation should not have a nonkey attribute
functionally determined by another nonkey
attribute (or by a set of nonkey attributes.)
That is, there should be no transitive depen
dency of a nonkey attribute on the primary
key.

Form new relations for each nonatomic
attribute or nested relation.
Decompose and set up a new relation for
each partial key with its dependent
attributets). Make sure to keep a relation
with the original primary key and any
attributes that are fully functionally
dependent on it.
Decompose and set up a relation that
includes the nonkey attributets) that
functionally determinets) other nonkey
attributets).

Partial and full functional dependencies and transitive dependencies will now be consid
ered with respect to all candidate keys of a relation.

10.4.1 General Definition of Second Normal Form

Definition. A relation schema R is in second normal form (2NF) if every nonprime
attribute A in R is not partially dependent on any key of R.15

The test for 2NF involves testing for functional dependencies whose left-hand side
attributes are part of the primary key. If the primary key contains a single attribute, the
test neednot be applied at all. Consider the relation schema LOTS shown in Figure 10.11a,
which describes parcels of land for sale in various counties of a state. Suppose that there
are two candidate keys: PROPERTY_ID# and {COUNTY_NAME, LOT#}; that is, lot numbers are
unique only within each county, but PROPERTY_ID numbers are unique across counties for
the entire state.

Based on the two candidate keys PROPERTY_ID# and {cOUNTY_NAME, LOT#}, we know that
thefunctional dependencies FD1 and FD2 of Figure 1O.11a hold. We choose PROPERTY_ID#

as the primary key, so it is underlined in Figure 10.11a, but no special consideration will

15. This definition can be restated as follows: A relation schema R is in 2NF if every nonprime
attribute A in R isfullyfunctionally dependent on every key of R.
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FIGURE 10.11 Normalization into 2NF and 3NF. (a) The LOTS relation with its func
tional dependencies FDl through FD4. (b) Decomposing into the 2NF relations
LOTsl and LOTS2. (c) Decomposing LOTsl into the 3NF relations LOTsIA and LOTsIB. (d)
Summary of the progressive normal ization of LOTS.
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be given to this key over the other candidate key. Suppose that the following two
additionalfunctional dependencies hold in LOTS:

FD3: COUNTY_NAME ~ TAX_RATE

FD4: AREA ~ PRICE

In words, the dependency FD3 says that the tax rate is fixed for a given county (does
not vary lot by lot within the same county), while FD4 says that the price of a lot is
determined by its area regardless of which county it is in. (Assume that this is the price of
thelot for tax purposes.)

The LOTS relation schema violates the general definition of 2NF because TAX_RATE is
partially dependent on the candidate key {COUNTY_NAME, LOT#}, due to FD3. To normalize LOTS

into 2NF, we decompose it into the two relations LOTSl and LOTS2, shown in Figure 10.11b.
We construct LOTSl by removing the attribute TAX_RATE that violates 2NF from LOTS and
placing it with COUNTCNAME (the left-hand side of FD3 that causes the partial dependency)
into another relation LOTS2. Both LOTSl and LOTS2 are in 2NF. Notice that FD4 does not
violate 2NF and is carried over to LOTSl.

10.4.2 General Definition of Third Normal Form

Definition. A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X ~ A holds in R, either (a) X is a superkey of R, or (b)
A isa prime attribute of R.

According to this definition, LOTS2 (Figure lO.l1b) is in 3NF. However, FD4 in LOTSl

violates 3NF because AREA is not a superkey and PRICE is not a prime attribute in LOTSl. To
normalize LOTSl into 3NF, we decompose it into the relation schemas LOTSlA and LOTSlB

shown in Figure 10.11e. We construct LOTSlA by removing the attribute PRICE that violates
3NF from LOTSl and placing it with AREA (the left-hand side of FD4 that causes the
transitive dependency) into another relation LOTSlB. Both LOTSlA and LOTSlB are in 3NF.

Two points are worth noting about this example and the general definition of 3NF:

I LOTSl violates 3NF because PRICE is transitively dependent on each of the candidate
keys of LOTSl via the nonprime attribute AREA.

