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The emergence of the digital world has greatly increased the number of accounts and
passwords that users must remember. It has also increased the need for secure access
to personal information in the cloud. Biometrics is one approach to person recognition,
which can be used in identification as well as authentication. Among the various
modalities that have been developed, electroencephalography (EEG)-based biometrics
features unparalleled universality, distinctiveness and collectability, while minimizing the
risk of circumvention. However, commercializing EEG-based person recognition poses
a number of challenges. This article reviews the various systems proposed over the
past few years with a focus on the shortcomings that have prevented wide-scale
implementation, including issues pertaining to temporal stability, psychological and
physiological changes, protocol design, equipment and performance evaluation. We also
examine several directions for the further development of usable EEG-based recognition
systems as well as the niche markets to which they could be applied. It is expected
that rapid advancements in EEG instrumentation, on-device processing and machine
learning techniques will lead to the emergence of commercialized person recognition
systems in the near future.

Keywords: electroencephalography (EEG), biometrics, person recognition, person authentication, person
identification

INTRODUCTION

Biometrics is regarded as a promising alternative to conventional ID cards, keys and passwords
in ubiquitous access control systems. This approach provides high commonality, uniqueness,
easy acquisition, persistence, portability and resistance to fakery. Biometrics involves quantifying
the physical, biological, or behavioral characteristics of individuals, such as fingerprints, iris and
retina scans, facial recognition, voice recognition, signatures, palm prints, hand geometry and gait.
However, physical traits suffer the risk of violent snatch, whereas explicit behaviors can be observed
and imitated. Furthermore, the discriminatory information of fingerprints (the most widely-used
biometric trait), has not yet been fully exploited, and its admissibility for trials has been challenged
due to the possibility of falsification (Pankanti et al., 2002).

In the late 1990’s, electroencephalography (EEG) was discovered to carry genetically-specific
information. The potential of EEG-based biometrics was demonstrated through the successful
identification of individuals using features extracted from EEG data acquired during resting
states (Poulos et al., 1999a,b,c, 2002). The persistence of individual characteristics in EEG data
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has yet to be investigated; however, it has the inherent advantage
of implicit features, which are difficult to forge. Most efforts
into EEG research have focused on understanding how the brain
works, the identification of biomarkers, and the construction
of brain-computer interfaces (BCIs). BCI systems bypass the
motor pathway to establish direct communication between
machines and humans. Discriminative features are extracted
from EEG signals and classified into various mental states,
which are then associated with corresponding control commands
for machines. Thus, extracted features should be universally
shared within the user population to accommodate inter-subject
variation. Conversely, EEG-based identification systems aim to
differentiate among individuals performing the same requested
task. In this case, any discrepancies in the extracted features tend
to facilitate the recognition of individual identities.

EEG-based biometrics are applicable to person recognition
applications, including identification (Palaniappan and Ravi,
2006; Miyamoto et al., 2008; Hu, 2009; Nakanishi et al., 2009;
Fraschini et al., 2015; Rahman and Gavrilova, 2016) and
authentication (Marcel and Millán Jdel, 2007; Zúquete et al.,
2010; Ashby et al., 2011; Klonovs et al., 2013; Mohanchandra
et al., 2013; Yeom et al., 2013; Soni et al., 2016; Nguyen et al.,
2017; Thomas and Vinod, 2017) systems. Personal identification
systems predict the identity of a user from among all enrolled
clients, whereas authentication systems validate the identity
claimed by a user. Despite differing purposes, both systems
make decisions based on the EEG features of the user and
all clients in the database and therefore share the following
four components: a database, an EEG acquisition system, a
signal preprocessing system, and a feature extraction system
(Figure 1). Most identification systems train classifiers to find
the best candidate using 1-to-N matching (where N denotes
the number of enrolled clients; Poulos et al., 1999c), whereas
most authentication systems construct personal classifiers for
each client in the database and verify each claim based on the
corresponding classifier using 1-to-1 matching (Karthikeyan and
Sabarigiri, 2011). To reduce vulnerability to fraud, identification
systems can classify intruders as a predefined class using
1-to-(N + 1) matching, and authentication systems can set a
threshold in each personal classifier for the rejection of invalid
claims.

The performance of EEG-based person recognition systems
relies on the design of signal acquisition protocols (Hema
et al., 2008), feature extraction methods (Lin et al., 2011)
and classification techniques (Palaniappan and Ravi, 2006).
Previous reviews (Campisi and Rocca, 2014; Del Pozo-Banos
et al., 2014; Abo-Zahhad et al., 2015) have reported on state-
of-the-art methods and issues pertaining to the design of
each component used in EEG-based biometric systems. As
outlined in Yang and Deravi (2017), the overall usability
of existing EEG-based biometric systems has been increasing
steadily since 2010. However, these systems are still far from
commercialization. Our goal in this study was to review recent
EEG-based biometric systems and address the gaps impeding
their implementation as practical identification or authentication
systems. We also outline future perspectives for the deployment
of EEG traits in biometric systems. The remainder of

this article is divided into four major sections. Section
‘‘Advantages of EEG-Based Person Recognition’’ describes the
advantages and potential of EEG-based biometrics in person
recognition. Challenges associated with the development of an
applicable EEG-based person recognition system are discussed
in section ‘‘Challenges of EEG-Based Person Recognition.’’
Section ‘‘Future Directions’’ presents suggestions and research
directions for future work. Conclusions are drawn in the section
‘‘Conclusion.’’

