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Abstract
Recent studies have shown that task-specific electroencephalog-
raphy (EEG) can be used as a reliable biometric. This paper
extends this study to task-independent EEG with auditory stim-
uli. Data collected from 40 subjects in response to various types
of audio stimuli, using a 128 channel EEG system is presented
to different classifiers, namely, k-nearest neighbor (k-NN), arti-
ficial neural network (ANN) and universal background model
- Gaussian mixture model (UBM-GMM). It is observed that
k-NN and ANN perform well when testing is performed in-
trasession, while UBM-GMM framework is more robust when
testing is performed intersession. This can be attributed to the
fact that the correspondence of the sensor locations across ses-
sions is only approximate. It is also observed that EEG from
parietal and temporal regions contain more subject informa-
tion although the performance using all the 128 channel data
is marginally better.
Index Terms: subject identification, electroencephalography,
EEG biometrics, brain signals

1. Introduction
The objective of this paper is to extract signatures from EEG
signals to uniquely recognize individuals. The study of subject-
specific EEG signatures started with the analysis of genetic
traits in twins [1] just 12 years after the first EEG recording on
humans [2]. The task of identifying subject singular signatures
has its use in the following applications. The first one being
the ability to use EEG signals as a biometric system to uniquely
authenticate/recognize individuals. Biometric systems that use
brain signals are difficult to spoof. For example, face detection
can be spoofed by facemasks, fingerprints by gummy fingers,
voice print by replayed audio, eye scanner by contact lenses
and high-resolution photographs. In addition to the robustness
of EEG based recognition systems against spoofing and steal-
ing, it is impossible for an intruder to force a user to authen-
ticate. The stress signals present in the measured brain waves
will deny access [3].

The task of subject identification (Subject ID) from EEG
is similar to that of identifying a speaker from a speech sig-
nal where the phoneme information, language information, and
speaker information are present. There are some studies in the
literature [4–6] where ideas from speech processing have been
exploited for EEG analyses. In speaker identification (Speaker
ID), the objective is to remove the phone information while
preserving the speaker information. Contradicting this, in au-
tomatic speech recognition (ASR), the speaker-specific infor-
mation is first discarded before processing the phone informa-
tion [7, 8]. In EEG, irrespective of the task, information that
discriminates among subjects [9, 10] is present, due to morpho-
logical and functional plasticity traits. The ultimate objective

with EEG is to separate the subject dependent, and independent
signatures. These subject-independent signatures could then be
leveraged to build appropriate task-specific brain-computer in-
terfaces (BCI).

The main challenges to be tackled while modeling these
subject-specific traits include: (i) the design of elicitation proto-
cols that discriminate subjects and (ii) permanence of the mea-
sured signatures over time [11]. The commonly used elicitation
protocols for EEG biometrics include resting state responses
with open and closed eyes, event-related potentials during some
cognitive task. A detailed review of these different elicitation
protocols and their performance can be found in [11,12]. Some
of the previous works have shown subject identification across
tasks [13], in which each trial unit consists of responses to a par-
ticular task. Irrespective of the elicitation protocol, each of the
results have shown success in subject identification, suggesting
that any EEG signal must contain subject-specific traits. The
main issue is that the responses for different tasks may come
from different brain areas. This makes task-independent sub-
ject identification a challenging problem.

The human brain is known to be highly plastic. Hence,
the reproducibility of the subject-specific EEG signatures over
multiple acquisitions is also critical. In addition to biomet-
rics, in clinical applications, it is not desirable to have a sig-
nificant variance between various acquisitions. This problem
has been the objective of many studies in clinical neurophys-
iology [9, 14–18]. These clinical studies suggest that alpha
rhythms are more or less permanent. Despite these efforts, the
issue of repeatability has not yet received necessary attention
from the engineering community working on EEG as a biomet-
ric [11]. [19–22] are some of the works that have reported the
performance of EEG biometric with intersession repeatability.
Although they have reported reasonable accuracy on a small
number of subjects, the variability across task is not analyzed,
and the duration of the EEG signal required for subject identifi-
cation is also not studied.