I This general definition can be applied directly to test whether a relation schema is in
3NF; it does not have to go through 2NF first. If we apply the above 3NF definition to
LOTS with the dependencies FD1 through FD4, we find that both FD3 and FD4 violate
3NF. We could hence decompose LOTS into LOTSlA, LOTSlB, and LOTS2 directly. Hence
the transitive and partial dependencies that violate 3NF can be removed in any order.

10.4.3 Interpreting the General Definition of
Third Normal Form

A relation schema R violates the general definition of 3NF if a functional dependency X
--tA holds in R that violates both conditions (a) and (b) of 3NF. Violating (b) means that



324 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

A is a nonprime attribute. Violating (a) means that X is not a superset of any key of R;
hence, X could be nonprime or it could be a proper subset of a key of R. If X is nonprime,
we typically have a transitive dependency that violates 3NF, whereas if X is a proper sub
set of a key of R, we have a partial dependency that violates 3NF (and also 2NF). Hence,
we can state a general alternative definition of 3NF as follows: A relation schema R is in
3NF if every nonprime attribute of R meets both of the following conditions:

• It is fully functionally dependent on every key of R.

• It is nontransitively dependent on every key of R.

10.5 BOYCE-CODD NORMAL FORM
Bovce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but it was found
to be stricter than 3NF. That is, every relation in BCNF is also in 3NF; however, a relation
in 3NF is not necessarily in BCNF. Intuitively, we can see the need for a stronger normal
form than 3NF by going back to the LOTS relation schema of Figure 1O.11a with its four
functional dependencies Fol through Fo4. Suppose that we have thousands oflots in the
relation but the lots are from only two counties: Dekalb and Fulton. Suppose also that lot
sizes in Dekalb County are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in
Fulton County are restricted to 1.1, 1.2, ... , 1.9, and 2.0 acres. In such a situation we
would have the additional functional dependency FD5: AREA --7 COUNTY_NAME. If we add this
to the other dependencies, the relation schema LOTSIA still is in 3NF because COUNTY_NAME is
a prime attribute.

The area of a lot that determines the county, as specified by Fo5, can be represented
by 16 tuples in a separate relation R(AREA, COUNTCNAME), since there are only 16 possible
AREA values. This representation reduces the redundancy of repeating the same
information in the thousands of LOTSIA tuples. BCNF is a stronger normal form that would
disallow LOTslA and suggest the need for decomposing it.

Definition. A relation schema R is in BCNF if whenever a nontrivial functional
dependency X --7 A holds in R, then X is a superkey of R.

The formal definition of BCNF differs slightly from the definition of 3NF. The only
difference between the definitions of BCNF and 3NF is that condition (b) of 3NF, which
allows A to be prime, is absent from BCNF. In our example, Fo5 violates BCNF in LOTsIA

because AREA is not a superkey of LOTslA. Note that Fo5 satisfies 3NF in LOTSIA because
COUNTY_NAME is a prime attribute (condition b), but this condition does not exist in the
definition of BCNF. We can decompose LOTSIA into two BCNF relations LOTSlAX and LOTS lAy,

shown in Figure 10.12a. This decomposition loses the functional dependency Fo2 because
its attributes no longer coexist in the same relation after decomposition.

In practice, most relation schemas that are in 3NF are also in BCNF. Only if X -1 A
holds in a relation schema R with X not being a superkey and A being a prime attribute
will R be in 3NF but not in BCNF. The relation schema R shown in Figure lO.l2b
illustrates the general case of such a relation. Ideally, relational database design should
strive to achieve BCNF or 3NF for every relation schema. Achieving the normalization
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FIGURE 10.12 Boyce-Codd normal form. (a) BCNF normal ization of LOTS1A with the
functional dependency FD2 being lost in the decomposition. (b) A schematic
relation with FDS; it is in 3NF, but not in BCNF.

status of just 1NF or 2NF is not considered adequate, since they were developed
historically as stepping stones to 3NF and BCNF.

As another example, consider Figure 10.13, which shows a relation TEACH with the
following dependencies:

FDl: {STUDENT, COURSE} ~ INSTRUCTOR

FD2: 16 INSTRUCTOR ~ COURSE

Note that {STUOENT, COURSE} is a candidate key for this relation and that the
dependencies shown follow the pattern in Figure 10.12b, with STUDENT as A, COURSE as B,
and INSTRUCTOR as C. Hence this relation is in 3NF but not BCNF. Decomposition of this
relation schema into two schemas is not straightforward because it may be decomposed
into one of the three following possible pairs:

1. {STUDENT, INSTRUCTOR} and {STUDENT, COURSE}.