ADVANTAGES OF EEG-BASED PERSON
RECOGNITION

The use of biometrics to identify individuals or authenticate
a personal identity requires measurable physical or behavioral
characteristics capable of satisfying the following considerations:
universality, distinctiveness, collectability, circumvention,
permanence, acceptability and performance (Zhang, 2000; Abo-
Zahhad et al., 2015). As a potential biometric trait, EEG signals
not only satisfy the first four considerations, they are superior
to other biometric traits in this regard. The acceptability,
non-invasiveness and privacy afforded by this type of data
acquisition makes EEG-based biometric systems a strong
contender for widespread public acceptance, as outlined in the
next subsection. However, the permanence and performance of
EEG-based biometrics is still under research, as discussed in the
next section.

Universality
Many biometric traits are unsuited to people with specific
diseases or disabilities. Speech-impaired users are unable to use
voice-based biometric systems, and those without hands are
unable to use fingerprint-based systems. In contrast, all human
brains are composed of neurons that produce electrical activity,
which can be read as EEG signals. These signals are accessible in
individuals of any age and anymental state, including a vegetative
state (Kulkarni et al., 2007) or coma (Young, 2000).

Distinctiveness
Previous studies have demonstrated the high recognition
accuracy of EEG biometrics within a small group of people. La
Rocca et al. (2014) proposed a person identification system using
functional connectivity during eye-closed (EC) and eye-open
(EO) conditions as features. They achieved 100% recognition
accuracy among 108 subjects. The CEREBRE system proposed
by Ruiz-Blondet et al. (2016) integrates EEG features contributed
by various functional brain systems. They achieved 100%
recognition among 50 subjects. Thomas and Vinod (2017)
proposed a person authentication system using the power
spectrum density (PSD) of resting-state EEG signals as features.
They achieved an equal error rate (EER) of just 0.008 among
70 subjects. However, the distinctiveness of EEG characteristics
among a large population has yet to be investigated. Research
into this topic would require the collection of data from many
subjects as well as collaboration between research groups. This,
in turn, requires the means by which to share data efficiently, as
discussed in section ‘‘Data Sharing.’’
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FIGURE 1 | Architecture of person identification and person authentication systems based on electroencephalography (EEG) biometrics.

Collectability
EEG is widely used in clinical applications due to its portability
and affordability, compared to other neuroimaging technologies.
Unfortunately, EEG signals are recorded using electrodes
attached to the scalp using conductive paste to reduce skin
impedance, which can be time-consuming and inconvenient for
routine biometric procedures. Recent advances in materials and
electronic technologies have led to the development of numerous
dry EEG electrodes. These gel-free technologies expand the
applicability of EEG beyond the clinic. Researchers have also
demonstrated that the performance of dry electrodes is on par
with that of conventional wet electrodes.

Circumvention
Many conventional biometrics are easily forged or collected
without one’s consent. Fingerprints can be stolen from a cup
that the user has held and voices and faces can be recorded in
secret. However, to the best of our knowledge, no technique
has been developed to enable the reproduction of brainwaves.
Furthermore, recording the brainwaves of subjects requires
their agreement and cooperation. Even if an individual were to
be coerced into allowing recording of their brainwaves, their

subsequent negative emotions would produce brainwaves that
differ from the templates in the database, leading to rejection by
the system.

Some existing biometrics, such as fingerprints and iris
and facial scans, are non-cancelable and have a limited
number of features. If a system using these biometrics was
compromised, then the users may run out of biometric features,
leaving them unable to provide alternative data for person
recognition. Conventional systems using IDs and passwords can
be implemented with password expiration policies, password
constraints and user IDs. However, differences among systems
can make it difficult for users to remember their personal
information. When users are forced to write down their
passwords, the system is rendered vulnerable to attack. In
EEG-based biometric systems, the EEG acquisition protocols can
be adjusted in order to take advantage of a variety of biometric
features. It also prevents the leakage of information pertaining to
personal identification and authentication by users.

Friendly Privacy
Facial images and fingerprints can often be obtained without
the consent of subjects, but this is not the case for brainwaves.
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Tracing an individual based on facial images, signatures, or
voices is elementary, but EEG data is difficult to obtain. Even if an
EEG data storage system were compromised, it would be difficult
to find the true identity of a person based on the features of his
EEG data. This greatly enhances the security of enrolled clients.

CHALLENGES OF EEG-BASED PERSON
RECOGNITION

As described in the previous section, EEG-based biometrics are
a feasible alternative to existing methods of person recognition,
providing a high level of security. Several studies have reported
that EEG-based identification and authentication systems are
capable of high recognition accuracy and high permanence;
however, many of these systems were evaluated under unrealistic
conditions. In the following section, we outline a number of
challenges that must be dealt with to improve usability and
practicability.