The most widely used classifiers for identifying subjects in-
clude k-NN [23], ANN [23–25] and support vector machines
(SVM) [21, 26]. Apart from this, inspired by speaker verifi-
cation, UBM-GMM [4, 6, 27–30] is also used for EEG subject
recognition. In [4], the UBM-GMM system is evaluated across
sessions in a verification setting with only 6 subjects as clients.
In the same study, as the features were concatenated from dif-
ferent channels, the performance degrades significantly for in-
tersession testing. In other studies, the UBM-GMM system was
not tested across different acquisitions. The objective of this
paper is two-fold:

1. Find a robust machine learning algorithm among ANN,
UBM-GMM, and k-NN that scales well across sessions,
and across tasks

2. Study the performance variability across different areas



Table 1: Details of data collection protocols.

No.
Experiment

Description
No.of Total Duration

Names Recordings (in minutes)

1 Odd ball
paradigm with

audio beeps

Audio beeps of two different frequencies were played as target and non-target
stimulus. The subjects were expected to respond to target stimulus through
mouse clicks.

20 265

2 Familiar and
unfamiliar

words

The subjects were presented with common words and uncommon words. They
were expected to respond with a mouse click on hearing a familiar word.

14 196

3 Imagining
binary answers

A set of questions with the answer being either yes or no were presented to
the subjects. They were asked to imagine the answer and then respond with
a mouse click. Left click was used for positive responses and right click for
negative responses.

19 276

4 Semantically
opposite
words

Semantically opposite words such as “yes” and “no” were played to the subject
over multiple trials. Subject was instructed to respond with left and right mouse
clicks depending on the semantics of the word being played.

11 158

5 Passive
listening

Subjects listened passively to a variety of audio stimuli such as stories, music,
and sounds that trigger attention (for example sirens and the scattering of glass).

31 364

of the brain and duration of the EEG signal.
The rest of the paper is organized in the following manner:

Section 2 discusses the different protocols used for EEG data
collection. Section 3 describes the features and Section 4 de-
scribes the classifiers used to build the biometric system. The
experimental setup is explained in Section 5. The results of sub-
ject identification along with the test for intersession repeatabil-
ity is discussed in Section 6. Section 7 compares EEG subject
identification with speaker identification. A post-mortem analy-
sis of the UBM-GMM result is discussed in Section 8, followed
by conclusions in Section 9.

2. Data collection
EEG signals were recorded using a 128 channel EEG system
provided by Electrical Geodesics, Inc (EGI) [31]. For this task,
95 recordings were obtained from 40 healthy subjects with their
age ranging from 22 to 38. 15 of 40 subjects came for multiple
sessions of recordings. All the subjects were made to sit in an
anechoic chamber, and were presented with audio stimuli. For
all the recordings the subjects were asked to keep their eyes
closed.

Different protocols of stimuli were used to collect the
dataset. All the protocols had a minute of resting state before
and after the presentation of the stimuli. After the initial resting
state, different kinds of audio stimuli were played to the subject.
Each of these experiments followed different protocols. Details
of all the protocols are given in Table 1. The protocols 1 to 4
have a cognitive load and the subjects were expected to perform
some action based on the stimulus. The subjects were required
to perform either a mental (imagined speech) or a motor activ-
ity (mouse clicks). In protocol 5, the subjects were expected
to passively listen to audio stimuli such as stories and music.
The protocol 5 captures various mental state depending on the
subject. These five different protocols were designed to cover a
diverse set of tasks or mental states limiting to auditory stimuli.

The brain signals obtained from all the different experimen-
tal protocols are then divided uniformly into chunks. It is to be
noted that, this division is independent of the cognitive state,
such as, whether the subject is in resting state or listening to an
audio stimulus or giving feedback through motor/mental activ-

ity. The details of how these chunks are used in our experiments
can be found in Section 5.