2. {COURSE. INSTRUCTOR} and {COURSE, STUDENT}.

3. {INSTRUCTOR. COURSE} and {INSTRUCTOR, STUDENT}.

16. Thisdependency means that "each instructor teaches one course" is a constraint for this application.
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TEACH

[iTUDENT COURSE INSTRUCTOR

Narayan Database Mark

Smith Database Navathe

Smith OperatingSystems Ammar

Smith Theory Schulman

Wallace Database Mark

Wallace OperatingSystems Ahamad

Wong Database Omiecinski

Zelaya Database Navathe

FIGURE 10.13 A relation TEACH that is in 3NF but not BCNF.

All three decompositions "lose" the functional dependency F01. The desirable
decomposition of those just shown is 3, because it will not generate spurious tuples after a join.

A test to determine whether a decomposition is nonadditive (lossless) is discussed in
Section 11.1.4 under Property L] 1. In general, a relation not in BCNF should be
decomposed so as to meet this property, while possibly forgoing the preservation of all
functional dependencies in the decomposed relations, as is the case in this example.
Algorithm 11.3 does that and could be used above to give decomposition 3 for TEACH.

10.6 SUMMARY
In this chapter we first discussed several pitfalls in relational database design using intui
tive arguments. We identified informally some of the measures for indicating whether a
relation schema is "good" or "bad," and provided informal guidelines for a good design.
We then presented some formal concepts that allow us to do relational design in a top
down fashion by analyzing relations individually. We defined this process of design by
analysis and decomposition by introducing the process of normalization.

We discussed the problems of update anomalies that occur when redundancies are
present in relations. Informal measures of good relation schemas include simple and clear
attribute semantics and few nulls in the extensions (states) of relations. A good
decomposition should also avoid the problem of generation of spurious tuples as a result of
the join operation.

We defined the concept of functional dependency and discussed some of its
properties. Functional dependencies specify semantic constraints among the attributes of
a relation schema. We showed how from a given set of functional dependencies,
additional dependencies can be inferred using a set of inference rules. We defined the
concepts of closure and cover related to functional dependencies. We then defined
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minimal cover of a set of dependencies, and provided an algorithm to compute a minimal
cover. We also showed how to check whether two sets of functional dependencies are
equivalent.

We then described the normalization process for achieving good designs by testing
relations for undesirable types of "problematic" functional dependencies. We provided a
treatment of successive normalization based on a predefined primary key in each relation,
thenrelaxed this requirement and provided more general definitions of second normal form
(2NF) and third normal form (3NF) that take all candidate keys of a relation into account.
We presented examples to illustrate how by using the general definition of 3NF a given
relation may be analyzed and decomposed to eventually yield a set of relations in 3NF.

Finally, we presented Boyce-Codd normal form (BCNF) and discussed how it is a
stronger form of 3NF. We also illustrated how the decomposition of a non-BCNF relation
must be done by considering the nonadditive decomposition requirement.

Chapter 11 presents synthesis as well as decomposition algorithms for relational
database design based on functional dependencies. Related to decomposition, we discuss
the concepts of lossless (nonadditive) join and dependency preservation, which are enforced
by some of these algorithms. Other topics in Chapter 11 include multivalued
dependencies, join dependencies, and fourth and fifth normal forms, which take these
dependencies into account.

Review Questions
10.1. Discuss attribute semantics as an informal measure of goodness for a relation

schema.
10.2. Discuss insertion, deletion, and modification anomalies. Why are they considered

bad? Illustrate with examples.
10.3. Why should nulls in a relation be avoided as far as possible? Discuss the problem

of spurious tuples and how we may prevent it.
lOA. State the informal guidelines for relation schema design that we discussed. Illus

trate how violation of these guidelines may be harmful.
10.5. What is a functional dependency? What are the possible sources of the informa

tion that defines the functional dependencies that hold among the attributes of a
relation schema?

10.6. Why can we not infer a functional dependency automatically from a particular
relation state?

10.7. What role do Armstrong's inference rules-the three inference rules IRI through
IR3-play in the development of the theory of relational design?