Operations
The most daunting challenges in the implementation of
EEG-based biometrics systems lie in their operation. Most
previous EEG experiments have been conducted in laboratories
where subjects participated only once or a few times. In reality,
however, most biometrics systems are used in a very different
way. The system is often accessed repeatedly every day over a
period of several years. Thus, attracting users depends on system
reliability (discussed in the following sections), as well as ease
of use with regard to devices and protocols. Furthermore, the
universality of the system requires that protocols be easy and
efficient to be performed and applicable to all users including
those with physical disabilities. A usable systemmust be free from
devices that require extensive or complicated setup. Finally, it
must be possible for users to operate the system on their own,
that is, without the need for an operator.

Stability of System Performance
A usable person authentication or identification system must
have the ability to recognize enrolled clients, even when they
return days, weeks, or years later. In the study of Marcel
and Millán Jdel (2007), the half total error rate (HTER)
of EEG-based authentication system increased from 7.1 to
36.2 within just 3 days. This trend was also observed in the
study of Hu et al. (2011), where the performance of the
identification system was evaluated over various time spans.
The true positive rate (TAR) after a 1-day span was 94.60%;
however, this dropped to 83.64% after a span of 1 week and
to 78.20% after 6 months. In our previous work on person
recognition using finger-lifting EEG data (Cheng, 2013), the
classifier trained using data acquired in the previous days
showed fluctuations in the classification recognition rate (CRR)
when tested using newly acquired data, as shown in Figure 2.
These studies demonstrate the problem of template aging
(Yang and Deravi, 2017), in which the performance of an
EEG-based biometric system degrades over time. Few studies
have examined the stability of their systems over long spans

FIGURE 2 | Longitudinal variations in correct recognition rate (CRR) using
two-stage person identification system with/without incremental learning,
depicted by orange diamonds and blue triangles, respectively (figure depicted
according to the results of self-paced finger movement experiment presented
in our previous work, Cheng, 2013).

of time. Table 1 lists previous person identification systems
alongside a longitudinal examination of their performance over
spans exceeding 100 days.

Robustness to Psychological and
Physiological Changes
Achieving stable high recognition accuracy requires that the
EEG traits selected as biometric features have high stability and
repeatability over time and under a variety of conditions. This
is complicated by constant changes in brainwaves over time.
EEG-based biometric features are extracted from event-related
potentials (ERPs; Marcel and Millán Jdel, 2007; Cheng, 2013;
Armstrong et al., 2015) and resting-state recordings (Hu et al.,
2011; Kostílek and Št’astný, 2012; Maiorana et al., 2016). The
accumulated evidence indicates that ERP and resting-state EEG
signals reflect the influences of intrinsic or extrinsic factors, such
as aging (Dushanova and Christov, 2014; Sleimen-Malkoun et al.,
2015; Kropotov et al., 2016), pain (Schulz et al., 2012), diseases
(Jeong, 2004; Han et al., 2013), mental states (Al-Shargie et al.,
2016) and emotional states (Lee and Hsieh, 2014; Iacoviello et al.,
2015). A good biometric system should be robust to the above
conditions; otherwise, enrolled clients may be rejected by the
system when they are under stress, pain, or other emotions. To
the best of our knowledge, no previous study has addressed the
stability and robustness of EEG-based biometric features under
relevant-to-life conditions.

Equipment
The equipment used in EEG-based systems plays an important
role when moving out of the laboratory into real-world
applications. Recent devices based on dry electrodes provide
a good solution to EEG-based biometrics systems; however,
the quality of the data is somewhat limited. Differences in the
characteristics of data acquired from wet and dry electrodes
(Guger et al., 2012) means that the extraction methods
devised for one system are not necessarily applicable to the
other. Furthermore, the wireless transfer of data (such as
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Bluetooth) can greatly undermine security. To achieve high
precision recognition, the required computing power of modern
machine learning techniques is generally high. To build an
on-device system, the EEG-based person recognition can only
be implemented in high-end consumer products, such as
smartphone and laptop, which may ensure privacy but leads to a
high cost. Considering the development of artificial-intelligence
chips, the cost of on-device processing continues decreasing.
The recognition system is also possible to work with cloud
computing, on condition that the security and privacy issues of
data transfer are carefully considered.

User Databases
Databases impose four basic challenges: (1) number of users: as
the number of subjects increases, it becomes increasingly difficult
for the system to accurately classify users. Previous studies have
used between 3 and 120 participants. Applying these methods
to larger populations may require the sharing of databases.
(2) Variations among users: a system for general use should
be accessible to a wide variety of subjects; therefore, factors,
such as age and sex, must be taken into account by researchers
when recruiting users. (3) Variations at the individual level: most
previous studies collected data from individual subjects once
only. However, as mentioned previously, the brain changes over
time and one’s mental state can have a tremendous influence
on brain activity. These changes could result in differences
between the data used for training and that used for testing. A
usable system must be able to capture features that remain stable
over long durations. This can only be verified by data collected
from the same user several times over an extended period of
time. (4) Consideration of intruders: incoming clients can be
categorized as legal clients, imposters and intruders (Riera et al.,
2007). Legal clients should be correctly identified by the system.
Intruders are individuals without any data stored in the database
and should be rejected by the system. Imposters are individuals
posing as legal clients with data in the user database but they
claim their identities as other legal clients.