3. Features
Some of the commonly used features for EEG biometrics in-
clude autoregressive (AR) coefficients [20,21,24,32] and spec-
tral features [9, 19, 23, 25, 33, 34]. While AR coefficients are
the most widely used features, a slight change in the estimated
coefficients can change the location of the root significantly in
the z-domain. Raw power spectral density (PSD) features were
used as features in this work. Contrasting with speaker iden-
tification, the resolution of EEG as a function of frequency is
assumed to be linear. As the range of EEG signals is about 50
Hz, the full band consisting of frequency up to 50 Hz was used
initially. In the literature, it has been established that differ-
ent bands correspond to different states/actions of the subject.
Hence, different sub-bands based subject identification (alpha
[8 - 13 Hz], beta [13 - 30 Hz] and gamma [30 - 50 Hz]) is also
performed in this study.

4. Classifiers
The UBM-GMM [4,35] framework is a probabilistic framework
first proposed in speaker verification/recognition. The UBM-
GMM enables a common space in which the learned features
can be represented. The UBM-GMM with M components is
mixture model and is given by:

p(x̄|λ) =

M∑
k=1

wkN (x̄|µ̄k,Σk) (1)

where x̄ is the feature vector, N (x̄|µ̄k,Σk) is Gaussian with
mean µ̄k and covariance Σk. wk is the weight associated
with k-th Gaussian. The UBM is trained using feature vec-
tors from all subjects, and all sessions. Subject-specific mod-
els are then built by adapting the UBM to subject-specific data
using maximum-a-posteriori (MAP) adaptation. All the chan-
nels/electrodes of the EEG signal are considered to be indepen-
dent. Although in the literature [4,27,29,30], the feature vectors
are concatenated across channels, with 128 channels, concate-
nation of feature vectors could lead to overfitting owing to the



paucity of data. During testing, the likelihood is normalized by
performing a likelihood ratio test, given by Equation 2. Here
λi is the subject-specific model, while λubm is the UBM-GMM
model. T is the number of feature vectors for a given length of
time, and C is the total number of channels in the EEG signal.
The final decision is made using:

SID = argmax
i

(
1

C × T

C∑
c=1

T∑
t=1

{log P (x̄c
t |λi)

− log P (x̄c
t |λUBM)}

) (2)

For ANN, the PSD features were concatenated from all the
channels and then used. During testing, the probabilities ob-
tained from concatenated frames are averaged across all the
frames of PSD to get the subject label. When each channel’s
feature vectors were considered to be independent, ANN did
not converge. k-NN being a non-parametric method, the frames
of the PSD were averaged to get an average spectrum, and
then concatenated across channels. Similar to ANN, k-NN also
failed to give good results without channel concatenation.

5. Experimental setup
The experiments in this paper are designed to answer the fol-
lowing questions.

1. How conclusively can subjects be identified from EEG
irrespective of the task?

2. Can the same subject-specific signatures be detected
across multiple sessions or acquisitions?

The first question is answered by taking all the 40 subjects
from different data collection protocols in Table 1. The data col-
lected from various protocols are divided uniformly into task-
independent chunks. These chunks are then assumed as inde-
pendent trials or data instances for the classification problem.
These trials are randomly divided in the ratio 60:10:30 as train,
validation, and test for building, evaluating and testing the mod-
els respectively. It is to be noted that, training data is taken
from all the sessions for each subject. This experiment will be
referred to as “classical testing” in the following sections. To
address the second question, 15 subjects with multiple session
data are only considered. In this approach, the train and test
data are split according to the number of sessions. The train and
test sessions are chosen to be mutually exclusive (no overlap).
This experiment will be referred to as “intersession testing” as
the modeled signatures are tested across different sessions. The
system performance is also evaluated for various chunk sizes.
In Figure 1.A - C correspond to topographic maps of different
trials in a single session of a subject. Similarly, Figure 1.D -
F correspond to the maps of the same subject obtained from
a different session. Figure 1.G - L belong to a different sub-
ject. From the figures, variability can be observed across trials,
sessions, and subjects. Nevertheless, different trials and ses-
sions from the same subject (comparing within A - F and G
- L) are observed to be more similar, compared to that of the
maps across subjects (comparing between A - F and G - L).

Another set of experiments were performed to determine
the area of the brain that contains signatures that are more sub-
ject singular.

The classification accuracy is used as an evaluation metric
to test the performance of the systems in all the experiments.
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Figure 1: Topographic plot of averaged beta band power for
various trials and subjects. The trials A - F belong to subject 1,
while trials G - L belong to subject 2. Sessions corresponds to
different days of recording from the same subject.