10.8. What is meant by the completeness and soundness of Armstrong's inference rules?
10.9. What is meant by the closure of a set of functional dependencies? Illustrate with

an example.
10.10. When are two sets of functional dependencies equivalent? How can we determine

their equivalence?
10.11. What is a minimal set of functional dependencies? Does every set of dependencies

have a minimal equivalent set? Is it always unique?



328 I Chapter 10 Functional Dependencies and Normalization for Relational Databases

10.12. What does the term unnormalized relation refer to? How did the normal forms
develop historically from first normal form up to Boyce-Codd normal form?

10.13. Define first, second, and third normal forms when only primary keys are consid
ered. How do the general definitions of 2NFand 3NF, which consider all keys of a
relation, differ from those that consider only primary keys?

10.14. What undesirable dependencies are avoided when a relation is in 2NF?
10.15. What undesirable dependencies are avoided when a relation is in 3NF?
10.16. Define Boyce-Codd normal form. How does it differ from 3NF?Why is it consid

ered a stronger form of 3NF?

Exercises
10.17. Suppose that we have the following requirements for a university database that is

used to keep track of students' transcripts:
a. The university keeps track of each student's name (SNAME), student number

(SNUM), social security number (SSN), current address (SCADDR) and phone
(SCPHONE), permanent address (SPADDR) and phone (SPPHoNE), birth date (BOATE),

sex (SEX), class (CLASS) (freshman, sophomore, ... , graduate), major depart
ment (MAJORCODE), minor department (MINORCOOE) (if any), and degree program
(PROG) (B. A., B. S • , ••• , PH. D• ). Both SSSN and student number have unique val
ues for each student.

b. Each department is described by a name (DNAME), department code (DCOOE),

office number (DOFFICE), office phone (DPHONE), and college (OCOLLEGE). Both
name and code have unique values for each department.

c. Each course has a course name (CNAME), description (CDESC), course number
(CNUM), number of semester hours (CREDIT), level (LEVEL), and offering depart
ment (CDEPT). The course number is unique for each course.

d. Each section has an instructor (INAME), semester (SEMESTER), year (YEAR), course
(SECCOURSE), and section number (SECNUM). The section number distinguishes
different sections of the same course that are taught during the same semester/
year; its values are 1, 2, 3, ... , up to the total number of sections taught during
each semester.

e. A grade record refers to a student (SSN), a particular section, and a grade (GRADE).

Design a relational database schema for this database application. First show all
the functional dependencies that should hold among the attributes. Then design
relation schemas for the database that are each in 3NF or BCNF. Specify the key
attributes of each relation. Note any unspecified requirements, and make
appropriate assumptions to render the specification complete.

10.18. Prove or disprove the following inference rules for functional dependencies. A
proof can be made either by a proof argument or by using inference rules lRl
through IR3. A disproof should be performed by demonstrating a relation instance
that satisfies the conditions and functional dependencies in the left-hand side of
the inference rule but does not satisfy the dependencies in the right-hand side.
a. {W -7 Y, X -7 Z} F {WX -7 Y}
b. {X -7 Y} and Y :2 Z F {X -7 Z}



c. {X -7 Y, X -7 \v, WY -7 Z} F {X -7 Z}
d. {XY -7 Z, Y -7 W} F {XW -7 Z}
e. {X -7 Z, Y -7 Z} F {X -7 Y}
f. {X -7 Y, XY -7 Z} F {X -7 Z}
g. IX -7 Y, Z -7 W} F {XZ -7 YW}
h. {XY -7 Z, Z -7 X} F {Z -7 Y}
i. {X -7 Y, Y -7 Z} F {X -7 YZ}
j. {XY -7 Z, Z -7 W} F {X -7 W}

10.19. Consider the following two sets of functional dependencies: F = {A -7 C, AC -7
D, E -7 AD, E -7 H} and G = {A -7 CD, E -7 AH}. Check whether they are
equivalent.

10.20. Consider the relation schema EMP_DEPT in Figure lO.3a and the following set G of
functional dependencies on EMP_DEPT: G = {SSN -7 {ENAME, BDATE, ADDRESS, DNUMBER},

DNUMBER -7 {DNAME, DMGRSSNn. Calculate the closures {SSN}+ and {DNUMBER}+ with respect
toG.