Protocol Design
Several protocols have been used for EEG systems, such as
non-task (resting state; Poulos et al., 1999c, 2002; Paranjape
et al., 2001; Mohammadi et al., 2006; Qinglin et al., 2010; Su
et al., 2010; Hu et al., 2011), motor and motor imagery tasks
(Shiliang, 2008; Hu, 2009; e.g., hands movement), tasks with
sensory inputs (e.g., visual/auditory stimuli; Palaniappan and
Mandic, 2005; Palaniappan and Ravi, 2006; Malinka et al., 2011)
and cognitive tasks (Marcel and Millán Jdel, 2007; Touyama
and Hirose, 2008; Das et al., 2009). Cognitive tasks include
those involving counting, problem-solving, mental rotations,
letter composing/reading/spelling, memory retrieval and object
recognition. Previous studies have found that the brain activation
patterns and networks in the resting-state brain are reproducible
(Kuntzelman and Miskovic, 2017), such that this would make
a suitable protocol for biometric systems. Generally, protocols
involving tasks are more reproducible than those without
tasks, such as resting-state brain signals. Furthermore, protocols
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that involve simple tasks based on sensory inputs are more
reproducible than those with complex tasks requiring cognitive
processing. However, there is a tradeoff between reproducibility
and distinctiveness. Protocols capable of evoking brain activity
patterns with personal characteristics are regarded as particularly
suitable. Brain activity patterns generated during cognitive tasks
are distinctive between individuals, which makes them useful
in biometric systems; however, these tasks also tend to be
time-consuming. Another consideration for protocol design
is the repetition effect or neural adaptation, which is the
physiological phenomenon induced by repeated stimuli. One
way to prevent the neural adaptation is to track the changes
of the responses or to use relatively stable characteristics
of the signals. For example, although the peak latency and
amplitude of visual response may be reduced, the duration
of neural activity related to visual processing is not affected
by repeated stimuli (Noguchi et al., 2004). Another way to
prevent adaptation is to change the contents of stimuli. For
example, previous study has adopted emotional faces and
found the adaptation can be reduced, comparing to the use
of neutral faces in face identification tasks (Gerlicher et al.,
2014).

Performance Evaluation
Once the systems have been developed, researchers report on
the accuracy of their systems compared to existing systems.
Unfortunately, the lack of standardized evaluation methods by
which to obtain an objective evaluation of performance makes
such comparisons difficult. Furthermore, most studies report
only on recognition accuracy and omit many essential details.

In the following text, we address some of the issues pertaining
to evaluation: (1) testing data should be independent or nearly
independent from the training data. Most previous studies have
applied leave-one-out or k-fold cross-validation for evaluation.
When using cross-validation methods, the means by which
data is partitioned can have a significant effect on the results.
Conducting realistic simulations requires separating training
and testing data according to the time at which the data was
recorded, rather than simply imposing a random partition. A
more rigorous approach would be to formulate one training
set and then apply the model to an independent testing set
for evaluation. The means by which the model parameters
were determined should also be clearly reported. A number of
studies have reported results only after tuning the parameters
for cross-validation, thereby imposing bias. Testing should be
performed using parameters determined exclusively by training
data. (2) Additional indices of performance should be reported.
Accuracy can be represented as TAR; however, the false positive
rate (FAR) is particularly important when the system is used for
authentication.When TAR and FAR are both taken into account,
receiver operating characteristic (ROC) curves can be plotted to
assist in determining the system threshold. (3) It is important
that researchers report the duration of the EEG data used or the
information transfer rate (ITR). The signal-to-noise ratio (SNR)
can be increased by averaging a larger number of epochs due to
the whitening property of the noise. However, a larger number
of epochs implies that more time is required for data acquisition,

which is an important consideration in biometric systems. (4) In
studies with a small sample size, the accuracy of results should be
tested using statistical methods that take the size of the sample
as well as variations between subjects into account. For example,
with less testing data, the chance level for two-class classification
is not precisely 50% (Kuntzelman and Miskovic, 2017). It is for
this reason that conventional parametric methods, such as the
t-test, are applied against the null hypothesis. Determination
of whether accuracy is significantly high requires calculation
of confidence intervals at a significant level that depends on
the number of trials. Moreover, non-parametric methods such
as permutation tests enable better statistical inference than do
parametric methods (Maris and Oostenveld, 2007), due to the
fact that they are not based on assumptions pertaining to the
distribution of the data.

Uniqueness of EEG Traits Among Twins
and Relatives
Previous studies have demonstrated that some EEG features
are highly heritable, including band power, alpha frequency,
alpha-peak latency, P300 amplitude and P300 latency (van
Beijsterveldt and van Baal, 2002; Smit et al., 2006). Moreover,
oscillations in the occipital areas have higher heritability than do
those in frontal areas (Zietsch et al., 2007). Heritable EEG traits
are less susceptible to developmental plasticity and individual
experience (Smit et al., 2006). Due to their high stability, heritable
EEG traits are potential candidates for biometric features;
however, these genetically determined traits tend to present
a high degree of similarity between twins or among relatives
(Stassen et al., 1987), thereby undermining the distinctiveness
of the system. Thus, user databases should include twins and
relatives in order to evaluate distinctiveness during performance
evaluations.