Classification accuracy is the total percentage of trials for which
the subjects were identified correctly.

6. Results and discussion
As discussed in Section 5, the dataset was initially divided into
chunks of length 30 and 70 seconds. The result of classical test-
ing with 40 subjects is given in Table 2 and the same for inters-
ession testing with 15 subjects is given in Table 3. From Table 2,
it can be observed that in intrasession trials, ANN achieves a
maximum accuracy of 100%, when the chunk size is 70s. The
performance of k-NN is similar while that of UBM-GMM is
relatively poor. All the three classification results indicate that
subject information is indeed present in EEG signals, especially
for intrasession.

Intersession testing is a harder problem as compared to the
classical testing. Some factors such as placement of the elec-
trodes, the time of the recording and the mental state of the
subject could be different across sessions for the same subject.
From Table 3, it can be inferred that the UBM-GMM based
classifier is relatively more robust across sessions compared to
ANN and k-NN. The results in Table 3 also indicate that there
is a significant difference in performance across bands, with
gamma showing the worst performance.

The chunk size was varied from 10s-90s with an increment
of 10s, to determine the optimal chunk size for subject ID. The
results of all three Subject ID systems using PSD features from
the beta band for different chunk sizes is shown in Figure 2.
This analysis is performed only for intersession testing. Ob-
serve that the accuracy increases as the chunk size increases,
for the UBM-GMM system. It is also evident that the UBM-
GMM system performs far better than the ANN and k-NN sys-



Table 2: Accuracy (in %) of classical testing on 40 subjects.

XXXXXXXXXFeatures
Classifiers k-NN ANN UBM-GMM

30s 70s 30s 70s 30s 70s

PSD (All Bands) 96.1 90.9 86.3 86.3 89.5 91.2

PSD (Alpha Band) 95.3 94.3 97.4 89.9 60.8 72.5

PSD (Beta Band) 98.8 97.9 99.3 94.5 82.2 89.4

PSD (Gamma Band) 98.5 95.1 99.9 100 51.0 55.9

Table 3: Accuracy (in %) of intersession testing on 15 subjects.

XXXXXXXXXFeatures
Classifiers k-NN ANN UBM-GMM

30s 70s 30s 70s 30s 70s

PSD (All Bands) 44.6 42.7 67.5 73.8 74.5 78.6

PSD (Alpha Band) 58.4 58.3 60.6 57.3 55.4 61.2

PSD (Beta Band) 81.4 80.6 81.8 78.4 81.7 86.8
PSD (Gamma Band) 59.3 57.3 66.2 67.9 35.1 39.8
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Figure 2: Accuracy of subject Identification for various dura-
tion of EEG signals

tem across sessions, as the chunk size increases.
The results discussed so far have used all the 128 channels.

It is possible that these subject-specific traits are present ac-
tively in some particular area of the brain. Therefore, while
adapting and evaluating the UBM-GMM system, only channels
belonging to a specific lobe of the brain were used. The result of
this evaluation is given in Table 4. The results in Table 4 were
computed for the chunk size of 30s and beta band. From the
Table 4, although all channels perform better, the performance
from parietal and temporal lobe is also high. The high perfor-
mance of the temporal lobe may be attributed to the use of audio
stimuli in all the protocols used for data collection.

7. Comparison with speaker identification
Although subject identification using EEG signals and speaker
identification have many similarities, there are some important
differences. The first and the foremost difference is the sam-
pling rate. While a sampling rate of 8 kHz is used for speaker
identification tasks, EEG uses a rate of 250 Hz. Hence for sub-
ject identification, a larger time window is required to estimate
the PSD. Owing to the low sampling rate, longer duration of
EEG signals are required to identify a subject accurately. This
is also evident from Figure 2.

The channels/electrodes used to record EEG signals are
very different from the channels/microphones used to record
speech. Between sessions, the location of different electrodes

Table 4: Accuracy (in %) obtained using a subset of channels
from different brain areas for intersession testing.