10.21. Is the set of functional dependencies G in Exercise 10.20 minimal? If not, try to
find a minimal set offunctional dependencies that is equivalent to G. Prove that
your set is equivalent to G.

10.22. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of Figures
10.3 and lOA?

10.23. In what normal form is the LOTS relation schema in Figure 1O.11a with respect to
the restrictive interpretations of normal form that take only the primary key into
account? Would it be in the same normal form if the general definitions of normal
form were used?

10.24. Prove that any relation schema with two attributes is in BCNF.
10.25. Why do spurious tuples occur in the result of joining the EMP_PROJI and EMP_ LaCS

relations of Figure 10.5 (result shown in Figure 1O.6)?
10,26. Consider the universal relation R = {A, B, C, D, E, F, G, H, I,}} and the set of func

tional dependencies F = HA, B} -7 {C}, {A} -7 {D, E}, {B} -7 {F}, {F} -7 {G, H},{D}-7
{I, }n. What is the key for R? Decompose R into 2NFand then 3NFrelations.

10,27. Repeat Exercise 10.26 for the following different set of functional dependencies
G = HA, B} -7 {C}, {B, D} -7 {E, F}, {A, D} -7 {G, H}, {A} -7 {l}, {H} -7 {l}}.

10,28, Consider the following relation:

A B C TUPLE#

10 b1 c1 #1
10 b2 c2 #2
11 b4 c1 #3
12 b3 c4 #4
13 b1 c1 #5
14 b3 c4 #6
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a. Given the previous extension (state), which of the following dependencies
may hold in the above relation? If the dependency cannot hold, explain why by
specifying the tuples that cause the violation.

i. A ~ B, ii. B~ C, iii. C ~ B, iv. B~ A, v. C ~ A

b. Does the above relation have a potential candidate key? If it does, what is it? If
it does not, why not?

10.29. Consider a relation R(A, B, C, D, E) with the following dependencies:

AB ~ C, CD ~ E, DE ~ B

Is AB a candidate key of this relation? If not, is ABD? Explain your answer.
10.30. Consider the relation R, which has attributes that hold schedules of courses and

sections at a university; R = {CourseNo, SecNo, OfferingDept, Credit-Hours,
CourseLevel, InstructorSSN, Semester, Year, Days_Hours, RoomNo, NoOfStu
dents}. Suppose that the following functional dependencies hold on R:

{CourseNo} ~ {OfferingDept, CreditHours, CourseLevel}

{CourseNo, SecNo, Semester, Year} ~ {Days_Hours, RoomNo, NoOfStudents,
InstructorSSN}

{RoomNo, Days_Hours, Semester, Year} ~ [Instructorssn, CourseNo, SecNo}

Try to determine which sets of attributes form keys of R. How would you
normalize this relation?

10.31. Consider the following relations for an order-processing application database at
ABC, Inc.

ORDER (0#, Odate, Cust», Totaljimount)

ORDER-ITEM(O#, 1#, Qty_ordered, Totaljprice, Discount%)

Assume that each item has a different discount. The TOTAL_PRICE refers to one
item, OOATE is the date on which the order was placed, and the TOTAL_AMOUNT is the
amount of the order. If we apply a natural join on the relations ORDER-ITEM and
ORDER in this database, what does the resulting relation schema look like? What
will be its key? Show the FDs in this resulting relation. Is it in 2NF? Is it in 3NF!
Why or why not? (State assumptions, if you make any.)

10.32. Consider the following relation:

CAR_SALE(Car#, Date_sold, Salesmans, Commission%, Discountjamt)

Assume that a car may be sold by multiple salesmen, and hence {CAR#, SALESMAN#}

is the primary key. Additional dependencies are

Date_sold ~ Discountjimt

and

Salesman# ~ Commission%

Based on the given primary key, is this relation in INF, 2NF, or 3NF? Why or why
not? How would you successively normalize it completely?
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10.33. Consider the following relation for published books:

BOOK (Book_title, Authorname, Booktvpe, Listprice, Author_affil, Publisher)

Author_affil refers to the affiliation of author. Suppose the following dependencies
exist:

Book_title ~ Publisher, Book_type

Book_type ~ Listprice

Authorname ~ Author-affil

a. What normal form is the relation in? Explain your answer.
b. Apply normalization until you cannot decompose the relations further. State

the reasons behind each decomposition.
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