FUTURE DIRECTIONS

In the previous two sections, we discuss the advantages of
EEG-based person recognition and describe some of the issues
that must be dealt with in the development of a usable system. In
this section we provide suggestions with regard to future research
to overcome these issues.

User-Friendly Design
A user-friendly EEG biometric system can really only be
achieved using a small number of dry electrodes. Electrodes
with conductive gel are acceptable only in cases where there
are only a few channels. The forehead is a suitable location for
the placement of electrodes, as this facilitates attachment and
removal without the hindrance of hair. The number and the
placement of electrodes can be further determined by the tasks.
More EEG channels can be deployed when using dry electrodes,
as in the headset produced by Cognionics or EMOTIV. This
kind of headset provides wearable form factors which can be
setup in a fast and easy way. Ear-EEG is another comfortable
approach by which the EEG can be acquired from the electrodes
placed on an earpiece (Mikkelsen et al., 2015). However, the
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qualities of signals measured by these novel modalities need
further improvement before they can be practically applied.
A practical EEG biometric system requires that the protocols
be: (1) accessible; (2) time-efficient; (3) reproducible; and
(4) practice-free (that is, user does not need to practice
operation of the system). Time-efficiency is essential and
is evaluated by the time for both data acquisition and
analysis. Due to the recent advancement of computational
capacity for data analysis, the bottleneck usually occurs in
the data acquisition procedure in which the EEG signals
are recorded for a period of time to increase the SNR.
However, our previous work has shown that the accuracy
can achieve 85.5% using single trial data (about 1 s per
trial) and even 94.7% using the average of two trials (Cheng,
2013). Reproducibility refers to the situation in which brain
signals corresponding to particular tasks remain invariant
(within the same subject) across several trials and/or over
time. Practice-free implementation is based on brain activity
features that can be generated naturally (that is, without
the need for practice procedures, such as P300, visual-
evoked potential and auditory-evoked potential). Such tasks
can induce stable EEG signals and are less affected by the
environment. Moreover, environment-independent components
can be separated from the measurements by using component
extraction methods such as independent component analysis
and principal component analysis. On the other hand, tasks
that require mental practice, such as motor imagery, are
inappropriate to be used as EEG-based biometrics, although the
tasks are able to evoke brain activity patterns containing personal
characteristics.

Longitudinal Studies and Incremental
Learning
The problem of template aging can be overcome by ensuring
the completeness of the representation for each enrolled client
prior to the training of classifiers. This means that for each
individual, EEG data obtained under various conditions and at
different times should be included in the training data sets. In
particular, some substances may affect brain activity, such as
medicine (Banoczi, 2005; Blume, 2006), tobacco (Tcheslavski,
2008), nicotine (Knott and Fisher, 2007), caffeine (Meng et al.,
2017), or alcohol (Kähkönen et al., 2003). In Marcel and Millán
Jdel (2007), the authentication model was updated using newly
acquired EEG recordings based on the incremental learning
method. These measures were shown to mediate the drop in
performance over a span of 3 days. In recent developments
of biometrics in smartphone authentication, the models used
for face or fingerprint recognition are adjusted during every
login procedure. In a previous study, we applied incremental
learning to an EEG-based person identification system (Cheng,
2013). Longitudinal variation was examined by having one
of the 23 participants repeatedly (19 times within 2 years)
conduct a finger movement experiment. Each session of EEG
data, Sn (n = 2, 3, . . ., 19), was used to test the following:
(1) the identification classifier trained using the first session
(S1); and (2) the identification classifier trained using all of the
data acquired in the previous sessions, [S1, S2, . . ., Sn−1]. In

16 of the 18 testing sessions, the second identification model
achieved better CRR than did the first model, as shown in
Figure 2. These results demonstrate the feasibility of incremental
learning and indicate the importance of acquiring complete
training data in order to maintain performance. We therefore
strongly recommend the use of longitudinal EEG acquisition
and performance evaluation during training steps in order
to improve the temporal persistence of EEG-based biometric
systems.

Modeling Psychological and Physiological
Changes
EEG measurements can be affected by psychological and
physiological factors. Increased delta power has been observed
in mice with sleep deprivation (Curie et al., 2013). Medication
may cause the power increase of beta and theta bands (Blume,
2006). Negative and positive emotional states induce different
patterns of functional connectivity (Chan et al., 2012, 2015b; Lee
and Hsieh, 2014). Patients suffering from Parkinson’s disease
exhibit slower EEG in theta band than that of the normal controls
(Soikkeli et al., 1991). Thus, developing a stable and effective
EEG-based biometric system requires an understanding of the
factors affecting EEG, as well as a means of selecting EEG features
with high stability and distinctiveness. The resulting model can
be used to perform data augmentation through the artificial
enlargement of the dataset and improved classifier training
(Krizhevsky et al., 2012). This model also makes it possible
to predict changes in features, thereby enabling the biometric
system to maintain high recognition accuracy over time. Take
aging as an example, where the power of auditory event-related
low frequency oscillations decreases over time (Dushanova and
Christov, 2014). If the oscillation power were used as a feature,
then a classifier trained using features augmented in accordance
with the aging model might recognize clients even as they
aged. The concept of feature augmentation using a prediction
model is illustrated in Figure 3. The accumulation of abundant
knowledge concerning the influence of various factors makes
it possible for researchers to build a model capable of making
accurate predictions of EEG features under varying conditions.
The use of a prediction model in conjunction with feature
augmentation could greatly reduce the time required to obtain
training data.