All
Channels

Frontal
Lobe

Parietal
Lobe

Occipital
Lobe

Temporal
Lobe

UBM-GMM 81.7 71.8 79.4 74.7 76.1

on the scalp can vary. UBM-GMM is, therefore, a better frame-
work compared to k-NN and ANN for subject identification, as
it transforms every feature vector to a vector of posteriors in the
UBM-GMM space, which is akin to transforming the feature
vectors non-linearly.

8. Analysis of the UBM-GMM system
The results in Table 2 and 3, suggest that UBM-GMM based
system performs well in both classical and intersession testing.
The EEG signatures vary significantly from subject to subject
due to morphology and plasticity of the brain. Since the UBM-
GMM is trained independent of a specific subject, it should
be able to model a subspace, from which new subject-specific
models can be obtained via MAP adaptation. To verify this hy-
pothesis, in the classical testing scenario (40 subjects), only a
set of random 20 subjects were used for training, and the re-
maining 20 subjects were only used for adaptation. The same
was repeated for intersession testing experiment (15 subjects)
by retaining random 8 subjects only for adaptation. The result
was validated across three folds of splits, and the same can be
found in Table 5.

Table 5: Accuracy (in %) of subjects used for UBM train-
ing (UBM subjects) vs subjects used only for MAP adaptation
(Adaption only subjects).

UBM
Subjects

Adaptation
Only Subjects

Classical Testing
Split-1 80.2 88.2

Split-2 86.0 81.5

Split-3 78.5 87.4

Intersession Testing
Split-1 79.8 80.3

Split-2 78.0 84.4

Split-3 83.6 79.1

Observe that, in Table 5, the classification accuracy is more
or less stable, even when the subjects are not used to model the
UBM. The UBM also models the task-dependent information
and other noise in addition to the task-independent subject in-
formation. With sufficient number of subjects, this information
can be removed using techniques similar to joint factor analysis
(JFA) [36] and i-vector [37].

9. Conclusion
Subject-specific signatures can be detected in EEG signals in-
dependent of the task or cognitive state. The objective is to use
EEG as a biometric or as a BCI. In the former, subject infor-
mation can be used for authentication, while for the latter sub-
ject information must be filtered out to obtain signatures that
discriminate mental states associated with tasks to build better
brain-computer interfaces.
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[34] M. Näpflin et al., “Test-retest reliability of resting EEG spectra
validates a statistical signature of persons,” Clinical Neurophysi-
ology, vol. 118, no. 11, pp. 2519–2524, 2007.

[35] D. A. Reynolds et al., “Speaker verification using adapted Gaus-
sian Mixture Models,” Digital signal processing, vol. 10, no. 1-3,
pp. 19–41, 2000.

[36] P. Kenny et al., “Joint Factor Analysis Versus Eigenchannels in
Speaker Recognition,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 4, pp. 1435–1447, May 2007.

[37] N. Dehak et al., “Front-End Factor Analysis for Speaker Verifica-
tion,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 19, no. 4, pp. 788–798, May 2011.

View publication statsView publication stats

http://dx.doi.org/10.1001/archneurpsyc.1936.02260120061004
http://dx.doi.org/10.1001/archneurpsyc.1936.02260120061004
http://www.sciencedirect.com/science/article/pii/S088523081000063X
http://www.sciencedirect.com/science/article/pii/S088523081000063X
http://www.sciencedirect.com/science/article/pii/001346947990035X
http://www.sciencedirect.com/science/article/pii/001346947990035X
http://dx.doi.org/10.1016/j.eswa.2014.05.013
http://stacks.iop.org/1741-2552/12/i=5/a=056019
http://www.sciencedirect.com/science/article/pii/0013469485900057
http://www.sciencedirect.com/science/article/pii/0013469485900057
http://www.sciencedirect.com/science/article/pii/S0925231215004725
http://www.sciencedirect.com/science/article/pii/S0925231215004725
https://www.egi.com/
https://www.researchgate.net/publication/327531718

	 Introduction
	 Data collection
	 Features
	 Classifiers
	 Experimental setup
	 Results and discussion
	 Comparison with speaker identification
	 Analysis of the UBM-GMM system
	 Conclusion
	 References

