

Computer Science Department

Computer Security – COMP 432

Group No: 10

………………………………………………………………………………………

UNIX OS Security

Name & ID:

• Ahmad Aljamal 1150409

• Mohammad Alqyeem 1150357

• Wafaa Abdel Mohdi 1151709

Instructor: Dr. Hafez Barghouthi

• Abstract:

In this paper we’ll cover some of the services provided by UNIX based

operating systems and how these services are implemented in the UNIX family of

operating systems.

• Introduction:

The operating system of a computer or a network is the core of all

communications and functionality, and since the operating system controls all of

the resources and data on the system, and securing operating system security is a

crucial component of an overall security program, and the prevalence of malware,

viruses and root kits, increased the importance of OS security, and because of the

major consequences that result if system has been attacked, like none of the key

functions the OS does will be available and data would be compromised.

Since more than 64.9% of the Servers that run the internet are running

Unix/Linux and more than 40.41% Desktop/Laptop run on a Linux kernel,

Unix/Linux security is a hot topic.

Since the operating system controls a wide range of functionalities from local

operation and encryption to networking and processes handling, to have a secure

operating system, the OS should handle all of these aspects to ensure full security

 • Literature:

In UNIX there are several layers of interaction which are occurring between

the computer hardware and the user. The first layer is kernel, which runs on the

actual machine hardware and deals with all the connections with the hardware. All

the commands and applications in UNIX relate with the kernel, rather than the

hardware directly.

The hardware constitutes the second layer. On top of the applications and

commands is the command-interpreter program, there is another layer which is

called shell which interacts between user, user’s applications, and the existing

UNIX commands.

Under the UNIX, the operating system consists of many of the utilities along

with the master control program, the kernel. The kernel is a powerful program

which helps the UNIX to start or stop program and handle the file system and other

common lower level tasks which every programs shares.

 • Discussion:

I. Identification & Authentication

The operating system must be able to distinguish between different users, and

verify users claimed identities. Identification and authentication are important to

other services in the system. Passwords are by far the most common authentication

method in UNIX based operating systems.

UNIX based operating systems identify and authenticate users according to

username/password. The OS provides restriction on passwords which have to be at

least 8 characters; it stores passwords in an encrypted form using a modified

version of DES algorithm in a file (/etc/passwd) according to the following format:

username:encrypted password:UserID:GroupID:user’s full name:home

directory:login shell.

Because the /etc/passwd file is available to all users on the system this would make

the system vulnerable to brute-force attacks, that’s why UNIX now implements

shadow passwords which doesn’t directly store the password in a user accessible

file. Instead the system stores the password in /etc/shadow which can only be read

by the root (some distributions add Password aging).

II. Access control

Standard UNIX systems prevent the unauthorized use of system resources (e.g.,

files, memory, devices, etc.) by promoting discretionary access control.

Permissions are divided into three categories: owner, group, and other. However,

privileged accounts can bypass this access control. UNIX treats all system

resources consistently by making no distinction between files, memory, and

devices; all resources are treated as files for access control purposes (this is UNIX

philosophy).

The UNIX file system has a tree structure, with the top-level directory designated

as “/”. Some of the second-level directories are standards. For example, “/bin”

contains system executable, “/dev” contains devices, “/usr” contains user files, etc.

Each directory contains a pointer to itself (the ‘.’ file) and a pointer to its parent

directory (the ‘..’ file) these created when creation of this directory (executing

mkdir command). In the top-level directory, the ‘..’ file points to the top-level

directory. Every file (and directory) has an owner, a group, and a set of

permissions. UNIX identifies block devices (e.g., disks) with the letter ‘b’ and

character devices (e.g., modems, printers) with the letter ‘c’.

When a user or process creates a new file, the file is given default permissions

(default mask or mode). For a process-created file, the process specifies the default

permissions. For user-created files, the default permissions are specified in the

startup file for the user’s shell program. File owners can change the permissions

(or mode) of a file by using the umask command.

Every file and every directory has 3 types of access, being read access, write

access and execute access for 3 types of groups: user, group and other. The first

group is the group of the owner of the file. The second group contains access rights

for a group of users. The third set of access rights is for any other user (not being

the owner and not belonging to the group having access rights to the file or

directory). These types have the following values:

• Read access value 4

• Write access value 2

• Execute access value 1

Password commands “passwd” is a magic command, because it sets password for

any user even the shadow file is for root; it has “s” in the permission in the user

domain “rws--xr-x”, this will make the effective uid will be equal to root, if “s” put

in group domain “rwx--sr-x” so effective gid will be equal to admin.

Another use of this technique, if you write a command has “s” in group domain, so

the same group members can use it to write to each other terminals, but writing

directly blocked. So this technique can be exploited as vulnerability, to hack a

specific user & takes control or stole data.

• Changing file ownership

Changing user or group ownership of a file is done with the GNU chown

command (change owner). The owner of or any member of group of owners of the

file can do any of the three access modes. Although both types of ownership are

changed with the same command, they are independent of each other. E.g. you

need not be a member of the group that owns the file in order to be able to change

it. Your own group will be considered as "other", and if permissions allow, you can

change the file.