FIGURE 3 | Diagram of feature augmentation using prediction model (age
taken as example of factor affecting EEG features).
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Multitasking and Multimodal Biometrics
Conventional biometric systems rely on a single biometric
signature for person recognition; however, biometrics with
multiple tasks or multiple modalities can improve the accuracy
of person recognition and also increase the difficulty of forging
biometric data.

A number of multiple-task methods have been proposed to
improve system reliability. The CEREBRE system demonstrated
100% identification accuracy (IA) by integrating EEG features
from multiple tasks (Ruiz-Blondet et al., 2016, 2017). In
Palaniappan (2008), the authors combined five tasks to train
classifiers: resting, math activity, geometric rotation, letter
composing and visual counting. Unlike training classifiers in
which data is collected from all tasks at once, multitask learning
constructs a decision model by considering the main task
separately from the extra tasks (Shiliang, 2008). Acquiring
EEG data from a variety of tasks can be time-consuming
because the tasks must be performed sequentially; however,
statistical methods can be used to find the optimal sequence
of stimuli and shorten experimental time (Dale, 1999).
One accessible design scenario for multiple tasks in a
biometric system involves a series of tasks in a single
paradigm rather than having users perform several tasks
one by one. This can be regarded as a system capable of
extracting different features during different time periods.
For example, a single paradigm with three components
could be formulated as follows: visual-evoked potentials
(P100) followed by face-evoked potential (N170), and then
face recognition (after N250). For paradigms with more
than two types of stimuli, a statistical experimental design

can help to shorten the time required to conduct the
experiment, while still acquiring a sufficient number of data
points.

Multimodal biometrics is another way to improve recognition
accuracy (Shekhar et al., 2014; Kumar and Kumar, 2016) without
unduly extending the time required for data acquisition. For
example, a multimodal biometric system can record EC resting-
state activity of a client and perform the facial recognition
at the same time. During the execution of finger-lifting tasks,
the event-related potentials and fingerprints can be recorded
simultaneously.

Fusion with EEG-based biometrics is one potential solution
to the two major issues posed by conventional biometrics:
spoofing-attack detection and liveness detection (Akhtar et al.,
2015). EEG-based biometric systems can easily perform liveness
detection because only living individuals have brainwaves.
Determining whether the provision of data is voluntary is also
fairly straightforward because people present different EEG
characteristics in stressful situations. EEG biometrics also has
lower circumvention, compared to other biometrics.

We suggest combining EEG biometric features with
conventional biometrics to compensate for weaknesses on
both sides. Facial and fingerprint IDs are good candidates for
conventional biometrics due to their effectiveness, stability,
popularity and low cost. Researchers should also be aware
that the performance of multimodal biometric systems relies
on the selection of fusion parameters, such as the weight of
each biometric feature, and the decision rules used to compile
a score from each of the biometric classifiers (Kumar and
Kumar, 2016). Figure 4 presents an example of fusing EEG,

FIGURE 4 | Diagram of data processing flow in multimodal biometric system (enrollment procedure not shown).
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ECG and fingerprint features to illustrate the flow of multimodal
data processing when a client requests access. Deep learning
(DL) is another approach to the fusing of data from EEG and
other biometric modalities. This approach has been applied
to computing representations of multimodal biometrics for
spoofing detection (Menotti et al., 2015). This technique has
recently attracted attention due to its high performance. Further
details on DL are presented in the next subsection.

Machine Learning for EEG-Based
Biometrics
Machine learning methods can help to improve the system
performance by adapting the model to the data. Figure 5
illustrates the concepts of using four machine learning methods
for EEG-based person recognition. Incremental learning can
be used for modeling longitudinal data of EEG signals (as
mentioned in the previous section), in order to obtain a
realistic spatiotemporal representation of EEG signals. DL
is a popular machine learning method, which can learn a
set of features and construct a deep neural network for
a specific purpose, such as object recognition. Some recent
studies have applied DL techniques to the classification of
EEG signals from patients as well as normal subjects (Zhao
and He, 2015). Some BCI studies also used DL methods to
classify brain signals into different categories corresponding to
different instructions (Schirrmeister et al., 2017). When using
DL to improve an EEG-based biometric system, the main
problem is determining the means by which to classify EEG
signals of different users. Once the trained neural network
is able to identify users, it can also be used to extract
user-specific features from EEG data. These types of user-specific
feature can be applied to authentication systems for the
calculation of similarity between the test and the true user.
DL might also be a feasible approach to modal combination,
in determining the fusion parameters capable of achieving the
highest accuracy.