User and group ownership can be changed in one command:

chown newuser:newgroup file

• The root user

So every file is owned by somebody. And so is every process. If you want to

handle a file or a process, you have to be the owner. It is clear that some actions

need to be undertaken to circumvent this situation. Who will clean up the mess?

Who will modify the system files and services? On a UNIX system, this force is

called the "super user" or "root".

The root account should always be protected with a password, and the root

user is not obliged in any way to communicate this to the other users. This prevents

people from reading each other’s mail, from harassing other people and generally

prevents a great deal of accidents.

The root user (system administrator) should only use the root status when

necessary, and only when concentrated. Root status gives full control over the

system, so you should be careful when "being" root. Should you need to become

root, always log in as a normal user and then use the “su -“ (switch user)

command, which will give you root status when no options are given.

III. Availability & Integrity

One aspect of availability is whether a system restarts securely after failure.

Traditional UNIX systems boot in single-user mode, usually as root. And,

unfortunately, single-user mode allows literally anyone sitting at the system

console to execute privileged commands. Thus, single-user mode represents

security vulnerability in traditional UNIX. Depending on the flavor of UNIX, the

security administrator has one or two options for closing this hole. First, if the

operating system supports it, the security practitioner should configure the system

to require a password before booting in single-user mode. Second, tight physical

controls should be implemented to prevent physical access to the system console.

System restarts are also relevant to system integrity. After an improper

shutdown or system crash, the UNIX fsck command will check file systems for

inconsistencies and repair them (either automatically or with administrator

interaction). Using the fsck command, an administrator can detect unreferenced

inodes, used disk blocks listed as free blocks, etc.

Although there are many ways to supplement UNIX file system integrity, one

method has become so popular that it deserves to be mentioned here. Developed by

Gene Kim and Gene Spafford of Purdue University, Tripwire is an add-on utility

that provides additional file system integrity by creating a signature or message

digest for each file to be monitored. Tripwire allows administrators to specify what

files or directories to monitor, which attributes of an object to monitor, and which

message digest algorithm (e.g., MD5, SHA, etc.) to use in generating signatures.

When executed, Tripwire reports on changed, added, or deleted files. Thus, not

only can Tripwire detect Trojan horses, but it can also detect changes that violate

organizational policy.

IV. Audit

What to do when the system security bypassed? Can we know who did it?

Unix OS stores every security relevant event in the log files, if any suspicious

of attacking signs found, then these log files can be checked for any suspicious

actions that were done lately.

These log files can help reduce the attacking possibility because the attacker

knows that the events are recorded and he will not take the risk of exposing his

identity unless he is an expert. Also these files can be used for investigation any

incidents and can be used as legal evidence in criminal trials.

The log files can be located on the system such as the directory /var/log/

which contains all log files, note that the location of the log files can be different

depending on the Linux distribution used.

Some example of the log files:

 lastlog: records the last time a user logged in

 utmp: records information of the current logged in users and the status of the

system

 btmp: records failed login attempts

 sulog: records all attempts to execute the su command

V. Security facilities for users

Of course each user on the system wants to be left alone and deny other users

from configuring his files or create some files in the user directories that the user

does not need. In order to do that, UNIX provides each file with its own permission

and the user that created it, so each user is responsible of his files, and the user also

cannot configure any files on other users’ directories unless the other users want to.

These configuration are applied to the normal users, the commands (chmod,

passwd) are used to change the files permission and to change the user password.

Any OS must have an administrative account that can configure the system to

what it is needed, Unix provides one administrative account called “root” account

that have all privileges on the system that can do:

 Changing files permissions

 Delete any file

 Control users accounts

 Execute any program

 Shutdown the system

 etc.

If the system was been attacked and the attacker was able to access the root

account, then the attacker has all the permissions that is needed to do whatever he

wants on the system, this violates the separation of duties principle. Also when

having the access of the root account, the OS will not ask for authorization when

doing some actions, which violates the complete mediation principle.

• Conclusion

Traditional UNIX implements some of the components of operating systems

security to varying extents. It has much well-known vulnerability; out-of-the box

configurations should not be trusted. Furthermore, add-on security tools can

supplement core UNIX services. With proper configuration, a UNIX system can be

reasonably protected from would-be intruders or attackers.

Designing and implementing a truly secure program is actually a difficult task.

The difficulty is that a truly secure program must respond appropriately to all

possible inputs and environments controlled by a potentially hostile user.

Developers of secure programs must deeply understand their platform, seek and

use guidelines ,and then use assurance processes (such as inspections and other

peer review techniques) to reduce their programs’ vulnerabilities.

 • References

 "How Unix Security Works". Tille.garrels.

 “INTRODUCTION TO UNIX SECURITY FOR SECURITY PRACTITIONERS”. Jeffery J.

Lowder.

 https://www.ukessays.com/essays/information-technology/importance-of-unix-

operating-system-information-technology-essay.php

https://www.ukessays.com/essays/information-technology/importance-of-unix-operating-system-information-technology-essay.php
https://www.ukessays.com/essays/information-technology/importance-of-unix-operating-system-information-technology-essay.php