Transfer leaning (TL) is another important machine learning
technique applicable to EEG-based biometric systems. The idea
behind TL is to learn a representative structure from a large
database and then share this structure to adjust models lacking
training data. In BCI systems, the purpose of TL is to find
common structures across subjects for use in refining the model
for each subject (Zanini et al., 2018). This strategy can also be
used in biometrics, wherein a system based on a model capable
of classifying a large number of users is transferred to another
system with fewer users in order to improve classification
accuracy. TL can also be used for the extraction of features,
which are then transferred from the identification system to an
authentication system.

Manifold learning is another method by which to formulate
a good representation of data in a low-dimensional space.
Manifold learning has recently been used in the analysis of
MEG data based on the assumption that the brain transforms
high-dimensional sensory inputs into a low-dimensional
representation (Kuo et al., 2014). A manifold is constructed
by preserving the local distance between data (that is,
spatiotemporal brain activity) and enlarging the distance between

data that is further apart in the original high-dimensional space.
This makes it possible to keep together (close) brain activity
belonging to a particular individual after the transformation,
while pulling apart instances of brain activity belonging to other
individuals. However, DL, TL and manifold learning require a
large amount of training data to overcome problems imposed by
the high dimensionality associated with the sharing of data.

Data Sharing
Several databases are used for fingerprinting, such as NIST
SD27, WVU database and the IIITD database, which can
be used to help developers test their products. The major
limitation of current studies on EEG-based biometrics is an
inadequate number of subjects. One emerging trend in the
field of neuroimaging is the sharing of data to improve
reproducibility, reduce the cost of research, and maximize the
contribution of scientific resources (Poldrack and Gorgolewski,
2014). There are more than 8,000 shared structured magnetic
resonance images (MRIs) and more than 1,000 functional
MRIs online (e.g., HCP and OpenfMRI); however, EEG
databases contain data exclusive to that particular study. For
example, some datasets contain only the data collected from
patients or individuals with disorders that are inapplicable
to biometric applications. Once a wide range of EEG data
becomes available, researchers will be able to develop and test
their systems without the need to collect large amounts of
data.

A generalized dataset has recently made a significant
contribution to the development of DL. We suggest that a shared
EEG database with large variability among the subjects (for
example, encompassing different races and ages) would be useful
in the development of systems aimed at universality. However,
two important issues must be mentioned: (1) confidential
information, such as names, ages, and genders of subjects as well
as other behavioral data must be protected or encrypted. Before
experiments, subjects must be informed in advance and give
formal consent. (2) The format of the data can vary considerably
due to differences in equipment type, channel layout, sampling
rates, impedance and bandpass filters. Minor factors that are
generally overlooked (for examples, experiment location or
conditions of subjects) could also make a big difference, and
should therefore be recorded. Not just raw data, but even data
with different analytical levels (e.g., after preprocessing or after
frequency component extraction) could be shared. Raw data
requires a great deal of space for storage, but it has tremendous
potential for reuse. Nonetheless, an authorized standard must be
formulated in order to establish future EEG biometric systems,
and only EEG data that fits the standard would be included
in the database. This would help to ensure the successful
transfer of data or features from one system to another. When
developing a new system, a standardized EEG database could
help developers to obtain meaningful evaluations of their work.
We strongly recommend that researchers in EEG biometrics
(previous as well as ongoing) share their data within an accepted
standard, such that all subsequent studies would be able to train
their models and validate their results with greater ease and
effect.
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FIGURE 5 | Diagram of four machine learning techniques: incremental learning, Deep learning (DL), transfer learning and manifold learning, which can be applied in
EEG-based biometrics.

Two-Stage System to Minimize FAR While
Keeping TAR
Instances of false acceptance permit invalid access and
information leakage. Thus, systems requiring high security

depend on an access control system that minimizes FAR.
However, many of the methods used to prevent false acceptance
may also decrease TAR or increase the false rejection rate
(FRR). A biometric system with low TAR or high FRR
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necessitates the inclusion of alternative methods such as
passwords.

FAR can be minimized while maintaining high TAR by
dividing the process of recognition into two stages: (1) one stage
is meant to reduce FAR; and (2) the other stage is meant to
increase TAR. In Palaniappan (2008), researchers proposed a
two-stage person authentication system: (1) potential impostors
are identified in the first stage to reduce FAR; then (2) measures
are taken to verify their status as impostors in order to reduce
FRR. That approach was shown to achieve zero FAR and zero
FRR in four of the five subjects. In our previous work (Cheng,
2013), we propose a two-stage person identification system
in which one-against-rest classifiers are applied to multiple
candidates individually and sequentially until the identity of a
single candidate is verified, as shown in Figure 6. Our two-stage
identification system achieved TAR of 97.1% and FAR of 0.6%.
The same system without one-against-rest verification gave TAR
of 98.1% and FAR of 1.9%. Clearly, the two-stage framework
is applicable to the development of applications requiring high
security.

Exploring Additional EEG Features
In the following text, we present three methods for the
extraction of additional features for use in EEG-based biometrics.
Non-linearity features the complexity of signals, and previous

studies have shown that brain activity contains a non-linear
structure. Thus, we can deduce that conventional linear analysis
would be insufficient for such tasks (Stam, 2005; Gao et al.,
2015; Kuo et al., 2017). Neural complexity can be regarded
as irregularity of activity in the brain, which is related to
brain functions and information processing (McDonough and
Nashiro, 2014). Therefore, differences in the complexity of data
embedded in EEG can be used to differentiate among entities.
Entropy is one measure by which to assess the complexity of
the brain, and it has also been used in person authentication
(Mu et al., 2016). Calculating entropy at various temporal scales
makes it possible to formulate a complete description of the
non-linearity in EEG signals (Gao et al., 2015). We suggest using
both linear and non-linear features of EEG signals with different
temporal scales as a means of increasing accuracy.

The second approach is the use of connectivity in the
human brain, including functional and effective connectivity
(Friston, 2011), to assess the interactions between various regions
of the brain. Functional connectivity measures the statistical
dependence between activity in spatially segregated regions using
linear indices, such as correlation (Chan et al., 2015b), and
non-linear indices, such as phase locking values (Tass et al., 1998)
and phase-amplitude coupling (Tort et al., 2010; Chan et al.,
2015a). Effective connectivity quantifies the causal effects among
various neural systems using approaches such as dynamic causal

FIGURE 6 | Diagram of data processing flow in two-stage person identification system. Note that the enrollment procedure is not shown in this figure. The figure was
depicted based on the concept of data processing flow presented in our previous work (Cheng, 2013).
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modeling (Kiebel et al., 2009) and Granger causal modeling
(David et al., 2006).Moreover, changes in brain connectivity have
been associated with the effects of aging (Ferreira et al., 2016),
cognitive decline (Onoda et al., 2012), disease (de Hemptinne
et al., 2015) and emotional states (Lee and Hsieh, 2014). Thus,
brain connectivity has considerable potential for use in modeling
psychological and physiological changes.

Non-cortical components, such as the signals evoked
by eye-movement are the third type of potential feature.
Eye-movement components in EEG are conventionally treated
as artifacts and removed prior to analysis. In one study, subjects
were asked to perform specific movements such as eye blinking
and mouth moving, whereupon the artifacts evoked in the EEG
signals were used for person authentication (Pham et al., 2014).
Thus, it is possible to adopt artifacts in EEG as additional features
for use in conjunction with the artifact-free EEG signals to
improve system performance.

Niche Markets
Compared to the sensors used to acquire fingerprints, voice
samples, or facial features, current EEG devices are large and
expensive and suffer from a low SNR, which has hampered the
applicability of EEG-based person recognition. The medical and
consumer electronics industries are pushing the development of
EEG devices for consumers, which are smaller, more portable,
and cheaper than the EEG devices currently used in clinics.
Despite hardware limitations, EEG-based biometric systems
have a number of advantages (particularly with regard to
security) over other types of biometric system, as discussed
in section ‘‘Advantages of EEG-Based Person Recognition.’’
At present, EEG-based person recognition systems are best
suited to applications that require high security and have
low requirement on portability. Ideally, the system would
be able to tolerate slow responses and the administrators
would value security sufficiently to overlook the high cost.
Examples include the securing of top-secret documents in
governments or companies, accessing control of bank coffers,
or of the use of authorization codes for weapons of mass
destruction. The rapid growth of machine learning research
leads to the improvement of recognition performance.Moreover,
the development of artificial-intelligence chips points out the
possibility of on-device processing for EEG-based biometrics.
Along with the improvements of the portability and sensitivity of
electrophysiological instruments, EEG-based person recognition
stands a good chance to be applied to security administration of
consumer electronics, including smartphones, smart door locks
and laptops.

The tolerance of recognition errors depends on application
scenarios. The threshold should be strictly set for the applications
with high demand of security, such as home door locker and

bank coffers. In these situations, the environments are relatively
stable, allowing strict threshold and low tolerance of recognition
errors in EEG biometric systems. Moreover, EEG-based emotion
recognition (Alarcao and Fonseca, 2018) should also be applied
to block coerced users, who usually show strong fear and stress.
On the other hand, the authentication for smartphone and
laptop are usually used in various environments. The acceptance
threshold should be loosened to avoid frequent rejection caused
by deviation of EEG signals induced by ambient interferences as
well as distraction and emotion states of users.

CONCLUSION

Explosive growth in digital technology has resulted in a plethora
of applications requiring IDs and passwords, and the amount of
personal information stored in the cloud is increasing rapidly.
This has necessitated the development of access control methods
capable of reducing the burden on users while simultaneously
fortifying security. A review of the literature confirms that
EEG-based biometrics cannot be lost by users and are difficult
to steal or forge. Thus, EEG has considerable potential for use
in person recognition systems. However, processing efficiency,
recognition accuracy and user-friendly designs must evolve
before commercial EEG-based person recognition systems are
viable. An EEG-based biometric system requires highly sensitive
and portable EEG dry electrodes, a simple task design for
data acquisition, signal features with high stability and high
distinctiveness and an adaptive and accurate machine learning
classifier. This article outlines a number of methods by which
to overcome the disadvantages of existing EEG-based person
recognition systems, and thereby promote the emergence of
EEG-based person identification or authentication for security
control in the near future.
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